Properties

Label 45.3.k.a.7.5
Level $45$
Weight $3$
Character 45.7
Analytic conductor $1.226$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [45,3,Mod(7,45)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("45.7"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(45, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([8, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 45.k (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.22616118962\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 7.5
Character \(\chi\) \(=\) 45.7
Dual form 45.3.k.a.13.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.725667 + 0.194442i) q^{2} +(2.68329 + 1.34163i) q^{3} +(-2.97532 + 1.71780i) q^{4} +(4.81907 + 1.33289i) q^{5} +(-2.20804 - 0.451834i) q^{6} +(-1.79727 + 0.481578i) q^{7} +(3.94998 - 3.94998i) q^{8} +(5.40005 + 7.19996i) q^{9} +(-3.75621 - 0.0302083i) q^{10} +(5.82294 - 10.0856i) q^{11} +(-10.2883 + 0.617573i) q^{12} +(-19.8070 - 5.30726i) q^{13} +(1.21058 - 0.698930i) q^{14} +(11.1427 + 10.0419i) q^{15} +(4.77288 - 8.26686i) q^{16} +(-10.0254 - 10.0254i) q^{17} +(-5.31861 - 4.17477i) q^{18} -10.8032i q^{19} +(-16.6279 + 4.31241i) q^{20} +(-5.46870 - 1.11907i) q^{21} +(-2.26444 + 8.45102i) q^{22} +(-1.34569 - 0.360576i) q^{23} +(15.8983 - 5.29951i) q^{24} +(21.4468 + 12.8466i) q^{25} +15.4052 q^{26} +(4.83020 + 26.5644i) q^{27} +(4.52021 - 4.52021i) q^{28} +(20.7968 + 12.0070i) q^{29} +(-10.0384 - 5.12050i) q^{30} +(21.6233 + 37.4526i) q^{31} +(-7.63926 + 28.5101i) q^{32} +(29.1558 - 19.2504i) q^{33} +(9.22442 + 5.32572i) q^{34} +(-9.30307 - 0.0748176i) q^{35} +(-28.4350 - 12.1460i) q^{36} +(-32.5443 - 32.5443i) q^{37} +(2.10058 + 7.83949i) q^{38} +(-46.0274 - 40.8145i) q^{39} +(24.3001 - 13.7703i) q^{40} +(-20.5409 - 35.5778i) q^{41} +(4.18605 - 0.251275i) q^{42} +(2.14721 + 8.01349i) q^{43} +40.0106i q^{44} +(16.4264 + 41.8948i) q^{45} +1.04663 q^{46} +(17.2577 - 4.62418i) q^{47} +(23.8981 - 15.7789i) q^{48} +(-39.4370 + 22.7689i) q^{49} +(-18.0611 - 5.15220i) q^{50} +(-13.4506 - 40.3513i) q^{51} +(68.0488 - 18.2336i) q^{52} +(-51.3281 + 51.3281i) q^{53} +(-8.67035 - 18.3377i) q^{54} +(41.5042 - 40.8419i) q^{55} +(-5.19697 + 9.00141i) q^{56} +(14.4938 - 28.9880i) q^{57} +(-17.4262 - 4.66933i) q^{58} +(24.3449 - 14.0555i) q^{59} +(-50.4031 - 10.7371i) q^{60} +(-41.1002 + 71.1876i) q^{61} +(-22.9736 - 22.9736i) q^{62} +(-13.1727 - 10.3398i) q^{63} +16.0088i q^{64} +(-88.3771 - 51.9766i) q^{65} +(-17.4143 + 19.6385i) q^{66} +(8.65757 - 32.3105i) q^{67} +(47.0502 + 12.6071i) q^{68} +(-3.12710 - 2.77294i) q^{69} +(6.76548 - 1.75461i) q^{70} +99.6917 q^{71} +(49.7697 + 7.10958i) q^{72} +(-22.3583 + 22.3583i) q^{73} +(29.9443 + 17.2883i) q^{74} +(40.3125 + 63.2448i) q^{75} +(18.5577 + 32.1428i) q^{76} +(-5.60840 + 20.9308i) q^{77} +(41.3366 + 20.6681i) q^{78} +(-52.9926 - 30.5953i) q^{79} +(34.0196 - 33.4768i) q^{80} +(-22.6788 + 77.7603i) q^{81} +(21.8237 + 21.8237i) q^{82} +(13.3760 + 49.9199i) q^{83} +(18.1935 - 6.06456i) q^{84} +(-34.9502 - 61.6757i) q^{85} +(-3.11631 - 5.39761i) q^{86} +(39.6947 + 60.1198i) q^{87} +(-16.8375 - 62.8384i) q^{88} -113.914i q^{89} +(-20.0662 - 27.2077i) q^{90} +38.1544 q^{91} +(4.62324 - 1.23879i) q^{92} +(7.77386 + 129.506i) q^{93} +(-11.6242 + 6.71123i) q^{94} +(14.3995 - 52.0611i) q^{95} +(-58.7483 + 66.2517i) q^{96} +(-29.5689 + 7.92297i) q^{97} +(24.1909 - 24.1909i) q^{98} +(104.060 - 12.5380i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 2 q^{2} - 6 q^{3} - 2 q^{5} - 24 q^{6} - 2 q^{7} - 24 q^{8} - 8 q^{10} + 8 q^{11} - 30 q^{12} - 2 q^{13} - 30 q^{15} + 28 q^{16} + 28 q^{17} + 48 q^{18} - 114 q^{20} + 12 q^{21} + 14 q^{22} + 82 q^{23}+ \cdots - 1876 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.725667 + 0.194442i −0.362833 + 0.0972209i −0.435630 0.900126i \(-0.643474\pi\)
0.0727965 + 0.997347i \(0.476808\pi\)
\(3\) 2.68329 + 1.34163i 0.894429 + 0.447210i
\(4\) −2.97532 + 1.71780i −0.743829 + 0.429450i
\(5\) 4.81907 + 1.33289i 0.963813 + 0.266579i
\(6\) −2.20804 0.451834i −0.368007 0.0753056i
\(7\) −1.79727 + 0.481578i −0.256753 + 0.0687969i −0.384900 0.922958i \(-0.625764\pi\)
0.128146 + 0.991755i \(0.459097\pi\)
\(8\) 3.94998 3.94998i 0.493747 0.493747i
\(9\) 5.40005 + 7.19996i 0.600006 + 0.799996i
\(10\) −3.75621 0.0302083i −0.375621 0.00302083i
\(11\) 5.82294 10.0856i 0.529358 0.916875i −0.470056 0.882637i \(-0.655766\pi\)
0.999414 0.0342381i \(-0.0109005\pi\)
\(12\) −10.2883 + 0.617573i −0.857357 + 0.0514644i
\(13\) −19.8070 5.30726i −1.52361 0.408251i −0.602684 0.797980i \(-0.705902\pi\)
−0.920930 + 0.389729i \(0.872569\pi\)
\(14\) 1.21058 0.698930i 0.0864702 0.0499236i
\(15\) 11.1427 + 10.0419i 0.742846 + 0.669463i
\(16\) 4.77288 8.26686i 0.298305 0.516679i
\(17\) −10.0254 10.0254i −0.589728 0.589728i 0.347830 0.937558i \(-0.386919\pi\)
−0.937558 + 0.347830i \(0.886919\pi\)
\(18\) −5.31861 4.17477i −0.295478 0.231932i
\(19\) 10.8032i 0.568587i −0.958737 0.284294i \(-0.908241\pi\)
0.958737 0.284294i \(-0.0917590\pi\)
\(20\) −16.6279 + 4.31241i −0.831395 + 0.215621i
\(21\) −5.46870 1.11907i −0.260414 0.0532889i
\(22\) −2.26444 + 8.45102i −0.102929 + 0.384137i
\(23\) −1.34569 0.360576i −0.0585081 0.0156772i 0.229446 0.973321i \(-0.426308\pi\)
−0.287954 + 0.957644i \(0.592975\pi\)
\(24\) 15.8983 5.29951i 0.662430 0.220813i
\(25\) 21.4468 + 12.8466i 0.857872 + 0.513864i
\(26\) 15.4052 0.592508
\(27\) 4.83020 + 26.5644i 0.178896 + 0.983868i
\(28\) 4.52021 4.52021i 0.161436 0.161436i
\(29\) 20.7968 + 12.0070i 0.717130 + 0.414035i 0.813695 0.581292i \(-0.197452\pi\)
−0.0965656 + 0.995327i \(0.530786\pi\)
\(30\) −10.0384 5.12050i −0.334615 0.170683i
\(31\) 21.6233 + 37.4526i 0.697524 + 1.20815i 0.969322 + 0.245793i \(0.0790484\pi\)
−0.271798 + 0.962354i \(0.587618\pi\)
\(32\) −7.63926 + 28.5101i −0.238727 + 0.890941i
\(33\) 29.1558 19.2504i 0.883509 0.583345i
\(34\) 9.22442 + 5.32572i 0.271307 + 0.156639i
\(35\) −9.30307 0.0748176i −0.265802 0.00213765i
\(36\) −28.4350 12.1460i −0.789860 0.337388i
\(37\) −32.5443 32.5443i −0.879576 0.879576i 0.113915 0.993491i \(-0.463661\pi\)
−0.993491 + 0.113915i \(0.963661\pi\)
\(38\) 2.10058 + 7.83949i 0.0552785 + 0.206302i
\(39\) −46.0274 40.8145i −1.18019 1.04653i
\(40\) 24.3001 13.7703i 0.607502 0.344257i
\(41\) −20.5409 35.5778i −0.500997 0.867752i −0.999999 0.00115173i \(-0.999633\pi\)
0.499002 0.866601i \(-0.333700\pi\)
\(42\) 4.18605 0.251275i 0.0996678 0.00598274i
\(43\) 2.14721 + 8.01349i 0.0499351 + 0.186360i 0.986388 0.164432i \(-0.0525791\pi\)
−0.936453 + 0.350792i \(0.885912\pi\)
\(44\) 40.0106i 0.909331i
\(45\) 16.4264 + 41.8948i 0.365032 + 0.930995i
\(46\) 1.04663 0.0227528
\(47\) 17.2577 4.62418i 0.367185 0.0983868i −0.0705087 0.997511i \(-0.522462\pi\)
0.437693 + 0.899124i \(0.355796\pi\)
\(48\) 23.8981 15.7789i 0.497876 0.328728i
\(49\) −39.4370 + 22.7689i −0.804836 + 0.464672i
\(50\) −18.0611 5.15220i −0.361223 0.103044i
\(51\) −13.4506 40.3513i −0.263737 0.791202i
\(52\) 68.0488 18.2336i 1.30863 0.350647i
\(53\) −51.3281 + 51.3281i −0.968455 + 0.968455i −0.999517 0.0310621i \(-0.990111\pi\)
0.0310621 + 0.999517i \(0.490111\pi\)
\(54\) −8.67035 18.3377i −0.160562 0.339588i
\(55\) 41.5042 40.8419i 0.754621 0.742580i
\(56\) −5.19697 + 9.00141i −0.0928030 + 0.160739i
\(57\) 14.4938 28.9880i 0.254278 0.508561i
\(58\) −17.4262 4.66933i −0.300451 0.0805057i
\(59\) 24.3449 14.0555i 0.412625 0.238229i −0.279292 0.960206i \(-0.590100\pi\)
0.691917 + 0.721977i \(0.256766\pi\)
\(60\) −50.4031 10.7371i −0.840051 0.178951i
\(61\) −41.1002 + 71.1876i −0.673774 + 1.16701i 0.303052 + 0.952974i \(0.401994\pi\)
−0.976826 + 0.214036i \(0.931339\pi\)
\(62\) −22.9736 22.9736i −0.370542 0.370542i
\(63\) −13.1727 10.3398i −0.209091 0.164123i
\(64\) 16.0088i 0.250137i
\(65\) −88.3771 51.9766i −1.35965 0.799640i
\(66\) −17.4143 + 19.6385i −0.263853 + 0.297552i
\(67\) 8.65757 32.3105i 0.129217 0.482246i −0.870737 0.491748i \(-0.836358\pi\)
0.999955 + 0.00950210i \(0.00302466\pi\)
\(68\) 47.0502 + 12.6071i 0.691915 + 0.185398i
\(69\) −3.12710 2.77294i −0.0453203 0.0401876i
\(70\) 6.76548 1.75461i 0.0966497 0.0250659i
\(71\) 99.6917 1.40411 0.702054 0.712123i \(-0.252266\pi\)
0.702054 + 0.712123i \(0.252266\pi\)
\(72\) 49.7697 + 7.10958i 0.691246 + 0.0987442i
\(73\) −22.3583 + 22.3583i −0.306278 + 0.306278i −0.843464 0.537186i \(-0.819487\pi\)
0.537186 + 0.843464i \(0.319487\pi\)
\(74\) 29.9443 + 17.2883i 0.404653 + 0.233626i
\(75\) 40.3125 + 63.2448i 0.537500 + 0.843264i
\(76\) 18.5577 + 32.1428i 0.244180 + 0.422932i
\(77\) −5.60840 + 20.9308i −0.0728363 + 0.271829i
\(78\) 41.3366 + 20.6681i 0.529956 + 0.264976i
\(79\) −52.9926 30.5953i −0.670793 0.387282i 0.125584 0.992083i \(-0.459919\pi\)
−0.796377 + 0.604801i \(0.793253\pi\)
\(80\) 34.0196 33.4768i 0.425246 0.418460i
\(81\) −22.6788 + 77.7603i −0.279986 + 0.960004i
\(82\) 21.8237 + 21.8237i 0.266142 + 0.266142i
\(83\) 13.3760 + 49.9199i 0.161157 + 0.601444i 0.998499 + 0.0547660i \(0.0174413\pi\)
−0.837343 + 0.546678i \(0.815892\pi\)
\(84\) 18.1935 6.06456i 0.216589 0.0721971i
\(85\) −34.9502 61.6757i −0.411178 0.725596i
\(86\) −3.11631 5.39761i −0.0362362 0.0627630i
\(87\) 39.6947 + 60.1198i 0.456261 + 0.691033i
\(88\) −16.8375 62.8384i −0.191335 0.714073i
\(89\) 113.914i 1.27993i −0.768402 0.639967i \(-0.778948\pi\)
0.768402 0.639967i \(-0.221052\pi\)
\(90\) −20.0662 27.2077i −0.222958 0.302307i
\(91\) 38.1544 0.419279
\(92\) 4.62324 1.23879i 0.0502526 0.0134651i
\(93\) 7.77386 + 129.506i 0.0835899 + 1.39254i
\(94\) −11.6242 + 6.71123i −0.123662 + 0.0713960i
\(95\) 14.3995 52.0611i 0.151573 0.548012i
\(96\) −58.7483 + 66.2517i −0.611962 + 0.690122i
\(97\) −29.5689 + 7.92297i −0.304834 + 0.0816801i −0.407994 0.912985i \(-0.633771\pi\)
0.103160 + 0.994665i \(0.467105\pi\)
\(98\) 24.1909 24.1909i 0.246845 0.246845i
\(99\) 104.060 12.5380i 1.05111 0.126646i
\(100\) −85.8789 1.38141i −0.858789 0.0138141i
\(101\) 29.8920 51.7745i 0.295961 0.512619i −0.679247 0.733909i \(-0.737694\pi\)
0.975208 + 0.221291i \(0.0710270\pi\)
\(102\) 17.6066 + 26.6662i 0.172614 + 0.261433i
\(103\) −48.8939 13.1011i −0.474698 0.127195i 0.0135348 0.999908i \(-0.495692\pi\)
−0.488233 + 0.872713i \(0.662358\pi\)
\(104\) −99.2006 + 57.2735i −0.953852 + 0.550707i
\(105\) −24.8624 12.6820i −0.236785 0.120781i
\(106\) 27.2668 47.2274i 0.257234 0.445542i
\(107\) −14.8359 14.8359i −0.138653 0.138653i 0.634374 0.773027i \(-0.281258\pi\)
−0.773027 + 0.634374i \(0.781258\pi\)
\(108\) −60.0038 70.7403i −0.555591 0.655003i
\(109\) 115.290i 1.05770i 0.848714 + 0.528852i \(0.177377\pi\)
−0.848714 + 0.528852i \(0.822623\pi\)
\(110\) −22.1768 + 37.7078i −0.201607 + 0.342798i
\(111\) −43.6633 130.988i −0.393363 1.18007i
\(112\) −4.59703 + 17.1563i −0.0410449 + 0.153182i
\(113\) 101.212 + 27.1198i 0.895686 + 0.239998i 0.677163 0.735833i \(-0.263209\pi\)
0.218523 + 0.975832i \(0.429876\pi\)
\(114\) −4.88123 + 23.8538i −0.0428178 + 0.209244i
\(115\) −6.00434 3.53129i −0.0522117 0.0307069i
\(116\) −82.5026 −0.711229
\(117\) −68.7466 171.269i −0.587578 1.46384i
\(118\) −14.9333 + 14.9333i −0.126553 + 0.126553i
\(119\) 22.8463 + 13.1903i 0.191986 + 0.110843i
\(120\) 83.6788 4.34791i 0.697323 0.0362326i
\(121\) −7.31319 12.6668i −0.0604396 0.104684i
\(122\) 15.9832 59.6501i 0.131010 0.488935i
\(123\) −7.38473 123.024i −0.0600385 1.00019i
\(124\) −128.672 74.2889i −1.03768 0.599104i
\(125\) 86.2304 + 90.4949i 0.689843 + 0.723959i
\(126\) 11.5695 + 4.94189i 0.0918213 + 0.0392213i
\(127\) 56.0831 + 56.0831i 0.441599 + 0.441599i 0.892549 0.450950i \(-0.148915\pi\)
−0.450950 + 0.892549i \(0.648915\pi\)
\(128\) −33.6698 125.657i −0.263045 0.981699i
\(129\) −4.98957 + 24.3832i −0.0386788 + 0.189017i
\(130\) 74.2387 + 20.5335i 0.571067 + 0.157950i
\(131\) −2.31731 4.01371i −0.0176894 0.0306390i 0.857045 0.515241i \(-0.172298\pi\)
−0.874735 + 0.484602i \(0.838964\pi\)
\(132\) −53.6794 + 107.360i −0.406662 + 0.813332i
\(133\) 5.20256 + 19.4162i 0.0391170 + 0.145987i
\(134\) 25.1300i 0.187538i
\(135\) −12.1305 + 134.454i −0.0898554 + 0.995955i
\(136\) −79.1999 −0.582352
\(137\) 2.29751 0.615617i 0.0167702 0.00449355i −0.250424 0.968136i \(-0.580570\pi\)
0.267194 + 0.963643i \(0.413903\pi\)
\(138\) 2.80841 + 1.40419i 0.0203508 + 0.0101753i
\(139\) 221.925 128.128i 1.59658 0.921786i 0.604441 0.796650i \(-0.293397\pi\)
0.992140 0.125136i \(-0.0399367\pi\)
\(140\) 27.8081 15.7582i 0.198629 0.112559i
\(141\) 52.5112 + 10.7454i 0.372420 + 0.0762087i
\(142\) −72.3429 + 19.3842i −0.509457 + 0.136509i
\(143\) −168.862 + 168.862i −1.18085 + 1.18085i
\(144\) 85.2949 10.2770i 0.592325 0.0713680i
\(145\) 84.2169 + 85.5825i 0.580806 + 0.590224i
\(146\) 11.8773 20.5721i 0.0813513 0.140905i
\(147\) −136.368 + 8.18575i −0.927675 + 0.0556854i
\(148\) 152.734 + 40.9250i 1.03199 + 0.276520i
\(149\) −81.5954 + 47.1091i −0.547620 + 0.316168i −0.748161 0.663517i \(-0.769063\pi\)
0.200542 + 0.979685i \(0.435730\pi\)
\(150\) −41.5509 38.0562i −0.277006 0.253708i
\(151\) 14.0475 24.3310i 0.0930299 0.161133i −0.815755 0.578398i \(-0.803678\pi\)
0.908785 + 0.417265i \(0.137011\pi\)
\(152\) −42.6722 42.6722i −0.280738 0.280738i
\(153\) 18.0447 126.320i 0.117939 0.825619i
\(154\) 16.2793i 0.105710i
\(155\) 54.2836 + 209.308i 0.350217 + 1.35037i
\(156\) 207.057 + 42.3704i 1.32729 + 0.271605i
\(157\) 9.98621 37.2690i 0.0636064 0.237382i −0.926803 0.375549i \(-0.877454\pi\)
0.990409 + 0.138166i \(0.0441209\pi\)
\(158\) 44.4040 + 11.8980i 0.281038 + 0.0753039i
\(159\) −206.591 + 68.8647i −1.29932 + 0.433111i
\(160\) −74.8150 + 127.210i −0.467594 + 0.795061i
\(161\) 2.59221 0.0161007
\(162\) 1.33742 60.8378i 0.00825566 0.375542i
\(163\) 140.797 140.797i 0.863787 0.863787i −0.127989 0.991776i \(-0.540852\pi\)
0.991776 + 0.127989i \(0.0408522\pi\)
\(164\) 122.231 + 70.5703i 0.745313 + 0.430306i
\(165\) 166.162 53.9073i 1.00704 0.326711i
\(166\) −19.4130 33.6243i −0.116946 0.202556i
\(167\) −73.2232 + 273.273i −0.438462 + 1.63636i 0.294180 + 0.955750i \(0.404953\pi\)
−0.732642 + 0.680614i \(0.761713\pi\)
\(168\) −26.0215 + 17.1810i −0.154890 + 0.102268i
\(169\) 217.791 + 125.742i 1.28870 + 0.744033i
\(170\) 37.3545 + 37.9602i 0.219732 + 0.223295i
\(171\) 77.7823 58.3376i 0.454867 0.341156i
\(172\) −20.1542 20.1542i −0.117176 0.117176i
\(173\) −80.2289 299.418i −0.463751 1.73074i −0.660998 0.750387i \(-0.729867\pi\)
0.197248 0.980354i \(-0.436800\pi\)
\(174\) −40.4949 35.9087i −0.232729 0.206372i
\(175\) −44.7324 12.7606i −0.255614 0.0729175i
\(176\) −55.5843 96.2748i −0.315820 0.547016i
\(177\) 84.1816 5.05315i 0.475602 0.0285489i
\(178\) 22.1497 + 82.6637i 0.124436 + 0.464403i
\(179\) 151.884i 0.848512i −0.905542 0.424256i \(-0.860536\pi\)
0.905542 0.424256i \(-0.139464\pi\)
\(180\) −120.841 96.4329i −0.671337 0.535738i
\(181\) 48.0978 0.265734 0.132867 0.991134i \(-0.457582\pi\)
0.132867 + 0.991134i \(0.457582\pi\)
\(182\) −27.6874 + 7.41881i −0.152128 + 0.0407627i
\(183\) −205.791 + 135.876i −1.12454 + 0.742489i
\(184\) −6.73969 + 3.89116i −0.0366288 + 0.0211476i
\(185\) −113.455 200.211i −0.613271 1.08222i
\(186\) −30.8227 92.4669i −0.165713 0.497134i
\(187\) −159.489 + 42.7350i −0.852883 + 0.228529i
\(188\) −43.4036 + 43.4036i −0.230870 + 0.230870i
\(189\) −21.4741 45.4174i −0.113619 0.240304i
\(190\) −0.326345 + 40.5789i −0.00171761 + 0.213573i
\(191\) −181.698 + 314.711i −0.951300 + 1.64770i −0.208683 + 0.977983i \(0.566918\pi\)
−0.742617 + 0.669717i \(0.766416\pi\)
\(192\) −21.4779 + 42.9562i −0.111864 + 0.223730i
\(193\) 11.5607 + 3.09769i 0.0599001 + 0.0160502i 0.288645 0.957436i \(-0.406795\pi\)
−0.228745 + 0.973486i \(0.573462\pi\)
\(194\) 19.9166 11.4989i 0.102663 0.0592725i
\(195\) −167.408 258.038i −0.858501 1.32327i
\(196\) 78.2250 135.490i 0.399107 0.691274i
\(197\) 45.3414 + 45.3414i 0.230159 + 0.230159i 0.812759 0.582600i \(-0.197964\pi\)
−0.582600 + 0.812759i \(0.697964\pi\)
\(198\) −73.0751 + 29.3321i −0.369066 + 0.148142i
\(199\) 17.0082i 0.0854685i −0.999086 0.0427343i \(-0.986393\pi\)
0.999086 0.0427343i \(-0.0136069\pi\)
\(200\) 135.458 33.9705i 0.677290 0.169853i
\(201\) 66.5795 75.0831i 0.331241 0.373548i
\(202\) −11.6245 + 43.3833i −0.0575471 + 0.214769i
\(203\) −43.1598 11.5646i −0.212610 0.0569686i
\(204\) 109.335 + 96.9524i 0.535957 + 0.475257i
\(205\) −51.5664 198.831i −0.251543 0.969906i
\(206\) 38.0281 0.184602
\(207\) −4.67065 11.6360i −0.0225635 0.0562126i
\(208\) −138.411 + 138.411i −0.665436 + 0.665436i
\(209\) −108.957 62.9061i −0.521323 0.300986i
\(210\) 20.5078 + 4.36864i 0.0976560 + 0.0208031i
\(211\) −148.887 257.879i −0.705624 1.22218i −0.966466 0.256795i \(-0.917333\pi\)
0.260842 0.965382i \(-0.416000\pi\)
\(212\) 64.5460 240.889i 0.304462 1.13627i
\(213\) 267.501 + 133.749i 1.25588 + 0.627932i
\(214\) 13.6506 + 7.88119i 0.0637879 + 0.0368280i
\(215\) −0.333589 + 41.4795i −0.00155157 + 0.192928i
\(216\) 124.008 + 85.8497i 0.574111 + 0.397452i
\(217\) −56.8993 56.8993i −0.262209 0.262209i
\(218\) −22.4172 83.6620i −0.102831 0.383771i
\(219\) −89.9903 + 29.9971i −0.410915 + 0.136973i
\(220\) −53.3298 + 192.814i −0.242408 + 0.876425i
\(221\) 145.365 + 251.779i 0.657760 + 1.13927i
\(222\) 57.1545 + 86.5638i 0.257453 + 0.389927i
\(223\) −8.27356 30.8773i −0.0371012 0.138463i 0.944891 0.327385i \(-0.106167\pi\)
−0.981992 + 0.188922i \(0.939501\pi\)
\(224\) 54.9194i 0.245176i
\(225\) 23.3188 + 223.788i 0.103639 + 0.994615i
\(226\) −78.7197 −0.348317
\(227\) 377.838 101.241i 1.66449 0.445997i 0.700870 0.713289i \(-0.252795\pi\)
0.963616 + 0.267292i \(0.0861288\pi\)
\(228\) 6.67174 + 111.146i 0.0292620 + 0.487482i
\(229\) −217.228 + 125.417i −0.948594 + 0.547671i −0.892644 0.450762i \(-0.851152\pi\)
−0.0559502 + 0.998434i \(0.517819\pi\)
\(230\) 5.04378 + 1.39505i 0.0219295 + 0.00606542i
\(231\) −43.1304 + 48.6390i −0.186712 + 0.210558i
\(232\) 129.574 34.7193i 0.558509 0.149652i
\(233\) 239.086 239.086i 1.02612 1.02612i 0.0264709 0.999650i \(-0.491573\pi\)
0.999650 0.0264709i \(-0.00842693\pi\)
\(234\) 83.1890 + 110.917i 0.355508 + 0.474004i
\(235\) 89.3294 + 0.718409i 0.380125 + 0.00305706i
\(236\) −48.2891 + 83.6392i −0.204615 + 0.354404i
\(237\) −101.147 153.193i −0.426780 0.646382i
\(238\) −19.1436 5.12950i −0.0804352 0.0215525i
\(239\) 33.8483 19.5423i 0.141625 0.0817672i −0.427513 0.904009i \(-0.640610\pi\)
0.569138 + 0.822242i \(0.307277\pi\)
\(240\) 136.198 44.1861i 0.567492 0.184109i
\(241\) −41.8525 + 72.4907i −0.173662 + 0.300791i −0.939697 0.342007i \(-0.888893\pi\)
0.766036 + 0.642798i \(0.222227\pi\)
\(242\) 7.76989 + 7.76989i 0.0321070 + 0.0321070i
\(243\) −165.179 + 178.227i −0.679751 + 0.733443i
\(244\) 282.408i 1.15741i
\(245\) −220.398 + 57.1598i −0.899583 + 0.233305i
\(246\) 29.2798 + 87.8384i 0.119024 + 0.357067i
\(247\) −57.3352 + 213.978i −0.232126 + 0.866307i
\(248\) 233.348 + 62.5254i 0.940920 + 0.252119i
\(249\) −31.0824 + 151.895i −0.124829 + 0.610020i
\(250\) −80.1705 48.9023i −0.320682 0.195609i
\(251\) −116.674 −0.464837 −0.232418 0.972616i \(-0.574664\pi\)
−0.232418 + 0.972616i \(0.574664\pi\)
\(252\) 56.9546 + 8.13594i 0.226011 + 0.0322855i
\(253\) −11.4725 + 11.4725i −0.0453458 + 0.0453458i
\(254\) −51.6025 29.7927i −0.203159 0.117294i
\(255\) −11.0354 212.384i −0.0432759 0.832877i
\(256\) 16.8485 + 29.1825i 0.0658146 + 0.113994i
\(257\) −1.23843 + 4.62189i −0.00481880 + 0.0179840i −0.968293 0.249816i \(-0.919630\pi\)
0.963475 + 0.267800i \(0.0862966\pi\)
\(258\) −1.12036 18.6643i −0.00434247 0.0723422i
\(259\) 74.1637 + 42.8184i 0.286346 + 0.165322i
\(260\) 352.235 + 2.83276i 1.35475 + 0.0108952i
\(261\) 25.8536 + 214.574i 0.0990559 + 0.822124i
\(262\) 2.46203 + 2.46203i 0.00939706 + 0.00939706i
\(263\) −25.3145 94.4750i −0.0962529 0.359221i 0.900954 0.433916i \(-0.142868\pi\)
−0.997206 + 0.0746949i \(0.976202\pi\)
\(264\) 39.1261 191.203i 0.148205 0.724255i
\(265\) −315.769 + 178.939i −1.19158 + 0.675241i
\(266\) −7.55065 13.0781i −0.0283859 0.0491658i
\(267\) 152.831 305.664i 0.572400 1.14481i
\(268\) 29.7440 + 111.006i 0.110985 + 0.414201i
\(269\) 212.871i 0.791340i −0.918393 0.395670i \(-0.870512\pi\)
0.918393 0.395670i \(-0.129488\pi\)
\(270\) −17.3408 99.9274i −0.0642251 0.370101i
\(271\) −180.243 −0.665102 −0.332551 0.943085i \(-0.607909\pi\)
−0.332551 + 0.943085i \(0.607909\pi\)
\(272\) −130.728 + 35.0285i −0.480618 + 0.128781i
\(273\) 102.379 + 51.1891i 0.375016 + 0.187506i
\(274\) −1.54753 + 0.893465i −0.00564791 + 0.00326082i
\(275\) 254.449 141.499i 0.925270 0.514543i
\(276\) 14.0675 + 2.87864i 0.0509691 + 0.0104299i
\(277\) 316.123 84.7048i 1.14124 0.305794i 0.361789 0.932260i \(-0.382166\pi\)
0.779448 + 0.626467i \(0.215499\pi\)
\(278\) −136.130 + 136.130i −0.489676 + 0.489676i
\(279\) −152.890 + 357.932i −0.547994 + 1.28291i
\(280\) −37.0424 + 36.4514i −0.132294 + 0.130184i
\(281\) −15.6356 + 27.0816i −0.0556426 + 0.0963758i −0.892505 0.451037i \(-0.851054\pi\)
0.836862 + 0.547413i \(0.184387\pi\)
\(282\) −40.1950 + 2.41278i −0.142535 + 0.00855596i
\(283\) 195.826 + 52.4715i 0.691966 + 0.185412i 0.587629 0.809130i \(-0.300061\pi\)
0.104337 + 0.994542i \(0.466728\pi\)
\(284\) −296.614 + 171.250i −1.04442 + 0.602995i
\(285\) 108.485 120.376i 0.380648 0.422372i
\(286\) 89.7036 155.371i 0.313649 0.543256i
\(287\) 54.0511 + 54.0511i 0.188331 + 0.188331i
\(288\) −246.524 + 98.9537i −0.855986 + 0.343589i
\(289\) 87.9840i 0.304443i
\(290\) −77.7542 45.7291i −0.268118 0.157686i
\(291\) −89.9715 18.4110i −0.309181 0.0632679i
\(292\) 28.1159 104.930i 0.0962875 0.359350i
\(293\) −37.6696 10.0935i −0.128565 0.0344490i 0.193963 0.981009i \(-0.437866\pi\)
−0.322528 + 0.946560i \(0.604533\pi\)
\(294\) 97.3662 32.4558i 0.331178 0.110394i
\(295\) 136.054 35.2854i 0.461200 0.119611i
\(296\) −257.098 −0.868576
\(297\) 296.045 + 105.967i 0.996784 + 0.356793i
\(298\) 50.0510 50.0510i 0.167957 0.167957i
\(299\) 24.7403 + 14.2838i 0.0827435 + 0.0477720i
\(300\) −228.584 118.924i −0.761948 0.396415i
\(301\) −7.71824 13.3684i −0.0256420 0.0444132i
\(302\) −5.46285 + 20.3876i −0.0180889 + 0.0675087i
\(303\) 149.671 98.8217i 0.493964 0.326144i
\(304\) −89.3082 51.5621i −0.293777 0.169612i
\(305\) −292.950 + 288.276i −0.960492 + 0.945166i
\(306\) 11.4674 + 95.1747i 0.0374751 + 0.311028i
\(307\) −28.4359 28.4359i −0.0926251 0.0926251i 0.659276 0.751901i \(-0.270863\pi\)
−0.751901 + 0.659276i \(0.770863\pi\)
\(308\) −19.2682 71.9100i −0.0625591 0.233474i
\(309\) −113.619 100.751i −0.367701 0.326057i
\(310\) −80.0900 141.333i −0.258355 0.455912i
\(311\) −215.953 374.041i −0.694381 1.20270i −0.970389 0.241548i \(-0.922345\pi\)
0.276007 0.961156i \(-0.410989\pi\)
\(312\) −343.024 + 20.5906i −1.09943 + 0.0659956i
\(313\) 53.6933 + 200.386i 0.171544 + 0.640211i 0.997115 + 0.0759119i \(0.0241868\pi\)
−0.825571 + 0.564299i \(0.809147\pi\)
\(314\) 28.9866i 0.0923141i
\(315\) −49.6984 67.3858i −0.157773 0.213923i
\(316\) 210.226 0.665274
\(317\) 342.998 91.9060i 1.08201 0.289924i 0.326593 0.945165i \(-0.394100\pi\)
0.755420 + 0.655241i \(0.227433\pi\)
\(318\) 136.526 90.1428i 0.429328 0.283468i
\(319\) 242.196 139.832i 0.759237 0.438345i
\(320\) −21.3380 + 77.1474i −0.0666813 + 0.241086i
\(321\) −19.9046 59.7132i −0.0620082 0.186022i
\(322\) −1.88108 + 0.504034i −0.00584187 + 0.00156532i
\(323\) −108.306 + 108.306i −0.335311 + 0.335311i
\(324\) −66.1000 270.319i −0.204012 0.834319i
\(325\) −356.616 368.276i −1.09728 1.13316i
\(326\) −74.7950 + 129.549i −0.229432 + 0.397389i
\(327\) −154.676 + 309.356i −0.473016 + 0.946042i
\(328\) −221.668 59.3957i −0.675816 0.181084i
\(329\) −28.7899 + 16.6218i −0.0875072 + 0.0505223i
\(330\) −110.097 + 71.4276i −0.333626 + 0.216447i
\(331\) −187.451 + 324.675i −0.566318 + 0.980891i 0.430608 + 0.902539i \(0.358299\pi\)
−0.996926 + 0.0783519i \(0.975034\pi\)
\(332\) −125.550 125.550i −0.378163 0.378163i
\(333\) 58.5767 410.059i 0.175906 1.23141i
\(334\) 212.543i 0.636355i
\(335\) 84.7879 144.167i 0.253098 0.430349i
\(336\) −35.3526 + 39.8678i −0.105216 + 0.118654i
\(337\) −38.4732 + 143.584i −0.114164 + 0.426065i −0.999223 0.0394135i \(-0.987451\pi\)
0.885059 + 0.465478i \(0.154118\pi\)
\(338\) −182.493 48.8988i −0.539920 0.144671i
\(339\) 235.197 + 208.560i 0.693797 + 0.615221i
\(340\) 209.934 + 123.467i 0.617454 + 0.363139i
\(341\) 503.643 1.47696
\(342\) −45.1007 + 57.4578i −0.131873 + 0.168005i
\(343\) 124.383 124.383i 0.362633 0.362633i
\(344\) 40.1345 + 23.1717i 0.116670 + 0.0673595i
\(345\) −11.3737 17.5311i −0.0329672 0.0508147i
\(346\) 116.439 + 201.678i 0.336528 + 0.582884i
\(347\) −62.5014 + 233.258i −0.180119 + 0.672214i 0.815504 + 0.578752i \(0.196460\pi\)
−0.995623 + 0.0934622i \(0.970207\pi\)
\(348\) −221.378 110.688i −0.636144 0.318069i
\(349\) 331.191 + 191.213i 0.948971 + 0.547889i 0.892761 0.450530i \(-0.148765\pi\)
0.0562101 + 0.998419i \(0.482098\pi\)
\(350\) 34.9420 + 0.562061i 0.0998343 + 0.00160589i
\(351\) 45.3127 551.796i 0.129096 1.57207i
\(352\) 243.059 + 243.059i 0.690509 + 0.690509i
\(353\) 134.782 + 503.013i 0.381819 + 1.42497i 0.843121 + 0.537724i \(0.180716\pi\)
−0.461302 + 0.887243i \(0.652618\pi\)
\(354\) −60.1052 + 20.0353i −0.169789 + 0.0565969i
\(355\) 480.421 + 132.878i 1.35330 + 0.374305i
\(356\) 195.682 + 338.931i 0.549668 + 0.952052i
\(357\) 43.6067 + 66.0448i 0.122148 + 0.184999i
\(358\) 29.5325 + 110.217i 0.0824931 + 0.307868i
\(359\) 326.956i 0.910741i 0.890302 + 0.455370i \(0.150493\pi\)
−0.890302 + 0.455370i \(0.849507\pi\)
\(360\) 230.367 + 100.599i 0.639909 + 0.279443i
\(361\) 244.292 0.676709
\(362\) −34.9030 + 9.35222i −0.0964170 + 0.0258349i
\(363\) −2.62919 43.8003i −0.00724296 0.120662i
\(364\) −113.521 + 65.5417i −0.311872 + 0.180060i
\(365\) −137.547 + 77.9449i −0.376842 + 0.213548i
\(366\) 122.916 138.615i 0.335836 0.378729i
\(367\) −505.039 + 135.325i −1.37613 + 0.368733i −0.869713 0.493557i \(-0.835696\pi\)
−0.506415 + 0.862290i \(0.669030\pi\)
\(368\) −9.40362 + 9.40362i −0.0255533 + 0.0255533i
\(369\) 145.237 340.016i 0.393597 0.921452i
\(370\) 121.260 + 123.226i 0.327730 + 0.333044i
\(371\) 67.5322 116.969i 0.182028 0.315281i
\(372\) −245.596 371.969i −0.660204 0.999916i
\(373\) −23.4631 6.28693i −0.0629039 0.0168550i 0.227230 0.973841i \(-0.427033\pi\)
−0.290134 + 0.956986i \(0.593700\pi\)
\(374\) 107.426 62.0227i 0.287237 0.165836i
\(375\) 109.970 + 358.513i 0.293253 + 0.956035i
\(376\) 49.9020 86.4328i 0.132718 0.229874i
\(377\) −348.197 348.197i −0.923598 0.923598i
\(378\) 24.4141 + 28.7825i 0.0645874 + 0.0761441i
\(379\) 364.939i 0.962900i 0.876474 + 0.481450i \(0.159890\pi\)
−0.876474 + 0.481450i \(0.840110\pi\)
\(380\) 46.5877 + 179.634i 0.122599 + 0.472720i
\(381\) 75.2442 + 225.730i 0.197491 + 0.592466i
\(382\) 70.6595 263.705i 0.184972 0.690327i
\(383\) 3.24720 + 0.870084i 0.00847832 + 0.00227176i 0.263056 0.964781i \(-0.415270\pi\)
−0.254577 + 0.967052i \(0.581936\pi\)
\(384\) 78.2401 382.347i 0.203750 0.995696i
\(385\) −54.9258 + 93.3916i −0.142664 + 0.242576i
\(386\) −8.99155 −0.0232942
\(387\) −46.1018 + 58.7331i −0.119126 + 0.151765i
\(388\) 74.3668 74.3668i 0.191667 0.191667i
\(389\) 131.808 + 76.0995i 0.338838 + 0.195628i 0.659758 0.751478i \(-0.270659\pi\)
−0.320920 + 0.947106i \(0.603992\pi\)
\(390\) 171.655 + 154.698i 0.440142 + 0.396662i
\(391\) 9.87610 + 17.1059i 0.0252586 + 0.0437491i
\(392\) −65.8383 + 245.712i −0.167955 + 0.626816i
\(393\) −0.833107 13.8789i −0.00211986 0.0353153i
\(394\) −41.7190 24.0865i −0.105886 0.0611332i
\(395\) −214.595 218.074i −0.543278 0.552087i
\(396\) −288.074 + 216.059i −0.727461 + 0.545604i
\(397\) −275.868 275.868i −0.694882 0.694882i 0.268420 0.963302i \(-0.413498\pi\)
−0.963302 + 0.268420i \(0.913498\pi\)
\(398\) 3.30711 + 12.3423i 0.00830933 + 0.0310108i
\(399\) −12.0894 + 59.0792i −0.0302994 + 0.148068i
\(400\) 208.564 115.982i 0.521410 0.289956i
\(401\) −337.489 584.548i −0.841618 1.45773i −0.888526 0.458826i \(-0.848270\pi\)
0.0469080 0.998899i \(-0.485063\pi\)
\(402\) −33.7152 + 67.4311i −0.0838688 + 0.167739i
\(403\) −229.521 856.582i −0.569530 2.12551i
\(404\) 205.394i 0.508401i
\(405\) −212.937 + 344.504i −0.525770 + 0.850626i
\(406\) 33.5683 0.0826805
\(407\) −517.733 + 138.726i −1.27207 + 0.340850i
\(408\) −212.516 106.257i −0.520873 0.260434i
\(409\) −375.213 + 216.629i −0.917390 + 0.529655i −0.882802 0.469746i \(-0.844345\pi\)
−0.0345887 + 0.999402i \(0.511012\pi\)
\(410\) 76.0810 + 134.258i 0.185563 + 0.327459i
\(411\) 6.99082 + 1.43054i 0.0170093 + 0.00348063i
\(412\) 167.980 45.0101i 0.407718 0.109248i
\(413\) −36.9856 + 36.9856i −0.0895534 + 0.0895534i
\(414\) 5.65186 + 7.53570i 0.0136518 + 0.0182022i
\(415\) −2.07808 + 258.396i −0.00500743 + 0.622641i
\(416\) 302.621 524.155i 0.727455 1.25999i
\(417\) 767.388 46.0639i 1.84026 0.110465i
\(418\) 91.2977 + 24.4631i 0.218416 + 0.0585243i
\(419\) 432.869 249.917i 1.03310 0.596461i 0.115229 0.993339i \(-0.463240\pi\)
0.917871 + 0.396878i \(0.129907\pi\)
\(420\) 95.7589 4.97558i 0.227997 0.0118466i
\(421\) 15.0425 26.0544i 0.0357304 0.0618869i −0.847607 0.530624i \(-0.821958\pi\)
0.883338 + 0.468737i \(0.155291\pi\)
\(422\) 158.185 + 158.185i 0.374845 + 0.374845i
\(423\) 126.486 + 99.2837i 0.299022 + 0.234713i
\(424\) 405.490i 0.956344i
\(425\) −86.2201 343.804i −0.202871 0.808950i
\(426\) −220.123 45.0441i −0.516721 0.105737i
\(427\) 39.5859 147.737i 0.0927071 0.345987i
\(428\) 69.6265 + 18.6564i 0.162679 + 0.0435896i
\(429\) −679.655 + 226.554i −1.58428 + 0.528099i
\(430\) −7.82328 30.1652i −0.0181937 0.0701516i
\(431\) 515.749 1.19663 0.598316 0.801260i \(-0.295837\pi\)
0.598316 + 0.801260i \(0.295837\pi\)
\(432\) 242.659 + 86.8581i 0.561710 + 0.201060i
\(433\) −305.797 + 305.797i −0.706229 + 0.706229i −0.965740 0.259511i \(-0.916439\pi\)
0.259511 + 0.965740i \(0.416439\pi\)
\(434\) 52.3535 + 30.2263i 0.120630 + 0.0696458i
\(435\) 111.158 + 342.630i 0.255536 + 0.787656i
\(436\) −198.045 343.024i −0.454231 0.786752i
\(437\) −3.89535 + 14.5377i −0.00891385 + 0.0332669i
\(438\) 59.4703 39.2658i 0.135777 0.0896480i
\(439\) −437.591 252.643i −0.996790 0.575497i −0.0894929 0.995987i \(-0.528525\pi\)
−0.907297 + 0.420491i \(0.861858\pi\)
\(440\) 2.61586 325.265i 0.00594514 0.739239i
\(441\) −376.897 160.991i −0.854642 0.365059i
\(442\) −154.443 154.443i −0.349418 0.349418i
\(443\) −52.3076 195.215i −0.118076 0.440665i 0.881423 0.472328i \(-0.156586\pi\)
−0.999499 + 0.0316632i \(0.989920\pi\)
\(444\) 354.923 + 314.726i 0.799377 + 0.708843i
\(445\) 151.835 548.960i 0.341203 1.23362i
\(446\) 12.0077 + 20.7979i 0.0269231 + 0.0466321i
\(447\) −282.147 + 16.9364i −0.631201 + 0.0378890i
\(448\) −7.70948 28.7722i −0.0172087 0.0642236i
\(449\) 145.089i 0.323138i −0.986861 0.161569i \(-0.948345\pi\)
0.986861 0.161569i \(-0.0516554\pi\)
\(450\) −60.4355 157.862i −0.134301 0.350804i
\(451\) −478.433 −1.06083
\(452\) −347.726 + 93.1728i −0.769305 + 0.206135i
\(453\) 70.3367 46.4405i 0.155269 0.102518i
\(454\) −254.499 + 146.935i −0.560570 + 0.323645i
\(455\) 183.869 + 50.8558i 0.404107 + 0.111771i
\(456\) −57.2514 171.752i −0.125551 0.376649i
\(457\) −286.527 + 76.7746i −0.626973 + 0.167997i −0.558296 0.829642i \(-0.688545\pi\)
−0.0686775 + 0.997639i \(0.521878\pi\)
\(458\) 133.249 133.249i 0.290936 0.290936i
\(459\) 217.894 314.743i 0.474714 0.685714i
\(460\) 23.9309 + 0.192458i 0.0520236 + 0.000418387i
\(461\) 143.044 247.759i 0.310291 0.537439i −0.668135 0.744040i \(-0.732907\pi\)
0.978425 + 0.206601i \(0.0662403\pi\)
\(462\) 21.8408 43.6821i 0.0472745 0.0945499i
\(463\) −241.707 64.7653i −0.522046 0.139882i −0.0118333 0.999930i \(-0.503767\pi\)
−0.510213 + 0.860048i \(0.670433\pi\)
\(464\) 198.521 114.616i 0.427846 0.247017i
\(465\) −135.155 + 634.462i −0.290657 + 1.36443i
\(466\) −127.008 + 219.985i −0.272550 + 0.472071i
\(467\) −71.3291 71.3291i −0.152739 0.152739i 0.626601 0.779340i \(-0.284446\pi\)
−0.779340 + 0.626601i \(0.784446\pi\)
\(468\) 498.749 + 391.486i 1.06570 + 0.836509i
\(469\) 62.2401i 0.132708i
\(470\) −64.9631 + 16.8480i −0.138219 + 0.0358469i
\(471\) 76.7972 86.6057i 0.163051 0.183876i
\(472\) 40.6427 151.681i 0.0861074 0.321357i
\(473\) 93.3241 + 25.0061i 0.197302 + 0.0528670i
\(474\) 103.186 + 91.4995i 0.217692 + 0.193037i
\(475\) 138.784 231.693i 0.292176 0.487775i
\(476\) −90.6334 −0.190406
\(477\) −646.735 92.3858i −1.35584 0.193681i
\(478\) −20.7628 + 20.7628i −0.0434367 + 0.0434367i
\(479\) −169.803 98.0357i −0.354494 0.204667i 0.312169 0.950027i \(-0.398945\pi\)
−0.666663 + 0.745359i \(0.732278\pi\)
\(480\) −371.419 + 240.966i −0.773789 + 0.502013i
\(481\) 471.883 + 817.325i 0.981046 + 1.69922i
\(482\) 16.2758 60.7419i 0.0337671 0.126021i
\(483\) 6.95565 + 3.47779i 0.0144009 + 0.00720040i
\(484\) 43.5181 + 25.1252i 0.0899135 + 0.0519116i
\(485\) −153.055 1.23091i −0.315577 0.00253795i
\(486\) 85.2105 161.451i 0.175330 0.332204i
\(487\) 660.124 + 660.124i 1.35549 + 1.35549i 0.879391 + 0.476100i \(0.157950\pi\)
0.476100 + 0.879391i \(0.342050\pi\)
\(488\) 118.845 + 443.534i 0.243534 + 0.908882i
\(489\) 566.697 188.901i 1.15889 0.386301i
\(490\) 148.821 84.3335i 0.303717 0.172109i
\(491\) 393.999 + 682.426i 0.802442 + 1.38987i 0.918004 + 0.396570i \(0.129800\pi\)
−0.115562 + 0.993300i \(0.536867\pi\)
\(492\) 233.302 + 353.349i 0.474192 + 0.718190i
\(493\) −88.1204 328.870i −0.178743 0.667079i
\(494\) 166.425i 0.336892i
\(495\) 518.185 + 78.2798i 1.04684 + 0.158141i
\(496\) 412.820 0.832299
\(497\) −179.173 + 48.0093i −0.360510 + 0.0965983i
\(498\) −6.97925 116.269i −0.0140146 0.233472i
\(499\) 144.756 83.5751i 0.290093 0.167485i −0.347891 0.937535i \(-0.613102\pi\)
0.637984 + 0.770050i \(0.279769\pi\)
\(500\) −412.015 121.124i −0.824030 0.242249i
\(501\) −563.110 + 635.031i −1.12397 + 1.26753i
\(502\) 84.6664 22.6863i 0.168658 0.0451918i
\(503\) 249.990 249.990i 0.496998 0.496998i −0.413504 0.910502i \(-0.635695\pi\)
0.910502 + 0.413504i \(0.135695\pi\)
\(504\) −92.8737 + 11.1901i −0.184273 + 0.0222027i
\(505\) 213.061 209.662i 0.421904 0.415172i
\(506\) 6.09446 10.5559i 0.0120444 0.0208615i
\(507\) 415.696 + 629.596i 0.819914 + 1.24181i
\(508\) −263.204 70.5254i −0.518119 0.138830i
\(509\) 95.6645 55.2319i 0.187946 0.108511i −0.403075 0.915167i \(-0.632059\pi\)
0.591021 + 0.806656i \(0.298725\pi\)
\(510\) 49.3042 + 151.974i 0.0966750 + 0.297988i
\(511\) 29.4167 50.9513i 0.0575670 0.0997089i
\(512\) 350.050 + 350.050i 0.683691 + 0.683691i
\(513\) 286.980 52.1814i 0.559415 0.101718i
\(514\) 3.59475i 0.00699368i
\(515\) −218.160 128.305i −0.423613 0.249136i
\(516\) −27.0400 81.1190i −0.0524031 0.157207i
\(517\) 53.8526 200.981i 0.104164 0.388744i
\(518\) −62.1438 16.6514i −0.119969 0.0321455i
\(519\) 186.432 911.062i 0.359213 1.75542i
\(520\) −554.394 + 143.781i −1.06614 + 0.276502i
\(521\) −415.088 −0.796715 −0.398357 0.917230i \(-0.630420\pi\)
−0.398357 + 0.917230i \(0.630420\pi\)
\(522\) −60.4833 150.682i −0.115868 0.288664i
\(523\) −384.585 + 384.585i −0.735344 + 0.735344i −0.971673 0.236329i \(-0.924056\pi\)
0.236329 + 0.971673i \(0.424056\pi\)
\(524\) 13.7895 + 7.96136i 0.0263158 + 0.0151934i
\(525\) −102.910 94.2546i −0.196019 0.179533i
\(526\) 36.7398 + 63.6352i 0.0698475 + 0.120979i
\(527\) 158.695 592.257i 0.301129 1.12383i
\(528\) −19.9833 332.907i −0.0378472 0.630505i
\(529\) −456.447 263.530i −0.862848 0.498166i
\(530\) 194.350 191.248i 0.366697 0.360846i
\(531\) 232.663 + 99.3815i 0.438160 + 0.187159i
\(532\) −48.8325 48.8325i −0.0917904 0.0917904i
\(533\) 218.032 + 813.705i 0.409065 + 1.52665i
\(534\) −51.4702 + 251.527i −0.0963862 + 0.471024i
\(535\) −51.7204 91.2697i −0.0966737 0.170598i
\(536\) −93.4285 161.823i −0.174307 0.301908i
\(537\) 203.772 407.547i 0.379463 0.758933i
\(538\) 41.3909 + 154.473i 0.0769348 + 0.287125i
\(539\) 530.329i 0.983912i
\(540\) −194.873 420.881i −0.360876 0.779409i
\(541\) 251.489 0.464859 0.232430 0.972613i \(-0.425332\pi\)
0.232430 + 0.972613i \(0.425332\pi\)
\(542\) 130.796 35.0467i 0.241321 0.0646618i
\(543\) 129.060 + 64.5295i 0.237680 + 0.118839i
\(544\) 362.411 209.238i 0.666196 0.384628i
\(545\) −153.669 + 555.589i −0.281961 + 1.01943i
\(546\) −84.2465 17.2394i −0.154298 0.0315741i
\(547\) 539.479 144.553i 0.986251 0.264265i 0.270576 0.962699i \(-0.412786\pi\)
0.715675 + 0.698433i \(0.246119\pi\)
\(548\) −5.77833 + 5.77833i −0.0105444 + 0.0105444i
\(549\) −734.491 + 88.4973i −1.33787 + 0.161197i
\(550\) −157.132 + 152.157i −0.285694 + 0.276649i
\(551\) 129.714 224.671i 0.235415 0.407751i
\(552\) −23.3050 + 1.39893i −0.0422193 + 0.00253429i
\(553\) 109.976 + 29.4681i 0.198872 + 0.0532876i
\(554\) −212.930 + 122.935i −0.384349 + 0.221904i
\(555\) −35.8229 689.439i −0.0645458 1.24223i
\(556\) −440.197 + 762.444i −0.791722 + 1.37130i
\(557\) 302.419 + 302.419i 0.542943 + 0.542943i 0.924391 0.381447i \(-0.124574\pi\)
−0.381447 + 0.924391i \(0.624574\pi\)
\(558\) 41.3504 289.468i 0.0741046 0.518760i
\(559\) 170.119i 0.304327i
\(560\) −45.0209 + 76.5501i −0.0803945 + 0.136697i
\(561\) −485.290 99.3053i −0.865044 0.177015i
\(562\) 6.08041 22.6924i 0.0108192 0.0403780i
\(563\) −874.123 234.221i −1.55262 0.416022i −0.622300 0.782779i \(-0.713802\pi\)
−0.930317 + 0.366756i \(0.880468\pi\)
\(564\) −174.696 + 58.2327i −0.309745 + 0.103250i
\(565\) 451.602 + 265.598i 0.799295 + 0.470084i
\(566\) −152.307 −0.269094
\(567\) 3.31241 150.678i 0.00584199 0.265747i
\(568\) 393.780 393.780i 0.693274 0.693274i
\(569\) 194.081 + 112.053i 0.341092 + 0.196929i 0.660755 0.750602i \(-0.270236\pi\)
−0.319663 + 0.947531i \(0.603570\pi\)
\(570\) −55.3175 + 108.447i −0.0970483 + 0.190258i
\(571\) −28.3061 49.0275i −0.0495728 0.0858626i 0.840174 0.542317i \(-0.182453\pi\)
−0.889747 + 0.456454i \(0.849119\pi\)
\(572\) 212.347 792.488i 0.371235 1.38547i
\(573\) −909.774 + 600.687i −1.58774 + 1.04832i
\(574\) −49.7329 28.7133i −0.0866426 0.0500232i
\(575\) −24.2285 25.0207i −0.0421365 0.0435142i
\(576\) −115.263 + 86.4483i −0.200109 + 0.150084i
\(577\) −450.543 450.543i −0.780838 0.780838i 0.199135 0.979972i \(-0.436187\pi\)
−0.979972 + 0.199135i \(0.936187\pi\)
\(578\) 17.1078 + 63.8471i 0.0295982 + 0.110462i
\(579\) 26.8648 + 23.8222i 0.0463986 + 0.0411437i
\(580\) −397.586 109.967i −0.685492 0.189599i
\(581\) −48.0806 83.2781i −0.0827550 0.143336i
\(582\) 68.8692 4.13400i 0.118332 0.00710309i
\(583\) 218.796 + 816.557i 0.375293 + 1.40061i
\(584\) 176.630i 0.302448i
\(585\) −103.011 916.988i −0.176088 1.56750i
\(586\) 29.2982 0.0499969
\(587\) 335.371 89.8623i 0.571330 0.153087i 0.0384234 0.999262i \(-0.487766\pi\)
0.532906 + 0.846174i \(0.321100\pi\)
\(588\) 391.677 258.609i 0.666118 0.439810i
\(589\) 404.606 233.599i 0.686937 0.396603i
\(590\) −91.8689 + 52.0600i −0.155710 + 0.0882373i
\(591\) 60.8326 + 182.495i 0.102932 + 0.308791i
\(592\) −424.369 + 113.709i −0.716840 + 0.192077i
\(593\) −235.628 + 235.628i −0.397350 + 0.397350i −0.877297 0.479948i \(-0.840656\pi\)
0.479948 + 0.877297i \(0.340656\pi\)
\(594\) −235.434 19.3335i −0.396354 0.0325480i
\(595\) 92.5167 + 94.0168i 0.155490 + 0.158011i
\(596\) 161.848 280.329i 0.271557 0.470351i
\(597\) 22.8188 45.6380i 0.0382224 0.0764455i
\(598\) −20.7306 5.55474i −0.0346665 0.00928887i
\(599\) −513.829 + 296.659i −0.857811 + 0.495258i −0.863279 0.504727i \(-0.831593\pi\)
0.00546746 + 0.999985i \(0.498260\pi\)
\(600\) 409.049 + 90.5820i 0.681748 + 0.150970i
\(601\) 269.249 466.354i 0.448002 0.775963i −0.550254 0.834998i \(-0.685469\pi\)
0.998256 + 0.0590349i \(0.0188023\pi\)
\(602\) 8.20024 + 8.20024i 0.0136217 + 0.0136217i
\(603\) 279.386 112.144i 0.463326 0.185977i
\(604\) 96.5233i 0.159807i
\(605\) −18.3592 70.7899i −0.0303458 0.117008i
\(606\) −89.3962 + 100.814i −0.147519 + 0.166360i
\(607\) 105.915 395.280i 0.174489 0.651203i −0.822149 0.569273i \(-0.807225\pi\)
0.996638 0.0819303i \(-0.0261085\pi\)
\(608\) 307.999 + 82.5281i 0.506577 + 0.135737i
\(609\) −100.295 88.9357i −0.164687 0.146036i
\(610\) 156.531 266.154i 0.256609 0.436318i
\(611\) −366.364 −0.599614
\(612\) 163.303 + 406.839i 0.266836 + 0.664769i
\(613\) −10.5026 + 10.5026i −0.0171331 + 0.0171331i −0.715621 0.698488i \(-0.753856\pi\)
0.698488 + 0.715621i \(0.253856\pi\)
\(614\) 26.1641 + 15.1059i 0.0426126 + 0.0246024i
\(615\) 128.390 602.703i 0.208764 0.980005i
\(616\) 60.5232 + 104.829i 0.0982520 + 0.170177i
\(617\) −113.048 + 421.900i −0.183222 + 0.683793i 0.811782 + 0.583960i \(0.198498\pi\)
−0.995004 + 0.0998331i \(0.968169\pi\)
\(618\) 102.040 + 51.0196i 0.165114 + 0.0825560i
\(619\) −8.91186 5.14527i −0.0143972 0.00831222i 0.492784 0.870152i \(-0.335979\pi\)
−0.507181 + 0.861839i \(0.669313\pi\)
\(620\) −521.060 529.509i −0.840420 0.854047i
\(621\) 3.07855 37.4890i 0.00495740 0.0603688i
\(622\) 229.439 + 229.439i 0.368873 + 0.368873i
\(623\) 54.8585 + 204.735i 0.0880554 + 0.328627i
\(624\) −557.091 + 185.699i −0.892775 + 0.297595i
\(625\) 294.930 + 551.037i 0.471888 + 0.881659i
\(626\) −77.9268 134.973i −0.124484 0.215612i
\(627\) −207.965 314.975i −0.331682 0.502352i
\(628\) 34.3086 + 128.042i 0.0546316 + 0.203888i
\(629\) 652.537i 1.03742i
\(630\) 49.1671 + 39.2362i 0.0780430 + 0.0622796i
\(631\) 154.559 0.244943 0.122472 0.992472i \(-0.460918\pi\)
0.122472 + 0.992472i \(0.460918\pi\)
\(632\) −330.170 + 88.4689i −0.522421 + 0.139982i
\(633\) −53.5268 891.715i −0.0845606 1.40871i
\(634\) −231.032 + 133.386i −0.364403 + 0.210388i
\(635\) 195.515 + 345.021i 0.307898 + 0.543340i
\(636\) 496.379 559.777i 0.780471 0.880153i
\(637\) 901.968 241.682i 1.41596 0.379406i
\(638\) −148.565 + 148.565i −0.232860 + 0.232860i
\(639\) 538.341 + 717.776i 0.842474 + 1.12328i
\(640\) 5.23092 650.430i 0.00817331 1.01630i
\(641\) −302.816 + 524.493i −0.472412 + 0.818242i −0.999502 0.0315680i \(-0.989950\pi\)
0.527089 + 0.849810i \(0.323283\pi\)
\(642\) 26.0549 + 39.4616i 0.0405839 + 0.0614666i
\(643\) 450.687 + 120.761i 0.700912 + 0.187809i 0.591639 0.806203i \(-0.298481\pi\)
0.109273 + 0.994012i \(0.465148\pi\)
\(644\) −7.71265 + 4.45290i −0.0119762 + 0.00691444i
\(645\) −56.5453 + 110.854i −0.0876672 + 0.171867i
\(646\) 57.5346 99.6529i 0.0890629 0.154261i
\(647\) −117.084 117.084i −0.180965 0.180965i 0.610811 0.791776i \(-0.290843\pi\)
−0.791776 + 0.610811i \(0.790843\pi\)
\(648\) 217.571 + 396.732i 0.335757 + 0.612241i
\(649\) 327.378i 0.504434i
\(650\) 330.392 + 197.905i 0.508296 + 0.304469i
\(651\) −76.3392 229.015i −0.117265 0.351789i
\(652\) −177.055 + 660.778i −0.271557 + 1.01346i
\(653\) 322.638 + 86.4506i 0.494086 + 0.132390i 0.497254 0.867605i \(-0.334342\pi\)
−0.00316798 + 0.999995i \(0.501008\pi\)
\(654\) 52.0918 254.565i 0.0796511 0.389242i
\(655\) −5.81745 22.4310i −0.00888160 0.0342459i
\(656\) −392.156 −0.597799
\(657\) −281.715 40.2428i −0.428790 0.0612524i
\(658\) 17.6599 17.6599i 0.0268387 0.0268387i
\(659\) −1062.27 613.303i −1.61195 0.930657i −0.988919 0.148457i \(-0.952569\pi\)
−0.623027 0.782200i \(-0.714097\pi\)
\(660\) −401.784 + 445.825i −0.608763 + 0.675493i
\(661\) 79.8777 + 138.352i 0.120844 + 0.209307i 0.920101 0.391682i \(-0.128107\pi\)
−0.799257 + 0.600989i \(0.794773\pi\)
\(662\) 72.8967 272.054i 0.110116 0.410958i
\(663\) 52.2607 + 870.622i 0.0788246 + 1.31316i
\(664\) 250.017 + 144.347i 0.376532 + 0.217391i
\(665\) −0.808266 + 100.503i −0.00121544 + 0.151132i
\(666\) 37.2254 + 308.956i 0.0558940 + 0.463897i
\(667\) −23.6565 23.6565i −0.0354670 0.0354670i
\(668\) −251.566 938.856i −0.376595 1.40547i
\(669\) 19.2257 93.9528i 0.0287379 0.140438i
\(670\) −33.4957 + 121.103i −0.0499935 + 0.180751i
\(671\) 478.648 + 829.042i 0.713335 + 1.23553i
\(672\) 73.6815 147.364i 0.109645 0.219292i
\(673\) 12.3181 + 45.9717i 0.0183032 + 0.0683086i 0.974473 0.224503i \(-0.0720758\pi\)
−0.956170 + 0.292811i \(0.905409\pi\)
\(674\) 111.675i 0.165690i
\(675\) −237.670 + 631.774i −0.352104 + 0.935961i
\(676\) −863.996 −1.27810
\(677\) −141.633 + 37.9504i −0.209206 + 0.0560567i −0.361900 0.932217i \(-0.617872\pi\)
0.152694 + 0.988274i \(0.451205\pi\)
\(678\) −211.228 105.613i −0.311545 0.155771i
\(679\) 49.3279 28.4795i 0.0726479 0.0419433i
\(680\) −381.670 105.565i −0.561279 0.155243i
\(681\) 1149.68 + 235.260i 1.68822 + 0.345462i
\(682\) −365.477 + 97.9293i −0.535890 + 0.143591i
\(683\) 882.608 882.608i 1.29225 1.29225i 0.358860 0.933391i \(-0.383165\pi\)
0.933391 0.358860i \(-0.116835\pi\)
\(684\) −131.215 + 307.187i −0.191834 + 0.449104i
\(685\) 11.8924 + 0.0956418i 0.0173612 + 0.000139623i
\(686\) −66.0754 + 114.446i −0.0963198 + 0.166831i
\(687\) −751.148 + 45.0890i −1.09337 + 0.0656318i
\(688\) 76.4948 + 20.4967i 0.111184 + 0.0297917i
\(689\) 1289.07 744.243i 1.87092 1.08018i
\(690\) 11.6623 + 10.5102i 0.0169018 + 0.0152322i
\(691\) 253.832 439.650i 0.367340 0.636252i −0.621808 0.783169i \(-0.713602\pi\)
0.989149 + 0.146917i \(0.0469351\pi\)
\(692\) 753.047 + 753.047i 1.08822 + 1.08822i
\(693\) −180.987 + 72.6473i −0.261164 + 0.104830i
\(694\) 181.421i 0.261413i
\(695\) 1240.25 321.657i 1.78453 0.462815i
\(696\) 394.265 + 80.6788i 0.566473 + 0.115918i
\(697\) −150.751 + 562.611i −0.216286 + 0.807189i
\(698\) −277.514 74.3597i −0.397585 0.106532i
\(699\) 962.302 320.771i 1.37668 0.458900i
\(700\) 155.013 38.8746i 0.221447 0.0555352i
\(701\) 194.042 0.276807 0.138403 0.990376i \(-0.455803\pi\)
0.138403 + 0.990376i \(0.455803\pi\)
\(702\) 74.4103 + 409.231i 0.105998 + 0.582950i
\(703\) −351.581 + 351.581i −0.500115 + 0.500115i
\(704\) 161.459 + 93.2182i 0.229345 + 0.132412i
\(705\) 238.733 + 121.775i 0.338628 + 0.172730i
\(706\) −195.614 338.813i −0.277073 0.479905i
\(707\) −28.7907 + 107.448i −0.0407223 + 0.151978i
\(708\) −241.787 + 159.642i −0.341506 + 0.225483i
\(709\) 414.499 + 239.311i 0.584625 + 0.337534i 0.762969 0.646435i \(-0.223741\pi\)
−0.178344 + 0.983968i \(0.557074\pi\)
\(710\) −374.463 3.01152i −0.527412 0.00424158i
\(711\) −65.8781 546.761i −0.0926555 0.769003i
\(712\) −449.958 449.958i −0.631963 0.631963i
\(713\) −15.5936 58.1962i −0.0218705 0.0816216i
\(714\) −44.4858 39.4475i −0.0623050 0.0552486i
\(715\) −1038.83 + 588.681i −1.45291 + 0.823331i
\(716\) 260.906 + 451.902i 0.364393 + 0.631148i
\(717\) 117.043 7.02575i 0.163240 0.00979881i
\(718\) −63.5739 237.261i −0.0885430 0.330447i
\(719\) 443.536i 0.616879i −0.951244 0.308439i \(-0.900193\pi\)
0.951244 0.308439i \(-0.0998067\pi\)
\(720\) 424.740 + 64.1634i 0.589916 + 0.0891159i
\(721\) 94.1849 0.130631
\(722\) −177.274 + 47.5005i −0.245532 + 0.0657902i
\(723\) −209.558 + 138.363i −0.289845 + 0.191373i
\(724\) −143.106 + 82.6224i −0.197660 + 0.114119i
\(725\) 291.774 + 524.680i 0.402448 + 0.723696i
\(726\) 10.4245 + 31.2732i 0.0143588 + 0.0430760i
\(727\) −280.010 + 75.0285i −0.385158 + 0.103203i −0.446202 0.894932i \(-0.647224\pi\)
0.0610438 + 0.998135i \(0.480557\pi\)
\(728\) 150.709 150.709i 0.207018 0.207018i
\(729\) −682.338 + 256.623i −0.935992 + 0.352021i
\(730\) 84.6578 83.3070i 0.115970 0.114119i
\(731\) 58.8116 101.865i 0.0804536 0.139350i
\(732\) 378.887 757.781i 0.517605 1.03522i
\(733\) −987.435 264.583i −1.34712 0.360958i −0.488046 0.872818i \(-0.662290\pi\)
−0.859069 + 0.511859i \(0.828957\pi\)
\(734\) 340.177 196.401i 0.463457 0.267577i
\(735\) −668.078 142.317i −0.908950 0.193628i
\(736\) 20.5601 35.6111i 0.0279349 0.0483847i
\(737\) −275.459 275.459i −0.373757 0.373757i
\(738\) −39.2805 + 274.978i −0.0532256 + 0.372599i
\(739\) 153.917i 0.208277i 0.994563 + 0.104138i \(0.0332085\pi\)
−0.994563 + 0.104138i \(0.966791\pi\)
\(740\) 681.488 + 400.799i 0.920929 + 0.541620i
\(741\) −440.926 + 497.241i −0.595042 + 0.671041i
\(742\) −26.2622 + 98.0117i −0.0353938 + 0.132091i
\(743\) −1261.02 337.889i −1.69720 0.454763i −0.724966 0.688784i \(-0.758145\pi\)
−0.972231 + 0.234021i \(0.924811\pi\)
\(744\) 542.254 + 480.841i 0.728836 + 0.646291i
\(745\) −456.005 + 118.264i −0.612087 + 0.158744i
\(746\) 18.2489 0.0244623
\(747\) −287.190 + 365.877i −0.384458 + 0.489795i
\(748\) 401.121 401.121i 0.536258 0.536258i
\(749\) 33.8088 + 19.5195i 0.0451385 + 0.0260607i
\(750\) −149.511 238.778i −0.199349 0.318371i
\(751\) −728.908 1262.51i −0.970583 1.68110i −0.693801 0.720167i \(-0.744065\pi\)
−0.276783 0.960933i \(-0.589268\pi\)
\(752\) 44.1413 164.737i 0.0586985 0.219066i
\(753\) −313.070 156.533i −0.415763 0.207880i
\(754\) 320.379 + 184.971i 0.424905 + 0.245319i
\(755\) 100.127 98.5289i 0.132618 0.130502i
\(756\) 141.910 + 98.2432i 0.187712 + 0.129951i
\(757\) −575.216 575.216i −0.759863 0.759863i 0.216434 0.976297i \(-0.430557\pi\)
−0.976297 + 0.216434i \(0.930557\pi\)
\(758\) −70.9594 264.824i −0.0936140 0.349372i
\(759\) −46.1758 + 15.3921i −0.0608376 + 0.0202795i
\(760\) −148.763 262.518i −0.195740 0.345418i
\(761\) −506.722 877.668i −0.665863 1.15331i −0.979051 0.203618i \(-0.934730\pi\)
0.313187 0.949691i \(-0.398603\pi\)
\(762\) −98.4935 149.174i −0.129257 0.195766i
\(763\) −55.5211 207.207i −0.0727668 0.271569i
\(764\) 1248.49i 1.63414i
\(765\) 255.329 584.692i 0.333764 0.764303i
\(766\) −2.52556 −0.00329708
\(767\) −556.794 + 149.193i −0.725938 + 0.194515i
\(768\) 6.05728 + 100.910i 0.00788709 + 0.131393i
\(769\) −486.081 + 280.639i −0.632095 + 0.364940i −0.781563 0.623827i \(-0.785577\pi\)
0.149468 + 0.988767i \(0.452244\pi\)
\(770\) 21.6986 78.4511i 0.0281800 0.101884i
\(771\) −9.52393 + 10.7403i −0.0123527 + 0.0139304i
\(772\) −39.7180 + 10.6424i −0.0514482 + 0.0137855i
\(773\) 445.834 445.834i 0.576758 0.576758i −0.357251 0.934008i \(-0.616286\pi\)
0.934008 + 0.357251i \(0.116286\pi\)
\(774\) 22.0343 51.5847i 0.0284681 0.0666469i
\(775\) −17.3888 + 1081.02i −0.0224372 + 1.39487i
\(776\) −85.5009 + 148.092i −0.110182 + 0.190840i
\(777\) 141.556 + 214.394i 0.182183 + 0.275926i
\(778\) −110.446 29.5938i −0.141961 0.0380383i
\(779\) −384.353 + 221.906i −0.493393 + 0.284860i
\(780\) 941.348 + 480.171i 1.20686 + 0.615604i
\(781\) 580.499 1005.45i 0.743276 1.28739i
\(782\) −10.4929 10.4929i −0.0134180 0.0134180i
\(783\) −218.507 + 610.451i −0.279064 + 0.779630i
\(784\) 434.693i 0.554456i
\(785\) 97.7999 166.291i 0.124586 0.211836i
\(786\) 3.30320 + 9.90946i 0.00420254 + 0.0126075i
\(787\) −362.598 + 1353.23i −0.460734 + 1.71948i 0.209925 + 0.977717i \(0.432678\pi\)
−0.670659 + 0.741766i \(0.733989\pi\)
\(788\) −212.793 57.0176i −0.270041 0.0723573i
\(789\) 58.8245 287.466i 0.0745558 0.364343i
\(790\) 198.127 + 116.523i 0.250794 + 0.147498i
\(791\) −194.967 −0.246482
\(792\) 361.511 460.560i 0.456453 0.581515i
\(793\) 1191.88 1191.88i 1.50300 1.50300i
\(794\) 253.828 + 146.548i 0.319683 + 0.184569i
\(795\) −1087.37 + 56.4991i −1.36776 + 0.0710680i
\(796\) 29.2167 + 50.6049i 0.0367045 + 0.0635740i
\(797\) −122.829 + 458.403i −0.154114 + 0.575160i 0.845066 + 0.534662i \(0.179561\pi\)
−0.999180 + 0.0404981i \(0.987106\pi\)
\(798\) −2.71456 45.2225i −0.00340171 0.0566698i
\(799\) −219.374 126.655i −0.274560 0.158517i
\(800\) −530.095 + 513.312i −0.662619 + 0.641640i
\(801\) 820.177 615.142i 1.02394 0.767968i
\(802\) 358.565 + 358.565i 0.447088 + 0.447088i
\(803\) 95.3064 + 355.688i 0.118688 + 0.442949i
\(804\) −69.1175 + 337.766i −0.0859670 + 0.420107i
\(805\) 12.4920 + 3.45514i 0.0155181 + 0.00429210i
\(806\) 333.111 + 576.965i 0.413289 + 0.715837i
\(807\) 285.594 571.193i 0.353895 0.707798i
\(808\) −86.4352 322.581i −0.106974 0.399234i
\(809\) 806.321i 0.996689i 0.866979 + 0.498344i \(0.166059\pi\)
−0.866979 + 0.498344i \(0.833941\pi\)
\(810\) 87.5354 291.399i 0.108068 0.359751i
\(811\) −928.637 −1.14505 −0.572526 0.819887i \(-0.694036\pi\)
−0.572526 + 0.819887i \(0.694036\pi\)
\(812\) 148.280 39.7315i 0.182611 0.0489304i
\(813\) −483.642 241.819i −0.594886 0.297440i
\(814\) 348.727 201.338i 0.428412 0.247344i
\(815\) 866.179 490.843i 1.06280 0.602262i
\(816\) −397.776 81.3974i −0.487471 0.0997517i
\(817\) 86.5709 23.1966i 0.105962 0.0283924i
\(818\) 230.158 230.158i 0.281366 0.281366i
\(819\) 206.036 + 274.710i 0.251570 + 0.335422i
\(820\) 494.978 + 503.004i 0.603632 + 0.613419i
\(821\) −259.589 + 449.622i −0.316187 + 0.547652i −0.979689 0.200523i \(-0.935736\pi\)
0.663502 + 0.748174i \(0.269069\pi\)
\(822\) −5.35116 + 0.321213i −0.00650993 + 0.000390770i
\(823\) 1245.48 + 333.724i 1.51334 + 0.405497i 0.917542 0.397639i \(-0.130170\pi\)
0.595795 + 0.803136i \(0.296837\pi\)
\(824\) −244.879 + 141.381i −0.297183 + 0.171579i
\(825\) 872.600 38.3062i 1.05770 0.0464318i
\(826\) 19.6477 34.0307i 0.0237865 0.0411994i
\(827\) −380.149 380.149i −0.459672 0.459672i 0.438876 0.898548i \(-0.355377\pi\)
−0.898548 + 0.438876i \(0.855377\pi\)
\(828\) 33.8850 + 26.5976i 0.0409239 + 0.0321227i
\(829\) 511.167i 0.616606i −0.951288 0.308303i \(-0.900239\pi\)
0.951288 0.308303i \(-0.0997611\pi\)
\(830\) −48.7350 187.913i −0.0587168 0.226402i
\(831\) 961.890 + 196.833i 1.15751 + 0.236862i
\(832\) 84.9628 317.086i 0.102119 0.381113i
\(833\) 623.637 + 167.103i 0.748664 + 0.200604i
\(834\) −547.911 + 182.639i −0.656968 + 0.218992i
\(835\) −717.111 + 1219.32i −0.858815 + 1.46026i
\(836\) 432.240 0.517034
\(837\) −890.462 + 755.313i −1.06387 + 0.902405i
\(838\) −265.524 + 265.524i −0.316855 + 0.316855i
\(839\) −889.044 513.290i −1.05965 0.611788i −0.134313 0.990939i \(-0.542883\pi\)
−0.925335 + 0.379151i \(0.876216\pi\)
\(840\) −148.300 + 48.1122i −0.176547 + 0.0572765i
\(841\) −132.163 228.913i −0.157150 0.272192i
\(842\) −5.84978 + 21.8317i −0.00694749 + 0.0259284i
\(843\) −78.2882 + 51.6905i −0.0928686 + 0.0613173i
\(844\) 885.970 + 511.515i 1.04973 + 0.606061i
\(845\) 881.948 + 896.249i 1.04373 + 1.06065i
\(846\) −111.092 47.4527i −0.131314 0.0560906i
\(847\) 19.2439 + 19.2439i 0.0227200 + 0.0227200i
\(848\) 179.340 + 669.305i 0.211486 + 0.789275i
\(849\) 455.061 + 403.523i 0.535996 + 0.475292i
\(850\) 129.417 + 232.722i 0.152255 + 0.273791i
\(851\) 32.0597 + 55.5291i 0.0376730 + 0.0652516i
\(852\) −1025.66 + 61.5669i −1.20382 + 0.0722616i
\(853\) 360.478 + 1345.32i 0.422600 + 1.57717i 0.769108 + 0.639119i \(0.220701\pi\)
−0.346508 + 0.938047i \(0.612633\pi\)
\(854\) 114.905i 0.134549i
\(855\) 452.596 177.457i 0.529352 0.207552i
\(856\) −117.203 −0.136919
\(857\) 319.058 85.4914i 0.372297 0.0997566i −0.0678191 0.997698i \(-0.521604\pi\)
0.440116 + 0.897941i \(0.354937\pi\)
\(858\) 449.151 296.556i 0.523486 0.345637i
\(859\) 264.795 152.879i 0.308259 0.177974i −0.337888 0.941186i \(-0.609713\pi\)
0.646147 + 0.763213i \(0.276379\pi\)
\(860\) −70.2610 123.988i −0.0816988 0.144172i
\(861\) 72.5180 + 217.551i 0.0842253 + 0.252673i
\(862\) −374.262 + 100.283i −0.434178 + 0.116338i
\(863\) 386.017 386.017i 0.447297 0.447297i −0.447158 0.894455i \(-0.647564\pi\)
0.894455 + 0.447158i \(0.147564\pi\)
\(864\) −794.254 65.2230i −0.919275 0.0754895i
\(865\) 12.4643 1549.85i 0.0144096 1.79174i
\(866\) 162.447 281.367i 0.187583 0.324904i
\(867\) 118.042 236.086i 0.136150 0.272303i
\(868\) 267.035 + 71.5518i 0.307644 + 0.0824329i
\(869\) −617.145 + 356.309i −0.710179 + 0.410022i
\(870\) −147.285 227.022i −0.169293 0.260944i
\(871\) −342.961 + 594.025i −0.393755 + 0.682004i
\(872\) 455.392 + 455.392i 0.522238 + 0.522238i
\(873\) −216.719 170.111i −0.248246 0.194857i
\(874\) 11.3069i 0.0129370i
\(875\) −198.560 121.117i −0.226926 0.138420i
\(876\) 216.221 243.836i 0.246827 0.278352i
\(877\) 108.142 403.592i 0.123309 0.460196i −0.876465 0.481466i \(-0.840104\pi\)
0.999774 + 0.0212701i \(0.00677100\pi\)
\(878\) 366.669 + 98.2488i 0.417619 + 0.111901i
\(879\) −87.5366 77.6226i −0.0995865 0.0883078i
\(880\) −139.540 538.043i −0.158569 0.611412i
\(881\) −1495.93 −1.69799 −0.848993 0.528403i \(-0.822791\pi\)
−0.848993 + 0.528403i \(0.822791\pi\)
\(882\) 304.805 + 43.5413i 0.345584 + 0.0493665i
\(883\) −158.383 + 158.383i −0.179369 + 0.179369i −0.791081 0.611712i \(-0.790481\pi\)
0.611712 + 0.791081i \(0.290481\pi\)
\(884\) −865.014 499.416i −0.978522 0.564950i
\(885\) 412.412 + 87.8536i 0.466002 + 0.0992696i
\(886\) 75.9157 + 131.490i 0.0856837 + 0.148408i
\(887\) 355.206 1325.65i 0.400458 1.49453i −0.411823 0.911264i \(-0.635108\pi\)
0.812281 0.583266i \(-0.198225\pi\)
\(888\) −689.869 344.931i −0.776879 0.388436i
\(889\) −127.805 73.7883i −0.143763 0.0830014i
\(890\) −3.44115 + 427.885i −0.00386647 + 0.480769i
\(891\) 652.204 + 681.524i 0.731991 + 0.764898i
\(892\) 77.6576 + 77.6576i 0.0870601 + 0.0870601i
\(893\) −49.9557 186.437i −0.0559415 0.208776i
\(894\) 201.451 67.1513i 0.225337 0.0751133i
\(895\) 202.445 731.937i 0.226195 0.817807i
\(896\) 121.028 + 209.626i 0.135076 + 0.233958i
\(897\) 47.2217 + 71.5199i 0.0526440 + 0.0797324i
\(898\) 28.2113 + 105.286i 0.0314157 + 0.117245i
\(899\) 1038.52i 1.15520i
\(900\) −453.805 625.784i −0.504227 0.695316i
\(901\) 1029.17 1.14225
\(902\) 347.183 93.0274i 0.384903 0.103135i
\(903\) −2.77482 46.2262i −0.00307288 0.0511918i
\(904\) 506.909 292.664i 0.560741 0.323744i
\(905\) 231.786 + 64.1092i 0.256118 + 0.0708389i
\(906\) −42.0111 + 47.3767i −0.0463698 + 0.0522922i
\(907\) 535.743 143.552i 0.590676 0.158271i 0.0489140 0.998803i \(-0.484424\pi\)
0.541762 + 0.840532i \(0.317757\pi\)
\(908\) −950.276 + 950.276i −1.04656 + 1.04656i
\(909\) 534.193 64.3637i 0.587671 0.0708072i
\(910\) −143.316 1.15258i −0.157490 0.00126657i
\(911\) −484.409 + 839.021i −0.531733 + 0.920989i 0.467581 + 0.883950i \(0.345126\pi\)
−0.999314 + 0.0370382i \(0.988208\pi\)
\(912\) −170.462 258.175i −0.186910 0.283086i
\(913\) 581.361 + 155.775i 0.636759 + 0.170619i
\(914\) 192.995 111.426i 0.211154 0.121910i
\(915\) −1172.83 + 380.496i −1.28178 + 0.415842i
\(916\) 430.882 746.309i 0.470395 0.814748i
\(917\) 6.09776 + 6.09776i 0.00664968 + 0.00664968i
\(918\) −96.9190 + 270.766i −0.105576 + 0.294952i
\(919\) 600.903i 0.653866i −0.945048 0.326933i \(-0.893985\pi\)
0.945048 0.326933i \(-0.106015\pi\)
\(920\) −37.6655 + 9.76848i −0.0409408 + 0.0106179i
\(921\) −38.1512 114.452i −0.0414237 0.124270i
\(922\) −55.6275 + 207.604i −0.0603335 + 0.225168i
\(923\) −1974.59 529.090i −2.13932 0.573229i
\(924\) 44.7745 218.806i 0.0484572 0.236803i
\(925\) −279.887 1116.05i −0.302581 1.20655i
\(926\) 187.992 0.203015
\(927\) −169.702 422.780i −0.183066 0.456074i
\(928\) −501.193 + 501.193i −0.540079 + 0.540079i
\(929\) 435.996 + 251.722i 0.469318 + 0.270961i 0.715954 0.698147i \(-0.245992\pi\)
−0.246636 + 0.969108i \(0.579325\pi\)
\(930\) −25.2880 486.688i −0.0271914 0.523320i
\(931\) 245.976 + 426.044i 0.264207 + 0.457619i
\(932\) −300.655 + 1122.06i −0.322591 + 1.20393i
\(933\) −77.6380 1293.39i −0.0832133 1.38627i
\(934\) 65.6305 + 37.8918i 0.0702682 + 0.0405694i
\(935\) −825.550 6.63928i −0.882941 0.00710083i
\(936\) −948.056 404.960i −1.01288 0.432650i
\(937\) 1181.10 + 1181.10i 1.26051 + 1.26051i 0.950847 + 0.309660i \(0.100215\pi\)
0.309660 + 0.950847i \(0.399785\pi\)
\(938\) −12.1021 45.1656i −0.0129020 0.0481509i
\(939\) −124.770 + 609.730i −0.132875 + 0.649339i
\(940\) −267.017 + 151.313i −0.284061 + 0.160971i
\(941\) −576.616 998.729i −0.612770 1.06135i −0.990771 0.135543i \(-0.956722\pi\)
0.378002 0.925805i \(-0.376611\pi\)
\(942\) −38.8894 + 77.7795i −0.0412838 + 0.0825684i
\(943\) 14.8131 + 55.2832i 0.0157085 + 0.0586248i
\(944\) 268.341i 0.284259i
\(945\) −42.9483 247.492i −0.0454479 0.261897i
\(946\) −72.5844 −0.0767277
\(947\) 1323.45 354.616i 1.39751 0.374463i 0.520063 0.854128i \(-0.325909\pi\)
0.877451 + 0.479665i \(0.159242\pi\)
\(948\) 564.098 + 282.046i 0.595040 + 0.297517i
\(949\) 561.512 324.189i 0.591688 0.341611i
\(950\) −55.6600 + 195.117i −0.0585894 + 0.205387i
\(951\) 1043.67 + 213.566i 1.09744 + 0.224570i
\(952\) 142.344 38.1409i 0.149521 0.0400640i
\(953\) 77.4456 77.4456i 0.0812650 0.0812650i −0.665306 0.746571i \(-0.731699\pi\)
0.746571 + 0.665306i \(0.231699\pi\)
\(954\) 487.278 58.7110i 0.510773 0.0615420i
\(955\) −1295.09 + 1274.43i −1.35612 + 1.33448i
\(956\) −67.1397 + 116.289i −0.0702298 + 0.121642i
\(957\) 837.486 50.2716i 0.875116 0.0525304i
\(958\) 142.282 + 38.1245i 0.148520 + 0.0397959i
\(959\) −3.83279 + 2.21286i −0.00399666 + 0.00230747i
\(960\) −160.759 + 178.381i −0.167458 + 0.185813i
\(961\) −454.630 + 787.443i −0.473080 + 0.819399i
\(962\) −501.352 501.352i −0.521156 0.521156i
\(963\) 26.7032 186.932i 0.0277292 0.194114i
\(964\) 287.577i 0.298316i
\(965\) 51.5830 + 30.3372i 0.0534539 + 0.0314375i
\(966\) −5.72371 1.17125i −0.00592517 0.00121247i
\(967\) 417.733 1559.00i 0.431989 1.61220i −0.316183 0.948698i \(-0.602401\pi\)
0.748172 0.663505i \(-0.230932\pi\)
\(968\) −78.9205 21.1467i −0.0815295 0.0218458i
\(969\) −435.921 + 145.309i −0.449867 + 0.149958i
\(970\) 111.306 28.8671i 0.114749 0.0297599i
\(971\) 158.612 0.163349 0.0816745 0.996659i \(-0.473973\pi\)
0.0816745 + 0.996659i \(0.473973\pi\)
\(972\) 185.304 814.026i 0.190642 0.837475i
\(973\) −337.156 + 337.156i −0.346511 + 0.346511i
\(974\) −607.386 350.674i −0.623599 0.360035i
\(975\) −462.812 1466.64i −0.474679 1.50424i
\(976\) 392.332 + 679.539i 0.401980 + 0.696249i
\(977\) 2.86555 10.6944i 0.00293301 0.0109461i −0.964444 0.264288i \(-0.914863\pi\)
0.967377 + 0.253342i \(0.0815297\pi\)
\(978\) −374.503 + 247.269i −0.382927 + 0.252831i
\(979\) −1148.89 663.315i −1.17354 0.677543i
\(980\) 557.565 548.668i 0.568944 0.559865i
\(981\) −830.082 + 622.571i −0.846159 + 0.634629i
\(982\) −418.604 418.604i −0.426277 0.426277i
\(983\) 295.182 + 1101.63i 0.300287 + 1.12069i 0.936927 + 0.349525i \(0.113657\pi\)
−0.636640 + 0.771161i \(0.719676\pi\)
\(984\) −515.111 456.772i −0.523486 0.464199i
\(985\) 158.068 + 278.938i 0.160475 + 0.283186i
\(986\) 127.892 + 221.516i 0.129708 + 0.224661i
\(987\) −99.5518 + 5.97578i −0.100863 + 0.00605449i
\(988\) −196.981 735.142i −0.199373 0.744071i
\(989\) 11.5579i 0.0116864i
\(990\) −391.250 + 43.9518i −0.395202 + 0.0443957i
\(991\) −95.8581 −0.0967287 −0.0483643 0.998830i \(-0.515401\pi\)
−0.0483643 + 0.998830i \(0.515401\pi\)
\(992\) −1232.96 + 330.371i −1.24291 + 0.333036i
\(993\) −938.579 + 619.706i −0.945195 + 0.624074i
\(994\) 120.685 69.6776i 0.121414 0.0700982i
\(995\) 22.6702 81.9638i 0.0227841 0.0823757i
\(996\) −168.445 505.329i −0.169122 0.507359i
\(997\) −850.093 + 227.782i −0.852651 + 0.228467i −0.658571 0.752518i \(-0.728839\pi\)
−0.194080 + 0.980986i \(0.562172\pi\)
\(998\) −88.7943 + 88.7943i −0.0889723 + 0.0889723i
\(999\) 707.325 1021.72i 0.708033 1.02274i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 45.3.k.a.7.5 40
3.2 odd 2 135.3.l.a.127.6 40
5.2 odd 4 225.3.o.b.43.5 40
5.3 odd 4 inner 45.3.k.a.43.6 yes 40
5.4 even 2 225.3.o.b.7.6 40
9.2 odd 6 405.3.g.g.82.5 20
9.4 even 3 inner 45.3.k.a.22.6 yes 40
9.5 odd 6 135.3.l.a.37.5 40
9.7 even 3 405.3.g.h.82.6 20
15.8 even 4 135.3.l.a.73.5 40
45.4 even 6 225.3.o.b.157.5 40
45.13 odd 12 inner 45.3.k.a.13.5 yes 40
45.22 odd 12 225.3.o.b.193.6 40
45.23 even 12 135.3.l.a.118.6 40
45.38 even 12 405.3.g.g.163.5 20
45.43 odd 12 405.3.g.h.163.6 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.k.a.7.5 40 1.1 even 1 trivial
45.3.k.a.13.5 yes 40 45.13 odd 12 inner
45.3.k.a.22.6 yes 40 9.4 even 3 inner
45.3.k.a.43.6 yes 40 5.3 odd 4 inner
135.3.l.a.37.5 40 9.5 odd 6
135.3.l.a.73.5 40 15.8 even 4
135.3.l.a.118.6 40 45.23 even 12
135.3.l.a.127.6 40 3.2 odd 2
225.3.o.b.7.6 40 5.4 even 2
225.3.o.b.43.5 40 5.2 odd 4
225.3.o.b.157.5 40 45.4 even 6
225.3.o.b.193.6 40 45.22 odd 12
405.3.g.g.82.5 20 9.2 odd 6
405.3.g.g.163.5 20 45.38 even 12
405.3.g.h.82.6 20 9.7 even 3
405.3.g.h.163.6 20 45.43 odd 12