Defining parameters
Level: | \( N \) | \(=\) | \( 45 = 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 45.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(24\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(45, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 22 | 8 | 14 |
Cusp forms | 14 | 6 | 8 |
Eisenstein series | 8 | 2 | 6 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(45, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
45.4.b.a | $2$ | $2.655$ | \(\Q(\sqrt{-5}) \) | \(\Q(\sqrt{-15}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta q^{2}+3q^{4}+5\beta q^{5}+11\beta q^{8}-5^{2}q^{10}+\cdots\) |
45.4.b.b | $4$ | $2.655$ | \(\Q(i, \sqrt{41})\) | None | \(0\) | \(0\) | \(-6\) | \(0\) | \(q-\beta _{1}q^{2}+(-5+\beta _{3})q^{4}+(-2-\beta _{2}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(45, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(45, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 2}\)