Properties

Label 45.4.b
Level $45$
Weight $4$
Character orbit 45.b
Rep. character $\chi_{45}(19,\cdot)$
Character field $\Q$
Dimension $6$
Newform subspaces $2$
Sturm bound $24$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 45.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(24\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(45, [\chi])\).

Total New Old
Modular forms 22 8 14
Cusp forms 14 6 8
Eisenstein series 8 2 6

Trace form

\( 6 q - 12 q^{4} - 6 q^{5} - 36 q^{10} + 84 q^{11} - 228 q^{14} - 12 q^{16} + 216 q^{19} + 396 q^{20} + 6 q^{25} + 12 q^{26} - 636 q^{29} - 360 q^{31} - 96 q^{34} + 300 q^{35} - 132 q^{40} + 816 q^{41} - 1116 q^{44}+ \cdots - 2784 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(45, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
45.4.b.a 45.b 5.b $2$ $2.655$ \(\Q(\sqrt{-5}) \) \(\Q(\sqrt{-15}) \) 45.4.b.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta q^{2}+3q^{4}+5\beta q^{5}+11\beta q^{8}-5^{2}q^{10}+\cdots\)
45.4.b.b 45.b 5.b $4$ $2.655$ \(\Q(i, \sqrt{41})\) None 15.4.b.a \(0\) \(0\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}+(-5+\beta _{3})q^{4}+(-2-\beta _{2}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(45, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(45, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 2}\)