Properties

Label 45.3.i.a.41.3
Level $45$
Weight $3$
Character 45.41
Analytic conductor $1.226$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 45.i (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.22616118962\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Defining polynomial: \(x^{16} + 48 x^{14} + 912 x^{12} + 8704 x^{10} + 43602 x^{8} + 109032 x^{6} + 117844 x^{4} + 36000 x^{2} + 81\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 41.3
Root \(1.39204i\) of defining polynomial
Character \(\chi\) \(=\) 45.41
Dual form 45.3.i.a.11.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.20554 + 0.696021i) q^{2} +(2.33148 + 1.88791i) q^{3} +(-1.03111 + 1.78593i) q^{4} +(-1.93649 - 1.11803i) q^{5} +(-4.12473 - 0.653207i) q^{6} +(4.41004 + 7.63842i) q^{7} -8.43886i q^{8} +(1.87156 + 8.80325i) q^{9} +O(q^{10})\) \(q+(-1.20554 + 0.696021i) q^{2} +(2.33148 + 1.88791i) q^{3} +(-1.03111 + 1.78593i) q^{4} +(-1.93649 - 1.11803i) q^{5} +(-4.12473 - 0.653207i) q^{6} +(4.41004 + 7.63842i) q^{7} -8.43886i q^{8} +(1.87156 + 8.80325i) q^{9} +3.11270 q^{10} +(-0.805373 + 0.464982i) q^{11} +(-5.77569 + 2.21722i) q^{12} +(12.2405 - 21.2011i) q^{13} +(-10.6330 - 6.13897i) q^{14} +(-2.40413 - 6.26260i) q^{15} +(1.74919 + 3.02969i) q^{16} -18.3007i q^{17} +(-8.38350 - 9.31006i) q^{18} -5.58727 q^{19} +(3.99347 - 2.30563i) q^{20} +(-4.13877 + 26.1346i) q^{21} +(0.647275 - 1.12111i) q^{22} +(20.6131 + 11.9010i) q^{23} +(15.9319 - 19.6750i) q^{24} +(2.50000 + 4.33013i) q^{25} +34.0785i q^{26} +(-12.2563 + 24.0579i) q^{27} -18.1889 q^{28} +(-23.7620 + 13.7190i) q^{29} +(7.25719 + 5.87651i) q^{30} +(4.66760 - 8.08452i) q^{31} +(25.0156 + 14.4428i) q^{32} +(-2.75555 - 0.436380i) q^{33} +(12.7377 + 22.0623i) q^{34} -19.7223i q^{35} +(-17.6518 - 5.73463i) q^{36} -24.7588 q^{37} +(6.73570 - 3.88886i) q^{38} +(68.5643 - 26.3210i) q^{39} +(-9.43494 + 16.3418i) q^{40} +(-6.45555 - 3.72712i) q^{41} +(-13.2008 - 34.3871i) q^{42} +(-17.7288 - 30.7071i) q^{43} -1.91779i q^{44} +(6.21807 - 19.1399i) q^{45} -33.1333 q^{46} +(-0.298523 + 0.172352i) q^{47} +(-1.64160 + 10.3660i) q^{48} +(-14.3970 + 24.9363i) q^{49} +(-6.02772 - 3.48011i) q^{50} +(34.5502 - 42.6677i) q^{51} +(25.2425 + 43.7214i) q^{52} +81.8155i q^{53} +(-1.96933 - 37.5335i) q^{54} +2.07946 q^{55} +(64.4596 - 37.2158i) q^{56} +(-13.0266 - 10.5483i) q^{57} +(19.0975 - 33.0778i) q^{58} +(-65.9707 - 38.0882i) q^{59} +(13.6635 + 2.16380i) q^{60} +(-29.6213 - 51.3056i) q^{61} +12.9950i q^{62} +(-58.9893 + 53.1185i) q^{63} -54.2035 q^{64} +(-47.4072 + 27.3705i) q^{65} +(3.62567 - 1.39185i) q^{66} +(40.9845 - 70.9873i) q^{67} +(32.6838 + 18.8700i) q^{68} +(25.5909 + 66.6625i) q^{69} +(13.7271 + 23.7761i) q^{70} -37.5733i q^{71} +(74.2895 - 15.7939i) q^{72} +3.49191 q^{73} +(29.8478 - 17.2326i) q^{74} +(-2.34622 + 14.8154i) q^{75} +(5.76108 - 9.97849i) q^{76} +(-7.10346 - 4.10119i) q^{77} +(-64.3374 + 79.4533i) q^{78} +(62.0348 + 107.447i) q^{79} -7.82263i q^{80} +(-73.9945 + 32.9517i) q^{81} +10.3766 q^{82} +(48.4851 - 27.9929i) q^{83} +(-42.4071 - 34.3392i) q^{84} +(-20.4608 + 35.4392i) q^{85} +(42.7456 + 24.6792i) q^{86} +(-81.3010 - 12.8751i) q^{87} +(3.92392 + 6.79643i) q^{88} -6.78556i q^{89} +(5.82561 + 27.4019i) q^{90} +215.924 q^{91} +(-42.5086 + 24.5424i) q^{92} +(26.1453 - 10.0368i) q^{93} +(0.239921 - 0.415556i) q^{94} +(10.8197 + 6.24676i) q^{95} +(31.0566 + 80.9003i) q^{96} +(-58.5960 - 101.491i) q^{97} -40.0824i q^{98} +(-5.60066 - 6.21966i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{3} + 16 q^{4} - 22 q^{6} + 2 q^{7} + 8 q^{9} + O(q^{10}) \) \( 16 q + 4 q^{3} + 16 q^{4} - 22 q^{6} + 2 q^{7} + 8 q^{9} - 18 q^{11} - 22 q^{12} - 10 q^{13} - 54 q^{14} + 10 q^{15} - 32 q^{16} - 8 q^{18} - 52 q^{19} + 72 q^{21} - 24 q^{22} - 54 q^{23} + 108 q^{24} + 40 q^{25} + 34 q^{27} + 32 q^{28} - 54 q^{29} - 100 q^{30} + 32 q^{31} + 216 q^{32} + 62 q^{33} + 54 q^{34} - 86 q^{36} + 44 q^{37} + 252 q^{38} + 160 q^{39} - 30 q^{40} + 144 q^{41} - 270 q^{42} - 124 q^{43} + 140 q^{45} - 108 q^{46} - 216 q^{47} - 172 q^{48} - 54 q^{49} - 106 q^{51} + 62 q^{52} - 316 q^{54} - 18 q^{56} - 236 q^{57} + 90 q^{58} - 486 q^{59} - 10 q^{60} + 62 q^{61} - 132 q^{63} + 256 q^{64} - 90 q^{65} + 208 q^{66} + 14 q^{67} - 288 q^{68} + 90 q^{69} - 60 q^{70} + 804 q^{72} - 268 q^{73} + 540 q^{74} - 20 q^{75} - 106 q^{76} + 702 q^{77} + 290 q^{78} - 40 q^{79} - 112 q^{81} - 204 q^{82} + 522 q^{83} + 714 q^{84} + 30 q^{85} + 54 q^{86} + 106 q^{87} + 144 q^{88} + 250 q^{90} + 136 q^{91} - 1332 q^{92} + 90 q^{93} - 150 q^{94} + 180 q^{95} + 166 q^{96} - 142 q^{97} - 824 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.20554 + 0.696021i −0.602772 + 0.348011i −0.770131 0.637885i \(-0.779809\pi\)
0.167359 + 0.985896i \(0.446476\pi\)
\(3\) 2.33148 + 1.88791i 0.777159 + 0.629305i
\(4\) −1.03111 + 1.78593i −0.257777 + 0.446483i
\(5\) −1.93649 1.11803i −0.387298 0.223607i
\(6\) −4.12473 0.653207i −0.687454 0.108868i
\(7\) 4.41004 + 7.63842i 0.630006 + 1.09120i 0.987550 + 0.157306i \(0.0502810\pi\)
−0.357544 + 0.933896i \(0.616386\pi\)
\(8\) 8.43886i 1.05486i
\(9\) 1.87156 + 8.80325i 0.207951 + 0.978139i
\(10\) 3.11270 0.311270
\(11\) −0.805373 + 0.464982i −0.0732157 + 0.0422711i −0.536161 0.844116i \(-0.680126\pi\)
0.462945 + 0.886387i \(0.346793\pi\)
\(12\) −5.77569 + 2.21722i −0.481308 + 0.184768i
\(13\) 12.2405 21.2011i 0.941576 1.63086i 0.179109 0.983829i \(-0.442679\pi\)
0.762467 0.647027i \(-0.223988\pi\)
\(14\) −10.6330 6.13897i −0.759500 0.438498i
\(15\) −2.40413 6.26260i −0.160275 0.417507i
\(16\) 1.74919 + 3.02969i 0.109325 + 0.189356i
\(17\) 18.3007i 1.07651i −0.842781 0.538256i \(-0.819083\pi\)
0.842781 0.538256i \(-0.180917\pi\)
\(18\) −8.38350 9.31006i −0.465750 0.517226i
\(19\) −5.58727 −0.294067 −0.147033 0.989132i \(-0.546972\pi\)
−0.147033 + 0.989132i \(0.546972\pi\)
\(20\) 3.99347 2.30563i 0.199673 0.115281i
\(21\) −4.13877 + 26.1346i −0.197084 + 1.24450i
\(22\) 0.647275 1.12111i 0.0294216 0.0509597i
\(23\) 20.6131 + 11.9010i 0.896221 + 0.517433i 0.875972 0.482362i \(-0.160221\pi\)
0.0202485 + 0.999795i \(0.493554\pi\)
\(24\) 15.9319 19.6750i 0.663827 0.819792i
\(25\) 2.50000 + 4.33013i 0.100000 + 0.173205i
\(26\) 34.0785i 1.31071i
\(27\) −12.2563 + 24.0579i −0.453936 + 0.891034i
\(28\) −18.1889 −0.649605
\(29\) −23.7620 + 13.7190i −0.819381 + 0.473070i −0.850203 0.526455i \(-0.823521\pi\)
0.0308220 + 0.999525i \(0.490187\pi\)
\(30\) 7.25719 + 5.87651i 0.241906 + 0.195884i
\(31\) 4.66760 8.08452i 0.150568 0.260791i −0.780869 0.624695i \(-0.785223\pi\)
0.931436 + 0.363904i \(0.118556\pi\)
\(32\) 25.0156 + 14.4428i 0.781738 + 0.451337i
\(33\) −2.75555 0.436380i −0.0835017 0.0132236i
\(34\) 12.7377 + 22.0623i 0.374638 + 0.648891i
\(35\) 19.7223i 0.563495i
\(36\) −17.6518 5.73463i −0.490328 0.159295i
\(37\) −24.7588 −0.669156 −0.334578 0.942368i \(-0.608594\pi\)
−0.334578 + 0.942368i \(0.608594\pi\)
\(38\) 6.73570 3.88886i 0.177255 0.102338i
\(39\) 68.5643 26.3210i 1.75806 0.674897i
\(40\) −9.43494 + 16.3418i −0.235873 + 0.408545i
\(41\) −6.45555 3.72712i −0.157453 0.0909053i 0.419203 0.907892i \(-0.362309\pi\)
−0.576656 + 0.816987i \(0.695643\pi\)
\(42\) −13.2008 34.3871i −0.314304 0.818739i
\(43\) −17.7288 30.7071i −0.412297 0.714119i 0.582844 0.812584i \(-0.301940\pi\)
−0.995140 + 0.0984653i \(0.968607\pi\)
\(44\) 1.91779i 0.0435861i
\(45\) 6.21807 19.1399i 0.138179 0.425331i
\(46\) −33.1333 −0.720289
\(47\) −0.298523 + 0.172352i −0.00635154 + 0.00366707i −0.503172 0.864186i \(-0.667834\pi\)
0.496821 + 0.867853i \(0.334501\pi\)
\(48\) −1.64160 + 10.3660i −0.0341999 + 0.215958i
\(49\) −14.3970 + 24.9363i −0.293816 + 0.508904i
\(50\) −6.02772 3.48011i −0.120554 0.0696021i
\(51\) 34.5502 42.6677i 0.677454 0.836621i
\(52\) 25.2425 + 43.7214i 0.485433 + 0.840795i
\(53\) 81.8155i 1.54369i 0.635812 + 0.771844i \(0.280665\pi\)
−0.635812 + 0.771844i \(0.719335\pi\)
\(54\) −1.96933 37.5335i −0.0364691 0.695065i
\(55\) 2.07946 0.0378084
\(56\) 64.4596 37.2158i 1.15106 0.664567i
\(57\) −13.0266 10.5483i −0.228537 0.185058i
\(58\) 19.0975 33.0778i 0.329267 0.570307i
\(59\) −65.9707 38.0882i −1.11815 0.645562i −0.177220 0.984171i \(-0.556710\pi\)
−0.940927 + 0.338609i \(0.890044\pi\)
\(60\) 13.6635 + 2.16380i 0.227725 + 0.0360634i
\(61\) −29.6213 51.3056i −0.485595 0.841075i 0.514268 0.857629i \(-0.328064\pi\)
−0.999863 + 0.0165547i \(0.994730\pi\)
\(62\) 12.9950i 0.209597i
\(63\) −58.9893 + 53.1185i −0.936338 + 0.843151i
\(64\) −54.2035 −0.846929
\(65\) −47.4072 + 27.3705i −0.729341 + 0.421085i
\(66\) 3.62567 1.39185i 0.0549344 0.0210886i
\(67\) 40.9845 70.9873i 0.611710 1.05951i −0.379243 0.925297i \(-0.623815\pi\)
0.990952 0.134215i \(-0.0428512\pi\)
\(68\) 32.6838 + 18.8700i 0.480645 + 0.277500i
\(69\) 25.5909 + 66.6625i 0.370883 + 0.966124i
\(70\) 13.7271 + 23.7761i 0.196102 + 0.339659i
\(71\) 37.5733i 0.529201i −0.964358 0.264600i \(-0.914760\pi\)
0.964358 0.264600i \(-0.0852401\pi\)
\(72\) 74.2895 15.7939i 1.03180 0.219359i
\(73\) 3.49191 0.0478343 0.0239172 0.999714i \(-0.492386\pi\)
0.0239172 + 0.999714i \(0.492386\pi\)
\(74\) 29.8478 17.2326i 0.403348 0.232873i
\(75\) −2.34622 + 14.8154i −0.0312829 + 0.197538i
\(76\) 5.76108 9.97849i 0.0758037 0.131296i
\(77\) −7.10346 4.10119i −0.0922527 0.0532621i
\(78\) −64.3374 + 79.4533i −0.824838 + 1.01863i
\(79\) 62.0348 + 107.447i 0.785251 + 1.36009i 0.928849 + 0.370459i \(0.120799\pi\)
−0.143598 + 0.989636i \(0.545867\pi\)
\(80\) 7.82263i 0.0977829i
\(81\) −73.9945 + 32.9517i −0.913513 + 0.406811i
\(82\) 10.3766 0.126544
\(83\) 48.4851 27.9929i 0.584158 0.337264i −0.178626 0.983917i \(-0.557165\pi\)
0.762784 + 0.646653i \(0.223832\pi\)
\(84\) −42.4071 34.3392i −0.504846 0.408799i
\(85\) −20.4608 + 35.4392i −0.240715 + 0.416931i
\(86\) 42.7456 + 24.6792i 0.497042 + 0.286967i
\(87\) −81.3010 12.8751i −0.934494 0.147990i
\(88\) 3.92392 + 6.79643i 0.0445900 + 0.0772322i
\(89\) 6.78556i 0.0762423i −0.999273 0.0381211i \(-0.987863\pi\)
0.999273 0.0381211i \(-0.0121373\pi\)
\(90\) 5.82561 + 27.4019i 0.0647290 + 0.304466i
\(91\) 215.924 2.37279
\(92\) −42.5086 + 24.5424i −0.462051 + 0.266765i
\(93\) 26.1453 10.0368i 0.281132 0.107923i
\(94\) 0.239921 0.415556i 0.00255236 0.00442081i
\(95\) 10.8197 + 6.24676i 0.113892 + 0.0657553i
\(96\) 31.0566 + 80.9003i 0.323506 + 0.842712i
\(97\) −58.5960 101.491i −0.604082 1.04630i −0.992196 0.124690i \(-0.960206\pi\)
0.388113 0.921612i \(-0.373127\pi\)
\(98\) 40.0824i 0.409004i
\(99\) −5.60066 6.21966i −0.0565724 0.0628248i
\(100\) −10.3111 −0.103111
\(101\) −93.7854 + 54.1470i −0.928568 + 0.536109i −0.886359 0.463000i \(-0.846773\pi\)
−0.0422099 + 0.999109i \(0.513440\pi\)
\(102\) −11.9541 + 75.4854i −0.117197 + 0.740053i
\(103\) −35.3243 + 61.1834i −0.342954 + 0.594014i −0.984980 0.172669i \(-0.944761\pi\)
0.642026 + 0.766683i \(0.278094\pi\)
\(104\) −178.914 103.296i −1.72032 0.993229i
\(105\) 37.2340 45.9821i 0.354610 0.437925i
\(106\) −56.9453 98.6322i −0.537220 0.930492i
\(107\) 100.895i 0.942946i −0.881880 0.471473i \(-0.843722\pi\)
0.881880 0.471473i \(-0.156278\pi\)
\(108\) −30.3283 46.6952i −0.280817 0.432363i
\(109\) 97.8997 0.898163 0.449081 0.893491i \(-0.351751\pi\)
0.449081 + 0.893491i \(0.351751\pi\)
\(110\) −2.50689 + 1.44735i −0.0227899 + 0.0131577i
\(111\) −57.7245 46.7424i −0.520040 0.421103i
\(112\) −15.4280 + 26.7221i −0.137750 + 0.238591i
\(113\) −10.6876 6.17047i −0.0945802 0.0546059i 0.451964 0.892036i \(-0.350724\pi\)
−0.546544 + 0.837430i \(0.684057\pi\)
\(114\) 23.0460 + 3.64964i 0.202157 + 0.0320144i
\(115\) −26.6114 46.0922i −0.231403 0.400802i
\(116\) 56.5832i 0.487786i
\(117\) 209.548 + 68.0768i 1.79101 + 0.581853i
\(118\) 106.041 0.898650
\(119\) 139.788 80.7069i 1.17469 0.678209i
\(120\) −52.8492 + 20.2881i −0.440410 + 0.169068i
\(121\) −60.0676 + 104.040i −0.496426 + 0.859836i
\(122\) 71.4195 + 41.2341i 0.585406 + 0.337984i
\(123\) −8.01450 20.8772i −0.0651585 0.169733i
\(124\) 9.62561 + 16.6720i 0.0776259 + 0.134452i
\(125\) 11.1803i 0.0894427i
\(126\) 34.1426 105.094i 0.270973 0.834083i
\(127\) −86.8931 −0.684198 −0.342099 0.939664i \(-0.611138\pi\)
−0.342099 + 0.939664i \(0.611138\pi\)
\(128\) −34.7178 + 20.0443i −0.271233 + 0.156596i
\(129\) 16.6382 105.063i 0.128978 0.814444i
\(130\) 38.1010 65.9928i 0.293084 0.507637i
\(131\) 17.5042 + 10.1060i 0.133620 + 0.0771453i 0.565320 0.824872i \(-0.308753\pi\)
−0.431700 + 0.902017i \(0.642086\pi\)
\(132\) 3.62062 4.47128i 0.0274290 0.0338733i
\(133\) −24.6401 42.6779i −0.185264 0.320887i
\(134\) 114.104i 0.851526i
\(135\) 50.6318 32.8850i 0.375050 0.243593i
\(136\) −154.437 −1.13557
\(137\) −127.414 + 73.5624i −0.930028 + 0.536952i −0.886821 0.462114i \(-0.847091\pi\)
−0.0432078 + 0.999066i \(0.513758\pi\)
\(138\) −77.2495 62.5528i −0.559779 0.453281i
\(139\) −61.3294 + 106.226i −0.441219 + 0.764213i −0.997780 0.0665934i \(-0.978787\pi\)
0.556562 + 0.830806i \(0.312120\pi\)
\(140\) 35.2227 + 20.3359i 0.251591 + 0.145256i
\(141\) −1.02138 0.161750i −0.00724386 0.00114716i
\(142\) 26.1518 + 45.2962i 0.184168 + 0.318988i
\(143\) 22.7664i 0.159206i
\(144\) −23.3974 + 21.0688i −0.162482 + 0.146311i
\(145\) 61.3533 0.423126
\(146\) −4.20965 + 2.43044i −0.0288332 + 0.0166469i
\(147\) −80.6437 + 30.9581i −0.548597 + 0.210599i
\(148\) 25.5290 44.2175i 0.172493 0.298767i
\(149\) 188.144 + 108.625i 1.26271 + 0.729028i 0.973599 0.228266i \(-0.0733056\pi\)
0.289115 + 0.957294i \(0.406639\pi\)
\(150\) −7.48335 19.4936i −0.0498890 0.129957i
\(151\) 81.1971 + 140.637i 0.537729 + 0.931374i 0.999026 + 0.0441282i \(0.0140510\pi\)
−0.461297 + 0.887246i \(0.652616\pi\)
\(152\) 47.1502i 0.310199i
\(153\) 161.106 34.2509i 1.05298 0.223862i
\(154\) 11.4180 0.0741432
\(155\) −18.0775 + 10.4371i −0.116629 + 0.0673360i
\(156\) −23.6898 + 149.591i −0.151858 + 0.958917i
\(157\) −57.4586 + 99.5212i −0.365978 + 0.633893i −0.988933 0.148365i \(-0.952599\pi\)
0.622954 + 0.782258i \(0.285932\pi\)
\(158\) −149.571 86.3551i −0.946655 0.546551i
\(159\) −154.461 + 190.751i −0.971450 + 1.19969i
\(160\) −32.2950 55.9366i −0.201844 0.349604i
\(161\) 209.935i 1.30394i
\(162\) 66.2686 91.2264i 0.409065 0.563126i
\(163\) −138.760 −0.851286 −0.425643 0.904891i \(-0.639952\pi\)
−0.425643 + 0.904891i \(0.639952\pi\)
\(164\) 13.3128 7.68613i 0.0811754 0.0468666i
\(165\) 4.84822 + 3.92585i 0.0293832 + 0.0237930i
\(166\) −38.9673 + 67.4933i −0.234743 + 0.406586i
\(167\) 258.339 + 149.152i 1.54694 + 0.893126i 0.998373 + 0.0570195i \(0.0181597\pi\)
0.548567 + 0.836107i \(0.315174\pi\)
\(168\) 220.546 + 34.9265i 1.31277 + 0.207896i
\(169\) −215.159 372.666i −1.27313 2.20512i
\(170\) 56.9646i 0.335086i
\(171\) −10.4569 49.1861i −0.0611516 0.287638i
\(172\) 73.1211 0.425123
\(173\) 235.252 135.823i 1.35984 0.785102i 0.370235 0.928938i \(-0.379277\pi\)
0.989602 + 0.143836i \(0.0459438\pi\)
\(174\) 106.973 41.0657i 0.614789 0.236010i
\(175\) −22.0502 + 38.1921i −0.126001 + 0.218241i
\(176\) −2.81751 1.62669i −0.0160086 0.00924255i
\(177\) −81.9018 213.349i −0.462722 1.20536i
\(178\) 4.72289 + 8.18029i 0.0265331 + 0.0459567i
\(179\) 67.8828i 0.379234i 0.981858 + 0.189617i \(0.0607246\pi\)
−0.981858 + 0.189617i \(0.939275\pi\)
\(180\) 27.7711 + 30.8404i 0.154284 + 0.171335i
\(181\) −0.394050 −0.00217707 −0.00108854 0.999999i \(-0.500346\pi\)
−0.00108854 + 0.999999i \(0.500346\pi\)
\(182\) −260.306 + 150.288i −1.43025 + 0.825757i
\(183\) 27.7992 175.540i 0.151908 0.959235i
\(184\) 100.431 173.951i 0.545819 0.945386i
\(185\) 47.9451 + 27.6811i 0.259163 + 0.149628i
\(186\) −24.5334 + 30.2975i −0.131900 + 0.162890i
\(187\) 8.50951 + 14.7389i 0.0455054 + 0.0788176i
\(188\) 0.710855i 0.00378114i
\(189\) −237.815 + 12.4778i −1.25828 + 0.0660203i
\(190\) −17.3915 −0.0915342
\(191\) 28.9892 16.7369i 0.151776 0.0876278i −0.422189 0.906508i \(-0.638738\pi\)
0.573965 + 0.818880i \(0.305405\pi\)
\(192\) −126.374 102.331i −0.658198 0.532976i
\(193\) −26.4249 + 45.7692i −0.136916 + 0.237146i −0.926328 0.376718i \(-0.877052\pi\)
0.789412 + 0.613864i \(0.210386\pi\)
\(194\) 141.280 + 81.5681i 0.728248 + 0.420454i
\(195\) −162.202 25.6869i −0.831805 0.131728i
\(196\) −29.6897 51.4240i −0.151478 0.262367i
\(197\) 371.096i 1.88374i −0.335984 0.941868i \(-0.609069\pi\)
0.335984 0.941868i \(-0.390931\pi\)
\(198\) 11.0809 + 3.59989i 0.0559639 + 0.0181813i
\(199\) −102.813 −0.516650 −0.258325 0.966058i \(-0.583170\pi\)
−0.258325 + 0.966058i \(0.583170\pi\)
\(200\) 36.5414 21.0972i 0.182707 0.105486i
\(201\) 229.572 88.1299i 1.14215 0.438457i
\(202\) 75.3750 130.553i 0.373143 0.646303i
\(203\) −209.583 121.003i −1.03243 0.596074i
\(204\) 40.5766 + 105.699i 0.198905 + 0.518134i
\(205\) 8.33409 + 14.4351i 0.0406541 + 0.0704149i
\(206\) 98.3457i 0.477407i
\(207\) −66.1886 + 203.735i −0.319751 + 0.984229i
\(208\) 85.6439 0.411749
\(209\) 4.49984 2.59798i 0.0215303 0.0124305i
\(210\) −12.8827 + 81.3491i −0.0613464 + 0.387377i
\(211\) −15.3065 + 26.5116i −0.0725425 + 0.125647i −0.900015 0.435859i \(-0.856445\pi\)
0.827472 + 0.561506i \(0.189778\pi\)
\(212\) −146.117 84.3607i −0.689231 0.397928i
\(213\) 70.9351 87.6012i 0.333029 0.411273i
\(214\) 70.2253 + 121.634i 0.328155 + 0.568382i
\(215\) 79.2854i 0.368769i
\(216\) 203.022 + 103.429i 0.939914 + 0.478838i
\(217\) 82.3373 0.379434
\(218\) −118.022 + 68.1403i −0.541387 + 0.312570i
\(219\) 8.14130 + 6.59242i 0.0371749 + 0.0301024i
\(220\) −2.14415 + 3.71378i −0.00974616 + 0.0168808i
\(221\) −387.996 224.009i −1.75564 1.01362i
\(222\) 102.123 + 16.1726i 0.460014 + 0.0728495i
\(223\) 160.484 + 277.966i 0.719659 + 1.24649i 0.961135 + 0.276078i \(0.0890350\pi\)
−0.241477 + 0.970407i \(0.577632\pi\)
\(224\) 254.773i 1.13738i
\(225\) −33.4403 + 30.1122i −0.148624 + 0.133832i
\(226\) 17.1791 0.0760137
\(227\) 200.515 115.767i 0.883325 0.509988i 0.0115717 0.999933i \(-0.496317\pi\)
0.871753 + 0.489945i \(0.162983\pi\)
\(228\) 32.2704 12.3882i 0.141537 0.0543341i
\(229\) 118.247 204.809i 0.516361 0.894363i −0.483459 0.875367i \(-0.660620\pi\)
0.999820 0.0189957i \(-0.00604689\pi\)
\(230\) 64.1623 + 37.0441i 0.278967 + 0.161062i
\(231\) −8.81886 22.9725i −0.0381769 0.0994482i
\(232\) 115.773 + 200.525i 0.499021 + 0.864331i
\(233\) 148.884i 0.638987i 0.947588 + 0.319493i \(0.103513\pi\)
−0.947588 + 0.319493i \(0.896487\pi\)
\(234\) −300.002 + 63.7801i −1.28206 + 0.272564i
\(235\) 0.770782 0.00327992
\(236\) 136.046 78.5461i 0.576466 0.332823i
\(237\) −58.2189 + 367.628i −0.245649 + 1.55117i
\(238\) −112.347 + 194.591i −0.472048 + 0.817611i
\(239\) −228.982 132.203i −0.958083 0.553149i −0.0625002 0.998045i \(-0.519907\pi\)
−0.895582 + 0.444896i \(0.853241\pi\)
\(240\) 14.7685 18.2383i 0.0615352 0.0759928i
\(241\) 104.234 + 180.539i 0.432507 + 0.749124i 0.997088 0.0762533i \(-0.0242958\pi\)
−0.564582 + 0.825377i \(0.690962\pi\)
\(242\) 167.233i 0.691046i
\(243\) −234.726 62.8693i −0.965952 0.258721i
\(244\) 122.171 0.500701
\(245\) 55.7592 32.1926i 0.227589 0.131398i
\(246\) 24.1928 + 19.5901i 0.0983448 + 0.0796347i
\(247\) −68.3909 + 118.456i −0.276886 + 0.479581i
\(248\) −68.2242 39.3893i −0.275098 0.158828i
\(249\) 165.890 + 26.2709i 0.666225 + 0.105506i
\(250\) 7.78175 + 13.4784i 0.0311270 + 0.0539136i
\(251\) 236.856i 0.943651i −0.881692 0.471826i \(-0.843595\pi\)
0.881692 0.471826i \(-0.156405\pi\)
\(252\) −34.0417 160.122i −0.135086 0.635404i
\(253\) −22.1350 −0.0874899
\(254\) 104.754 60.4795i 0.412415 0.238108i
\(255\) −114.610 + 43.9973i −0.449451 + 0.172538i
\(256\) 136.310 236.095i 0.532459 0.922246i
\(257\) 255.746 + 147.655i 0.995121 + 0.574533i 0.906801 0.421559i \(-0.138517\pi\)
0.0883198 + 0.996092i \(0.471850\pi\)
\(258\) 53.0682 + 138.239i 0.205691 + 0.535810i
\(259\) −109.187 189.118i −0.421572 0.730185i
\(260\) 112.888i 0.434185i
\(261\) −165.244 183.507i −0.633119 0.703093i
\(262\) −28.1361 −0.107390
\(263\) −365.389 + 210.957i −1.38931 + 0.802119i −0.993238 0.116099i \(-0.962961\pi\)
−0.396074 + 0.918219i \(0.629628\pi\)
\(264\) −3.68255 + 23.2538i −0.0139491 + 0.0880824i
\(265\) 91.4725 158.435i 0.345179 0.597868i
\(266\) 59.4095 + 34.3001i 0.223344 + 0.128948i
\(267\) 12.8106 15.8204i 0.0479796 0.0592523i
\(268\) 84.5190 + 146.391i 0.315370 + 0.546236i
\(269\) 316.354i 1.17604i 0.808848 + 0.588018i \(0.200092\pi\)
−0.808848 + 0.588018i \(0.799908\pi\)
\(270\) −38.1502 + 74.8851i −0.141297 + 0.277352i
\(271\) −10.8891 −0.0401814 −0.0200907 0.999798i \(-0.506395\pi\)
−0.0200907 + 0.999798i \(0.506395\pi\)
\(272\) 55.4455 32.0115i 0.203844 0.117689i
\(273\) 503.422 + 407.646i 1.84404 + 1.49321i
\(274\) 102.402 177.366i 0.373730 0.647319i
\(275\) −4.02687 2.32491i −0.0146431 0.00845423i
\(276\) −145.442 23.0327i −0.526963 0.0834518i
\(277\) −38.7124 67.0519i −0.139756 0.242065i 0.787648 0.616125i \(-0.211299\pi\)
−0.927404 + 0.374061i \(0.877965\pi\)
\(278\) 170.746i 0.614195i
\(279\) 79.9058 + 25.9594i 0.286401 + 0.0930444i
\(280\) −166.434 −0.594407
\(281\) −140.912 + 81.3557i −0.501467 + 0.289522i −0.729319 0.684174i \(-0.760163\pi\)
0.227852 + 0.973696i \(0.426830\pi\)
\(282\) 1.34391 0.515908i 0.00476562 0.00182946i
\(283\) −10.3582 + 17.9410i −0.0366015 + 0.0633956i −0.883746 0.467967i \(-0.844987\pi\)
0.847144 + 0.531363i \(0.178320\pi\)
\(284\) 67.1033 + 38.7421i 0.236279 + 0.136416i
\(285\) 13.4325 + 34.9908i 0.0471317 + 0.122775i
\(286\) −15.8459 27.4459i −0.0554053 0.0959648i
\(287\) 65.7470i 0.229084i
\(288\) −80.3251 + 247.249i −0.278907 + 0.858505i
\(289\) −45.9158 −0.158878
\(290\) −73.9642 + 42.7032i −0.255049 + 0.147253i
\(291\) 54.9916 347.249i 0.188974 1.19329i
\(292\) −3.60054 + 6.23631i −0.0123306 + 0.0213572i
\(293\) −116.350 67.1748i −0.397100 0.229266i 0.288132 0.957591i \(-0.406966\pi\)
−0.685232 + 0.728325i \(0.740299\pi\)
\(294\) 75.6721 93.4511i 0.257388 0.317861i
\(295\) 85.1678 + 147.515i 0.288704 + 0.500051i
\(296\) 208.936i 0.705864i
\(297\) −1.31563 25.0746i −0.00442973 0.0844261i
\(298\) −302.422 −1.01484
\(299\) 504.628 291.347i 1.68772 0.974405i
\(300\) −24.0401 19.4664i −0.0801335 0.0648882i
\(301\) 156.369 270.839i 0.519499 0.899799i
\(302\) −195.773 113.030i −0.648256 0.374271i
\(303\) −320.883 50.8163i −1.05902 0.167710i
\(304\) −9.77322 16.9277i −0.0321487 0.0556832i
\(305\) 132.470i 0.434329i
\(306\) −170.381 + 153.424i −0.556800 + 0.501386i
\(307\) 96.2672 0.313574 0.156787 0.987632i \(-0.449886\pi\)
0.156787 + 0.987632i \(0.449886\pi\)
\(308\) 14.6489 8.45754i 0.0475613 0.0274595i
\(309\) −197.867 + 75.9585i −0.640345 + 0.245820i
\(310\) 14.5288 25.1647i 0.0468673 0.0811765i
\(311\) 327.909 + 189.319i 1.05437 + 0.608742i 0.923870 0.382707i \(-0.125008\pi\)
0.130501 + 0.991448i \(0.458341\pi\)
\(312\) −222.119 578.605i −0.711920 1.85450i
\(313\) −113.733 196.991i −0.363364 0.629365i 0.625148 0.780506i \(-0.285039\pi\)
−0.988512 + 0.151141i \(0.951705\pi\)
\(314\) 159.970i 0.509457i
\(315\) 173.621 36.9115i 0.551176 0.117179i
\(316\) −255.859 −0.809679
\(317\) −196.306 + 113.337i −0.619260 + 0.357530i −0.776581 0.630017i \(-0.783048\pi\)
0.157321 + 0.987548i \(0.449714\pi\)
\(318\) 53.4424 337.466i 0.168058 1.06122i
\(319\) 12.7582 22.0979i 0.0399944 0.0692723i
\(320\) 104.965 + 60.6013i 0.328014 + 0.189379i
\(321\) 190.482 235.235i 0.593401 0.732819i
\(322\) −146.119 253.086i −0.453787 0.785981i
\(323\) 102.251i 0.316566i
\(324\) 17.4469 166.126i 0.0538486 0.512735i
\(325\) 122.405 0.376630
\(326\) 167.281 96.5797i 0.513132 0.296257i
\(327\) 228.251 + 184.826i 0.698015 + 0.565218i
\(328\) −31.4526 + 54.4776i −0.0958922 + 0.166090i
\(329\) −2.63300 1.52016i −0.00800303 0.00462055i
\(330\) −8.57722 1.35832i −0.0259916 0.00411612i
\(331\) 142.567 + 246.934i 0.430717 + 0.746024i 0.996935 0.0782317i \(-0.0249274\pi\)
−0.566218 + 0.824255i \(0.691594\pi\)
\(332\) 115.455i 0.347755i
\(333\) −46.3376 217.958i −0.139152 0.654527i
\(334\) −415.252 −1.24327
\(335\) −158.732 + 91.6442i −0.473828 + 0.273565i
\(336\) −86.4192 + 33.1752i −0.257200 + 0.0987358i
\(337\) −64.7530 + 112.155i −0.192145 + 0.332805i −0.945961 0.324281i \(-0.894878\pi\)
0.753816 + 0.657086i \(0.228211\pi\)
\(338\) 518.767 + 299.510i 1.53481 + 0.886125i
\(339\) −13.2685 34.5635i −0.0391401 0.101957i
\(340\) −42.1946 73.0833i −0.124102 0.214951i
\(341\) 8.68141i 0.0254587i
\(342\) 46.8409 + 52.0178i 0.136962 + 0.152099i
\(343\) 178.219 0.519590
\(344\) −259.133 + 149.611i −0.753294 + 0.434915i
\(345\) 24.9744 157.703i 0.0723896 0.457110i
\(346\) −189.071 + 327.480i −0.546448 + 0.946475i
\(347\) −84.1318 48.5735i −0.242455 0.139981i 0.373850 0.927489i \(-0.378038\pi\)
−0.616304 + 0.787508i \(0.711371\pi\)
\(348\) 106.824 131.922i 0.306966 0.379087i
\(349\) 115.403 + 199.884i 0.330668 + 0.572734i 0.982643 0.185507i \(-0.0593926\pi\)
−0.651975 + 0.758241i \(0.726059\pi\)
\(350\) 61.3897i 0.175399i
\(351\) 360.032 + 554.328i 1.02573 + 1.57928i
\(352\) −26.8625 −0.0763141
\(353\) 363.619 209.935i 1.03008 0.594718i 0.113074 0.993587i \(-0.463930\pi\)
0.917008 + 0.398869i \(0.130597\pi\)
\(354\) 247.231 + 200.196i 0.698394 + 0.565525i
\(355\) −42.0082 + 72.7603i −0.118333 + 0.204959i
\(356\) 12.1186 + 6.99665i 0.0340409 + 0.0196535i
\(357\) 478.281 + 75.7424i 1.33972 + 0.212163i
\(358\) −47.2479 81.8357i −0.131977 0.228591i
\(359\) 171.798i 0.478545i −0.970952 0.239273i \(-0.923091\pi\)
0.970952 0.239273i \(-0.0769090\pi\)
\(360\) −161.519 52.4735i −0.448664 0.145760i
\(361\) −329.782 −0.913525
\(362\) 0.475045 0.274267i 0.00131228 0.000757644i
\(363\) −336.465 + 129.165i −0.926901 + 0.355825i
\(364\) −222.641 + 385.626i −0.611652 + 1.05941i
\(365\) −6.76205 3.90407i −0.0185262 0.0106961i
\(366\) 88.6665 + 230.970i 0.242258 + 0.631066i
\(367\) 22.3738 + 38.7526i 0.0609641 + 0.105593i 0.894897 0.446274i \(-0.147249\pi\)
−0.833933 + 0.551866i \(0.813916\pi\)
\(368\) 83.2683i 0.226273i
\(369\) 20.7288 63.8054i 0.0561756 0.172914i
\(370\) −77.0666 −0.208288
\(371\) −624.941 + 360.810i −1.68448 + 0.972533i
\(372\) −9.03351 + 57.0428i −0.0242836 + 0.153341i
\(373\) 154.578 267.737i 0.414419 0.717794i −0.580949 0.813940i \(-0.697318\pi\)
0.995367 + 0.0961461i \(0.0306516\pi\)
\(374\) −20.5172 11.8456i −0.0548587 0.0316727i
\(375\) 21.1075 26.0667i 0.0562867 0.0695112i
\(376\) 1.45446 + 2.51919i 0.00386823 + 0.00669998i
\(377\) 671.710i 1.78172i
\(378\) 278.012 180.567i 0.735481 0.477691i
\(379\) 65.7442 0.173468 0.0867338 0.996232i \(-0.472357\pi\)
0.0867338 + 0.996232i \(0.472357\pi\)
\(380\) −22.3126 + 12.8822i −0.0587173 + 0.0339005i
\(381\) −202.589 164.047i −0.531730 0.430569i
\(382\) −23.2985 + 40.3542i −0.0609908 + 0.105639i
\(383\) −90.0606 51.9965i −0.235145 0.135761i 0.377798 0.925888i \(-0.376681\pi\)
−0.612943 + 0.790127i \(0.710015\pi\)
\(384\) −118.786 18.8114i −0.309338 0.0489879i
\(385\) 9.17053 + 15.8838i 0.0238196 + 0.0412567i
\(386\) 73.5691i 0.190593i
\(387\) 237.142 213.541i 0.612770 0.551786i
\(388\) 241.675 0.622875
\(389\) −481.264 + 277.858i −1.23718 + 0.714287i −0.968517 0.248946i \(-0.919916\pi\)
−0.268665 + 0.963234i \(0.586582\pi\)
\(390\) 213.420 81.9293i 0.547231 0.210075i
\(391\) 217.796 377.234i 0.557023 0.964792i
\(392\) 210.434 + 121.494i 0.536821 + 0.309934i
\(393\) 21.7312 + 56.6083i 0.0552957 + 0.144042i
\(394\) 258.291 + 447.372i 0.655560 + 1.13546i
\(395\) 277.428i 0.702350i
\(396\) 16.8828 3.58926i 0.0426333 0.00906379i
\(397\) −406.903 −1.02494 −0.512472 0.858704i \(-0.671270\pi\)
−0.512472 + 0.858704i \(0.671270\pi\)
\(398\) 123.946 71.5602i 0.311422 0.179800i
\(399\) 23.1244 146.021i 0.0579559 0.365967i
\(400\) −8.74597 + 15.1485i −0.0218649 + 0.0378711i
\(401\) 44.8956 + 25.9205i 0.111959 + 0.0646396i 0.554934 0.831894i \(-0.312744\pi\)
−0.442975 + 0.896534i \(0.646077\pi\)
\(402\) −215.419 + 266.032i −0.535869 + 0.661771i
\(403\) −114.267 197.917i −0.283542 0.491109i
\(404\) 223.326i 0.552787i
\(405\) 180.131 + 18.9178i 0.444767 + 0.0467105i
\(406\) 336.883 0.829760
\(407\) 19.9400 11.5124i 0.0489927 0.0282860i
\(408\) −360.067 291.564i −0.882516 0.714618i
\(409\) −235.985 + 408.739i −0.576981 + 0.999361i 0.418842 + 0.908059i \(0.362436\pi\)
−0.995823 + 0.0913019i \(0.970897\pi\)
\(410\) −20.0942 11.6014i −0.0490103 0.0282961i
\(411\) −435.942 69.0374i −1.06069 0.167974i
\(412\) −72.8463 126.174i −0.176811 0.306246i
\(413\) 671.882i 1.62683i
\(414\) −62.0110 291.681i −0.149785 0.704543i
\(415\) −125.188 −0.301658
\(416\) 612.407 353.573i 1.47213 0.849935i
\(417\) −343.533 + 131.878i −0.823820 + 0.316254i
\(418\) −3.61650 + 6.26396i −0.00865192 + 0.0149856i
\(419\) −262.279 151.427i −0.625964 0.361400i 0.153223 0.988192i \(-0.451035\pi\)
−0.779187 + 0.626791i \(0.784368\pi\)
\(420\) 43.7286 + 113.910i 0.104116 + 0.271214i
\(421\) −75.2249 130.293i −0.178682 0.309485i 0.762748 0.646696i \(-0.223850\pi\)
−0.941429 + 0.337211i \(0.890517\pi\)
\(422\) 42.6145i 0.100982i
\(423\) −2.07596 2.30540i −0.00490771 0.00545012i
\(424\) 690.430 1.62837
\(425\) 79.2444 45.7518i 0.186457 0.107651i
\(426\) −24.5431 + 154.979i −0.0576129 + 0.363801i
\(427\) 261.262 452.519i 0.611855 1.05976i
\(428\) 180.192 + 104.034i 0.421010 + 0.243070i
\(429\) −42.9811 + 53.0794i −0.100189 + 0.123728i
\(430\) −55.1843 95.5821i −0.128336 0.222284i
\(431\) 117.043i 0.271561i 0.990739 + 0.135780i \(0.0433541\pi\)
−0.990739 + 0.135780i \(0.956646\pi\)
\(432\) −94.3267 + 4.94920i −0.218349 + 0.0114565i
\(433\) 102.502 0.236725 0.118363 0.992970i \(-0.462235\pi\)
0.118363 + 0.992970i \(0.462235\pi\)
\(434\) −99.2612 + 57.3085i −0.228713 + 0.132047i
\(435\) 143.044 + 115.830i 0.328836 + 0.266275i
\(436\) −100.945 + 174.842i −0.231526 + 0.401015i
\(437\) −115.171 66.4939i −0.263549 0.152160i
\(438\) −14.4032 2.28094i −0.0328839 0.00520762i
\(439\) −8.02840 13.9056i −0.0182879 0.0316756i 0.856737 0.515754i \(-0.172488\pi\)
−0.875025 + 0.484079i \(0.839155\pi\)
\(440\) 17.5483i 0.0398825i
\(441\) −246.465 80.0703i −0.558878 0.181565i
\(442\) 623.661 1.41100
\(443\) 279.019 161.092i 0.629840 0.363639i −0.150850 0.988557i \(-0.548201\pi\)
0.780690 + 0.624918i \(0.214868\pi\)
\(444\) 142.999 54.8955i 0.322070 0.123639i
\(445\) −7.58649 + 13.1402i −0.0170483 + 0.0295285i
\(446\) −386.941 223.400i −0.867580 0.500898i
\(447\) 233.579 + 608.458i 0.522548 + 1.36120i
\(448\) −239.040 414.029i −0.533571 0.924171i
\(449\) 550.718i 1.22654i −0.789872 0.613271i \(-0.789853\pi\)
0.789872 0.613271i \(-0.210147\pi\)
\(450\) 19.3550 59.5768i 0.0430111 0.132393i
\(451\) 6.93217 0.0153707
\(452\) 22.0401 12.7248i 0.0487612 0.0281523i
\(453\) −76.2024 + 481.186i −0.168217 + 1.06222i
\(454\) −161.153 + 279.125i −0.354962 + 0.614813i
\(455\) −418.135 241.411i −0.918979 0.530573i
\(456\) −89.0155 + 109.930i −0.195210 + 0.241074i
\(457\) −297.150 514.680i −0.650220 1.12621i −0.983069 0.183234i \(-0.941343\pi\)
0.332849 0.942980i \(-0.391990\pi\)
\(458\) 329.208i 0.718796i
\(459\) 440.277 + 224.299i 0.959209 + 0.488668i
\(460\) 109.757 0.238602
\(461\) 80.7434 46.6172i 0.175148 0.101122i −0.409863 0.912147i \(-0.634423\pi\)
0.585011 + 0.811025i \(0.301090\pi\)
\(462\) 26.6209 + 21.5563i 0.0576210 + 0.0466586i
\(463\) 425.678 737.296i 0.919391 1.59243i 0.119048 0.992889i \(-0.462016\pi\)
0.800343 0.599543i \(-0.204651\pi\)
\(464\) −83.1288 47.9945i −0.179157 0.103436i
\(465\) −61.8516 9.79506i −0.133014 0.0210646i
\(466\) −103.626 179.486i −0.222374 0.385163i
\(467\) 8.00225i 0.0171354i −0.999963 0.00856772i \(-0.997273\pi\)
0.999963 0.00856772i \(-0.00272722\pi\)
\(468\) −337.647 + 304.044i −0.721468 + 0.649666i
\(469\) 722.974 1.54152
\(470\) −0.929212 + 0.536481i −0.00197705 + 0.00114145i
\(471\) −321.851 + 123.554i −0.683335 + 0.262324i
\(472\) −321.421 + 556.718i −0.680977 + 1.17949i
\(473\) 28.5565 + 16.4871i 0.0603732 + 0.0348565i
\(474\) −185.691 483.713i −0.391754 1.02049i
\(475\) −13.9682 24.1936i −0.0294067 0.0509339i
\(476\) 332.870i 0.699308i
\(477\) −720.242 + 153.123i −1.50994 + 0.321012i
\(478\) 368.063 0.770007
\(479\) 102.836 59.3723i 0.214688 0.123950i −0.388800 0.921322i \(-0.627110\pi\)
0.603488 + 0.797372i \(0.293777\pi\)
\(480\) 30.3085 191.385i 0.0631426 0.398719i
\(481\) −303.059 + 524.914i −0.630061 + 1.09130i
\(482\) −251.318 145.098i −0.521406 0.301034i
\(483\) −396.339 + 489.459i −0.820578 + 1.01337i
\(484\) −123.872 214.553i −0.255935 0.443292i
\(485\) 262.049i 0.540308i
\(486\) 326.731 87.5828i 0.672287 0.180212i
\(487\) 109.899 0.225665 0.112832 0.993614i \(-0.464008\pi\)
0.112832 + 0.993614i \(0.464008\pi\)
\(488\) −432.961 + 249.970i −0.887214 + 0.512233i
\(489\) −323.515 261.966i −0.661584 0.535718i
\(490\) −44.8135 + 77.6192i −0.0914560 + 0.158406i
\(491\) 652.657 + 376.812i 1.32924 + 0.767437i 0.985182 0.171511i \(-0.0548648\pi\)
0.344058 + 0.938948i \(0.388198\pi\)
\(492\) 45.5491 + 7.21333i 0.0925795 + 0.0146612i
\(493\) 251.068 + 434.862i 0.509265 + 0.882073i
\(494\) 190.406i 0.385437i
\(495\) 3.89185 + 18.3061i 0.00786231 + 0.0369819i
\(496\) 32.6581 0.0658430
\(497\) 287.000 165.700i 0.577466 0.333400i
\(498\) −218.273 + 83.7922i −0.438299 + 0.168257i
\(499\) −276.591 + 479.069i −0.554290 + 0.960058i 0.443669 + 0.896191i \(0.353677\pi\)
−0.997958 + 0.0638671i \(0.979657\pi\)
\(500\) 19.9673 + 11.5281i 0.0399347 + 0.0230563i
\(501\) 320.725 + 835.466i 0.640169 + 1.66760i
\(502\) 164.857 + 285.541i 0.328401 + 0.568807i
\(503\) 546.276i 1.08604i 0.839721 + 0.543018i \(0.182718\pi\)
−0.839721 + 0.543018i \(0.817282\pi\)
\(504\) 448.260 + 497.802i 0.889404 + 0.987703i
\(505\) 242.153 0.479511
\(506\) 26.6847 15.4064i 0.0527365 0.0304474i
\(507\) 201.924 1275.06i 0.398272 2.51492i
\(508\) 89.5963 155.185i 0.176371 0.305483i
\(509\) −361.100 208.481i −0.709430 0.409590i 0.101420 0.994844i \(-0.467661\pi\)
−0.810850 + 0.585254i \(0.800995\pi\)
\(510\) 107.544 132.812i 0.210871 0.260415i
\(511\) 15.3995 + 26.6726i 0.0301359 + 0.0521970i
\(512\) 219.142i 0.428013i
\(513\) 68.4792 134.418i 0.133488 0.262024i
\(514\) −411.084 −0.799775
\(515\) 136.810 78.9874i 0.265651 0.153374i
\(516\) 170.480 + 138.046i 0.330388 + 0.267532i
\(517\) 0.160281 0.277616i 0.000310022 0.000536974i
\(518\) 263.260 + 151.993i 0.508224 + 0.293423i
\(519\) 804.905 + 127.468i 1.55088 + 0.245603i
\(520\) 230.976 + 400.063i 0.444185 + 0.769352i
\(521\) 201.720i 0.387178i −0.981083 0.193589i \(-0.937987\pi\)
0.981083 0.193589i \(-0.0620129\pi\)
\(522\) 326.934 + 106.213i 0.626311 + 0.203473i
\(523\) −796.751 −1.52342 −0.761712 0.647915i \(-0.775641\pi\)
−0.761712 + 0.647915i \(0.775641\pi\)
\(524\) −36.0974 + 20.8408i −0.0688882 + 0.0397726i
\(525\) −123.513 + 47.4150i −0.235263 + 0.0903144i
\(526\) 293.662 508.637i 0.558292 0.966990i
\(527\) −147.952 85.4204i −0.280745 0.162088i
\(528\) −3.49790 9.11180i −0.00662481 0.0172572i
\(529\) 18.7659 + 32.5034i 0.0354742 + 0.0614432i
\(530\) 254.667i 0.480504i
\(531\) 211.832 652.041i 0.398930 1.22795i
\(532\) 101.627 0.191027
\(533\) −158.038 + 91.2434i −0.296507 + 0.171188i
\(534\) −4.43237 + 27.9886i −0.00830033 + 0.0524131i
\(535\) −112.804 + 195.383i −0.210849 + 0.365202i
\(536\) −599.052 345.863i −1.11763 0.645267i
\(537\) −128.157 + 158.267i −0.238654 + 0.294725i
\(538\) −220.189 381.378i −0.409273 0.708882i
\(539\) 26.7773i 0.0496797i
\(540\) 6.52358 + 124.333i 0.0120807 + 0.230246i
\(541\) 332.884 0.615312 0.307656 0.951498i \(-0.400455\pi\)
0.307656 + 0.951498i \(0.400455\pi\)
\(542\) 13.1273 7.57908i 0.0242202 0.0139835i
\(543\) −0.918718 0.743932i −0.00169193 0.00137004i
\(544\) 264.313 457.804i 0.485870 0.841551i
\(545\) −189.582 109.455i −0.347857 0.200835i
\(546\) −890.628 141.043i −1.63119 0.258321i
\(547\) 140.609 + 243.541i 0.257054 + 0.445231i 0.965451 0.260583i \(-0.0839148\pi\)
−0.708397 + 0.705814i \(0.750581\pi\)
\(548\) 303.404i 0.553656i
\(549\) 396.218 356.785i 0.721708 0.649882i
\(550\) 6.47275 0.0117686
\(551\) 132.765 76.6519i 0.240953 0.139114i
\(552\) 562.556 215.958i 1.01912 0.391228i
\(553\) −547.153 + 947.696i −0.989426 + 1.71374i
\(554\) 93.3391 + 53.8894i 0.168482 + 0.0972732i
\(555\) 59.5233 + 155.054i 0.107249 + 0.279377i
\(556\) −126.475 219.060i −0.227472 0.393993i
\(557\) 565.965i 1.01609i −0.861329 0.508047i \(-0.830368\pi\)
0.861329 0.508047i \(-0.169632\pi\)
\(558\) −114.398 + 24.3209i −0.205015 + 0.0435859i
\(559\) −868.034 −1.55283
\(560\) 59.7525 34.4981i 0.106701 0.0616038i
\(561\) −7.98606 + 50.4286i −0.0142354 + 0.0898906i
\(562\) 113.251 196.156i 0.201514 0.349032i
\(563\) 654.894 + 378.103i 1.16322 + 0.671586i 0.952074 0.305868i \(-0.0989467\pi\)
0.211147 + 0.977454i \(0.432280\pi\)
\(564\) 1.34203 1.65734i 0.00237949 0.00293855i
\(565\) 13.7976 + 23.8981i 0.0244205 + 0.0422975i
\(566\) 28.8382i 0.0509508i
\(567\) −578.018 419.883i −1.01943 0.740534i
\(568\) −317.076 −0.558232
\(569\) −496.884 + 286.876i −0.873258 + 0.504176i −0.868430 0.495812i \(-0.834870\pi\)
−0.00482865 + 0.999988i \(0.501537\pi\)
\(570\) −40.5479 32.8337i −0.0711366 0.0576029i
\(571\) 357.832 619.784i 0.626677 1.08544i −0.361537 0.932358i \(-0.617748\pi\)
0.988214 0.153078i \(-0.0489187\pi\)
\(572\) −40.6593 23.4747i −0.0710827 0.0410396i
\(573\) 99.1855 + 15.7074i 0.173099 + 0.0274125i
\(574\) 45.7613 + 79.2609i 0.0797235 + 0.138085i
\(575\) 119.010i 0.206973i
\(576\) −101.445 477.167i −0.176120 0.828415i
\(577\) −66.8708 −0.115894 −0.0579469 0.998320i \(-0.518455\pi\)
−0.0579469 + 0.998320i \(0.518455\pi\)
\(578\) 55.3535 31.9584i 0.0957674 0.0552913i
\(579\) −148.017 + 56.8219i −0.255643 + 0.0981381i
\(580\) −63.2620 + 109.573i −0.109072 + 0.188919i
\(581\) 427.643 + 246.900i 0.736046 + 0.424956i
\(582\) 175.398 + 456.899i 0.301371 + 0.785050i
\(583\) −38.0428 65.8920i −0.0652534 0.113022i
\(584\) 29.4677i 0.0504584i
\(585\) −329.675 366.112i −0.563548 0.625832i
\(586\) 187.020 0.319147
\(587\) 167.810 96.8852i 0.285877 0.165051i −0.350204 0.936674i \(-0.613888\pi\)
0.636081 + 0.771622i \(0.280554\pi\)
\(588\) 27.8634 175.945i 0.0473867 0.299227i
\(589\) −26.0791 + 45.1704i −0.0442770 + 0.0766900i
\(590\) −205.347 118.557i −0.348046 0.200944i
\(591\) 700.597 865.201i 1.18544 1.46396i
\(592\) −43.3079 75.0114i −0.0731552 0.126708i
\(593\) 341.602i 0.576057i 0.957622 + 0.288028i \(0.0929997\pi\)
−0.957622 + 0.288028i \(0.907000\pi\)
\(594\) 19.0385 + 29.3128i 0.0320513 + 0.0493481i
\(595\) −360.932 −0.606609
\(596\) −387.995 + 224.009i −0.650998 + 0.375854i
\(597\) −239.707 194.103i −0.401519 0.325130i
\(598\) −405.567 + 702.463i −0.678206 + 1.17469i
\(599\) 782.385 + 451.710i 1.30615 + 0.754107i 0.981452 0.191710i \(-0.0614032\pi\)
0.324700 + 0.945817i \(0.394737\pi\)
\(600\) 125.025 + 19.7994i 0.208375 + 0.0329990i
\(601\) −391.926 678.836i −0.652123 1.12951i −0.982607 0.185699i \(-0.940545\pi\)
0.330484 0.943812i \(-0.392788\pi\)
\(602\) 435.345i 0.723165i
\(603\) 701.624 + 227.940i 1.16356 + 0.378010i
\(604\) −334.892 −0.554457
\(605\) 232.641 134.315i 0.384530 0.222009i
\(606\) 422.208 162.080i 0.696713 0.267459i
\(607\) −32.1813 + 55.7397i −0.0530170 + 0.0918281i −0.891316 0.453383i \(-0.850217\pi\)
0.838299 + 0.545211i \(0.183550\pi\)
\(608\) −139.769 80.6957i −0.229883 0.132723i
\(609\) −260.195 677.791i −0.427250 1.11296i
\(610\) −92.2022 159.699i −0.151151 0.261801i
\(611\) 8.43869i 0.0138113i
\(612\) −104.948 + 323.040i −0.171483 + 0.527844i
\(613\) 671.468 1.09538 0.547690 0.836681i \(-0.315507\pi\)
0.547690 + 0.836681i \(0.315507\pi\)
\(614\) −116.054 + 67.0040i −0.189014 + 0.109127i
\(615\) −7.82143 + 49.3890i −0.0127178 + 0.0803074i
\(616\) −34.6093 + 59.9451i −0.0561840 + 0.0973135i
\(617\) 174.533 + 100.767i 0.282874 + 0.163317i 0.634724 0.772739i \(-0.281114\pi\)
−0.351850 + 0.936056i \(0.614447\pi\)
\(618\) 185.668 229.291i 0.300434 0.371021i
\(619\) 120.671 + 209.008i 0.194945 + 0.337655i 0.946882 0.321580i \(-0.104214\pi\)
−0.751938 + 0.659234i \(0.770881\pi\)
\(620\) 43.0470i 0.0694307i
\(621\) −538.952 + 350.046i −0.867878 + 0.563681i
\(622\) −527.079 −0.847394
\(623\) 51.8310 29.9246i 0.0831958 0.0480331i
\(624\) 199.677 + 161.688i 0.319995 + 0.259116i
\(625\) −12.5000 + 21.6506i −0.0200000 + 0.0346410i
\(626\) 274.220 + 158.321i 0.438051 + 0.252909i
\(627\) 15.3960 + 2.43817i 0.0245551 + 0.00388863i
\(628\) −118.492 205.234i −0.188682 0.326806i
\(629\) 453.103i 0.720354i
\(630\) −183.616 + 165.342i −0.291454 + 0.262448i
\(631\) −443.396 −0.702687 −0.351344 0.936247i \(-0.614275\pi\)
−0.351344 + 0.936247i \(0.614275\pi\)
\(632\) 906.735 523.504i 1.43471 0.828328i
\(633\) −85.7382 + 32.9138i −0.135447 + 0.0519965i
\(634\) 157.770 273.266i 0.248849 0.431018i
\(635\) 168.268 + 97.1495i 0.264989 + 0.152991i
\(636\) −181.403 472.541i −0.285224 0.742989i
\(637\) 352.452 + 610.464i 0.553299 + 0.958342i
\(638\) 35.5199i 0.0556739i
\(639\) 330.767 70.3207i 0.517632 0.110048i
\(640\) 89.6410 0.140064
\(641\) 250.091 144.390i 0.390157 0.225258i −0.292071 0.956397i \(-0.594344\pi\)
0.682228 + 0.731139i \(0.261011\pi\)
\(642\) −65.9055 + 416.165i −0.102657 + 0.648233i
\(643\) 592.700 1026.59i 0.921772 1.59656i 0.125100 0.992144i \(-0.460075\pi\)
0.796672 0.604412i \(-0.206592\pi\)
\(644\) −374.930 216.466i −0.582189 0.336127i
\(645\) −149.684 + 184.852i −0.232068 + 0.286592i
\(646\) −71.1689 123.268i −0.110168 0.190817i
\(647\) 52.8484i 0.0816823i 0.999166 + 0.0408411i \(0.0130038\pi\)
−0.999166 + 0.0408411i \(0.986996\pi\)
\(648\) 278.075 + 624.430i 0.429127 + 0.963626i
\(649\) 70.8413 0.109155
\(650\) −147.564 + 85.1964i −0.227022 + 0.131071i
\(651\) 191.967 + 155.446i 0.294881 + 0.238780i
\(652\) 143.076 247.815i 0.219442 0.380085i
\(653\) −491.257 283.627i −0.752308 0.434345i 0.0742194 0.997242i \(-0.476353\pi\)
−0.826527 + 0.562897i \(0.809687\pi\)
\(654\) −403.810 63.9488i −0.617446 0.0977810i
\(655\) −22.5978 39.1405i −0.0345004 0.0597565i
\(656\) 26.0778i 0.0397527i
\(657\) 6.53532 + 30.7401i 0.00994721 + 0.0467886i
\(658\) 4.23226 0.00643200
\(659\) −1063.51 + 614.020i −1.61383 + 0.931746i −0.625360 + 0.780337i \(0.715048\pi\)
−0.988471 + 0.151409i \(0.951619\pi\)
\(660\) −12.0103 + 4.61062i −0.0181975 + 0.00698579i
\(661\) −588.296 + 1018.96i −0.890009 + 1.54154i −0.0501453 + 0.998742i \(0.515968\pi\)
−0.839863 + 0.542798i \(0.817365\pi\)
\(662\) −343.742 198.460i −0.519248 0.299788i
\(663\) −481.692 1254.78i −0.726534 1.89257i
\(664\) −236.228 409.159i −0.355765 0.616203i
\(665\) 110.194i 0.165705i
\(666\) 207.565 + 230.506i 0.311659 + 0.346105i
\(667\) −653.078 −0.979128
\(668\) −532.751 + 307.584i −0.797532 + 0.460455i
\(669\) −150.612 + 951.051i −0.225130 + 1.42160i
\(670\) 127.573 220.962i 0.190407 0.329794i
\(671\) 47.7124 + 27.5467i 0.0711063 + 0.0410533i
\(672\) −480.990 + 593.997i −0.715758 + 0.883925i
\(673\) 230.657 + 399.509i 0.342729 + 0.593624i 0.984939 0.172905i \(-0.0553153\pi\)
−0.642209 + 0.766529i \(0.721982\pi\)
\(674\) 180.278i 0.267474i
\(675\) −134.815 + 7.07354i −0.199725 + 0.0104793i
\(676\) 887.409 1.31273
\(677\) 493.586 284.972i 0.729078 0.420933i −0.0890070 0.996031i \(-0.528369\pi\)
0.818085 + 0.575098i \(0.195036\pi\)
\(678\) 40.0527 + 32.4327i 0.0590747 + 0.0478358i
\(679\) 516.822 895.162i 0.761151 1.31835i
\(680\) 299.066 + 172.666i 0.439803 + 0.253921i
\(681\) 686.054 + 108.646i 1.00742 + 0.159539i
\(682\) −6.04244 10.4658i −0.00885989 0.0153458i
\(683\) 836.526i 1.22478i 0.790555 + 0.612391i \(0.209792\pi\)
−0.790555 + 0.612391i \(0.790208\pi\)
\(684\) 98.6254 + 32.0409i 0.144189 + 0.0468434i
\(685\) 328.981 0.480265
\(686\) −214.851 + 124.044i −0.313194 + 0.180823i
\(687\) 662.351 254.268i 0.964121 0.370114i
\(688\) 62.0221 107.425i 0.0901484 0.156142i
\(689\) 1734.58 + 1001.46i 2.51753 + 1.45350i
\(690\) 79.6568 + 207.501i 0.115445 + 0.300725i
\(691\) 358.397 + 620.762i 0.518664 + 0.898353i 0.999765 + 0.0216875i \(0.00690389\pi\)
−0.481100 + 0.876665i \(0.659763\pi\)
\(692\) 560.192i 0.809526i
\(693\) 22.8092 70.2092i 0.0329137 0.101312i
\(694\) 135.233 0.194860
\(695\) 237.528 137.137i 0.341766 0.197319i
\(696\) −108.651 + 686.088i −0.156108 + 0.985759i
\(697\) −68.2089 + 118.141i −0.0978606 + 0.169500i
\(698\) −278.247 160.646i −0.398635 0.230152i
\(699\) −281.080 + 347.119i −0.402117 + 0.496594i
\(700\) −45.4723 78.7604i −0.0649605 0.112515i
\(701\) 1133.20i 1.61654i −0.588809 0.808272i \(-0.700403\pi\)
0.588809 0.808272i \(-0.299597\pi\)
\(702\) −819.859 417.676i −1.16789 0.594980i
\(703\) 138.334 0.196777
\(704\) 43.6540 25.2037i 0.0620085 0.0358007i
\(705\) 1.79706 + 1.45517i 0.00254902 + 0.00206407i
\(706\) −292.239 + 506.173i −0.413936 + 0.716959i
\(707\) −827.195 477.581i −1.17001 0.675504i
\(708\) 465.476 + 73.7145i 0.657452 + 0.104117i
\(709\) 376.605 + 652.299i 0.531178 + 0.920027i 0.999338 + 0.0363836i \(0.0115838\pi\)
−0.468160 + 0.883644i \(0.655083\pi\)
\(710\) 116.954i 0.164724i
\(711\) −829.785 + 747.203i −1.16707 + 1.05092i
\(712\) −57.2624 −0.0804248
\(713\) 192.427 111.098i 0.269884 0.155818i
\(714\) −629.307 + 241.583i −0.881383 + 0.338352i
\(715\) 25.4536 44.0870i 0.0355995 0.0616602i
\(716\) −121.234 69.9946i −0.169321 0.0977578i
\(717\) −284.278 740.525i −0.396483 1.03281i
\(718\) 119.575 + 207.110i 0.166539 + 0.288454i
\(719\) 1275.56i 1.77407i −0.461700 0.887036i \(-0.652760\pi\)
0.461700 0.887036i \(-0.347240\pi\)
\(720\) 68.8646 14.6405i 0.0956453 0.0203341i
\(721\) −623.126 −0.864253
\(722\) 397.567 229.536i 0.550647 0.317916i
\(723\) −97.8224 + 617.707i −0.135301 + 0.854367i
\(724\) 0.406308 0.703747i 0.000561199 0.000972026i
\(725\) −118.810 68.5951i −0.163876 0.0946140i
\(726\) 315.722 389.900i 0.434879 0.537053i
\(727\) 358.445 + 620.845i 0.493047 + 0.853983i 0.999968 0.00801006i \(-0.00254971\pi\)
−0.506921 + 0.861993i \(0.669216\pi\)
\(728\) 1822.16i 2.50296i
\(729\) −428.567 589.721i −0.587883 0.808946i
\(730\) 10.8693 0.0148894
\(731\) −561.962 + 324.449i −0.768758 + 0.443842i
\(732\) 284.839 + 230.648i 0.389124 + 0.315093i
\(733\) −250.532 + 433.935i −0.341790 + 0.591998i −0.984765 0.173889i \(-0.944367\pi\)
0.642975 + 0.765887i \(0.277700\pi\)
\(734\) −53.9452 31.1453i −0.0734949 0.0424323i
\(735\) 190.778 + 30.2123i 0.259562 + 0.0411052i
\(736\) 343.766 + 595.420i 0.467073 + 0.808995i
\(737\) 76.2284i 0.103431i
\(738\) 19.4205 + 91.3479i 0.0263150 + 0.123778i
\(739\) −332.861 −0.450420 −0.225210 0.974310i \(-0.572307\pi\)
−0.225210 + 0.974310i \(0.572307\pi\)
\(740\) −98.8733 + 57.0845i −0.133613 + 0.0771413i
\(741\) −383.087 + 147.062i −0.516987 + 0.198465i
\(742\) 502.263 869.944i 0.676904 1.17243i
\(743\) −1098.68 634.324i −1.47871 0.853733i −0.479000 0.877815i \(-0.659001\pi\)
−0.999710 + 0.0240816i \(0.992334\pi\)
\(744\) −84.6995 220.636i −0.113843 0.296554i
\(745\) −242.893 420.704i −0.326031 0.564703i
\(746\) 430.359i 0.576888i
\(747\) 337.171 + 374.436i 0.451367 + 0.501253i
\(748\) −35.0969 −0.0469210
\(749\) 770.680 444.953i 1.02895 0.594062i
\(750\) −7.30307 + 46.1158i −0.00973743 + 0.0614878i
\(751\) 32.8278 56.8594i 0.0437121 0.0757116i −0.843342 0.537378i \(-0.819415\pi\)
0.887054 + 0.461666i \(0.152748\pi\)
\(752\) −1.04435 0.602954i −0.00138876 0.000801801i
\(753\) 447.165 552.225i 0.593844 0.733367i
\(754\) −467.524 809.776i −0.620059 1.07397i
\(755\) 363.124i 0.480960i
\(756\) 222.929 437.588i 0.294879 0.578820i
\(757\) 1027.67 1.35756 0.678781 0.734340i \(-0.262508\pi\)
0.678781 + 0.734340i \(0.262508\pi\)
\(758\) −79.2575 + 45.7593i −0.104561 + 0.0603685i
\(759\) −51.6071 41.7889i −0.0679936 0.0550578i
\(760\) 52.7155 91.3060i 0.0693626 0.120139i
\(761\) −442.319 255.373i −0.581234 0.335576i 0.180389 0.983595i \(-0.442264\pi\)
−0.761624 + 0.648020i \(0.775598\pi\)
\(762\) 358.410 + 56.7592i 0.470355 + 0.0744871i
\(763\) 431.742 + 747.799i 0.565848 + 0.980078i
\(764\) 69.0303i 0.0903538i
\(765\) −350.274 113.795i −0.457874 0.148752i
\(766\) 144.763 0.188985
\(767\) −1615.03 + 932.435i −2.10564 + 1.21569i
\(768\) 763.529 293.109i 0.994179 0.381653i
\(769\) 739.257 1280.43i 0.961323 1.66506i 0.242137 0.970242i \(-0.422152\pi\)
0.719186 0.694818i \(-0.244515\pi\)
\(770\) −22.1110 12.7658i −0.0287155 0.0165789i
\(771\) 317.506 + 827.081i 0.411810 + 1.07274i
\(772\) −54.4938 94.3861i −0.0705878 0.122262i
\(773\)