Properties

Label 45.3.g.a.28.1
Level $45$
Weight $3$
Character 45.28
Analytic conductor $1.226$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,3,Mod(28,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.28");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 45.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.22616118962\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 28.1
Root \(-1.58114 + 1.58114i\) of defining polynomial
Character \(\chi\) \(=\) 45.28
Dual form 45.3.g.a.37.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.58114 + 1.58114i) q^{2} -1.00000i q^{4} +(-1.58114 + 4.74342i) q^{5} +(-5.00000 + 5.00000i) q^{7} +(-4.74342 - 4.74342i) q^{8} +(-5.00000 - 10.0000i) q^{10} +15.8114 q^{11} +(10.0000 + 10.0000i) q^{13} -15.8114i q^{14} +19.0000 q^{16} +(3.16228 - 3.16228i) q^{17} -18.0000i q^{19} +(4.74342 + 1.58114i) q^{20} +(-25.0000 + 25.0000i) q^{22} +(3.16228 + 3.16228i) q^{23} +(-20.0000 - 15.0000i) q^{25} -31.6228 q^{26} +(5.00000 + 5.00000i) q^{28} +47.4342i q^{29} +8.00000 q^{31} +(-11.0680 + 11.0680i) q^{32} +10.0000i q^{34} +(-15.8114 - 31.6228i) q^{35} +(10.0000 - 10.0000i) q^{37} +(28.4605 + 28.4605i) q^{38} +(30.0000 - 15.0000i) q^{40} -31.6228 q^{41} +(10.0000 + 10.0000i) q^{43} -15.8114i q^{44} -10.0000 q^{46} +(41.1096 - 41.1096i) q^{47} -1.00000i q^{49} +(55.3399 - 7.90569i) q^{50} +(10.0000 - 10.0000i) q^{52} +(-25.2982 - 25.2982i) q^{53} +(-25.0000 + 75.0000i) q^{55} +47.4342 q^{56} +(-75.0000 - 75.0000i) q^{58} -47.4342i q^{59} -58.0000 q^{61} +(-12.6491 + 12.6491i) q^{62} +41.0000i q^{64} +(-63.2456 + 31.6228i) q^{65} +(70.0000 - 70.0000i) q^{67} +(-3.16228 - 3.16228i) q^{68} +(75.0000 + 25.0000i) q^{70} +63.2456 q^{71} +(55.0000 + 55.0000i) q^{73} +31.6228i q^{74} -18.0000 q^{76} +(-79.0569 + 79.0569i) q^{77} -12.0000i q^{79} +(-30.0416 + 90.1249i) q^{80} +(50.0000 - 50.0000i) q^{82} +(-53.7587 - 53.7587i) q^{83} +(10.0000 + 20.0000i) q^{85} -31.6228 q^{86} +(-75.0000 - 75.0000i) q^{88} -100.000 q^{91} +(3.16228 - 3.16228i) q^{92} +130.000i q^{94} +(85.3815 + 28.4605i) q^{95} +(-5.00000 + 5.00000i) q^{97} +(1.58114 + 1.58114i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 20 q^{7} - 20 q^{10} + 40 q^{13} + 76 q^{16} - 100 q^{22} - 80 q^{25} + 20 q^{28} + 32 q^{31} + 40 q^{37} + 120 q^{40} + 40 q^{43} - 40 q^{46} + 40 q^{52} - 100 q^{55} - 300 q^{58} - 232 q^{61} + 280 q^{67}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.58114 + 1.58114i −0.790569 + 0.790569i −0.981587 0.191017i \(-0.938821\pi\)
0.191017 + 0.981587i \(0.438821\pi\)
\(3\) 0 0
\(4\) 1.00000i 0.250000i
\(5\) −1.58114 + 4.74342i −0.316228 + 0.948683i
\(6\) 0 0
\(7\) −5.00000 + 5.00000i −0.714286 + 0.714286i −0.967429 0.253143i \(-0.918536\pi\)
0.253143 + 0.967429i \(0.418536\pi\)
\(8\) −4.74342 4.74342i −0.592927 0.592927i
\(9\) 0 0
\(10\) −5.00000 10.0000i −0.500000 1.00000i
\(11\) 15.8114 1.43740 0.718699 0.695321i \(-0.244738\pi\)
0.718699 + 0.695321i \(0.244738\pi\)
\(12\) 0 0
\(13\) 10.0000 + 10.0000i 0.769231 + 0.769231i 0.977971 0.208740i \(-0.0669363\pi\)
−0.208740 + 0.977971i \(0.566936\pi\)
\(14\) 15.8114i 1.12938i
\(15\) 0 0
\(16\) 19.0000 1.18750
\(17\) 3.16228 3.16228i 0.186016 0.186016i −0.607955 0.793971i \(-0.708010\pi\)
0.793971 + 0.607955i \(0.208010\pi\)
\(18\) 0 0
\(19\) 18.0000i 0.947368i −0.880695 0.473684i \(-0.842924\pi\)
0.880695 0.473684i \(-0.157076\pi\)
\(20\) 4.74342 + 1.58114i 0.237171 + 0.0790569i
\(21\) 0 0
\(22\) −25.0000 + 25.0000i −1.13636 + 1.13636i
\(23\) 3.16228 + 3.16228i 0.137490 + 0.137490i 0.772502 0.635012i \(-0.219005\pi\)
−0.635012 + 0.772502i \(0.719005\pi\)
\(24\) 0 0
\(25\) −20.0000 15.0000i −0.800000 0.600000i
\(26\) −31.6228 −1.21626
\(27\) 0 0
\(28\) 5.00000 + 5.00000i 0.178571 + 0.178571i
\(29\) 47.4342i 1.63566i 0.575459 + 0.817830i \(0.304823\pi\)
−0.575459 + 0.817830i \(0.695177\pi\)
\(30\) 0 0
\(31\) 8.00000 0.258065 0.129032 0.991640i \(-0.458813\pi\)
0.129032 + 0.991640i \(0.458813\pi\)
\(32\) −11.0680 + 11.0680i −0.345874 + 0.345874i
\(33\) 0 0
\(34\) 10.0000i 0.294118i
\(35\) −15.8114 31.6228i −0.451754 0.903508i
\(36\) 0 0
\(37\) 10.0000 10.0000i 0.270270 0.270270i −0.558939 0.829209i \(-0.688791\pi\)
0.829209 + 0.558939i \(0.188791\pi\)
\(38\) 28.4605 + 28.4605i 0.748960 + 0.748960i
\(39\) 0 0
\(40\) 30.0000 15.0000i 0.750000 0.375000i
\(41\) −31.6228 −0.771287 −0.385644 0.922648i \(-0.626021\pi\)
−0.385644 + 0.922648i \(0.626021\pi\)
\(42\) 0 0
\(43\) 10.0000 + 10.0000i 0.232558 + 0.232558i 0.813760 0.581202i \(-0.197417\pi\)
−0.581202 + 0.813760i \(0.697417\pi\)
\(44\) 15.8114i 0.359350i
\(45\) 0 0
\(46\) −10.0000 −0.217391
\(47\) 41.1096 41.1096i 0.874673 0.874673i −0.118305 0.992977i \(-0.537746\pi\)
0.992977 + 0.118305i \(0.0377460\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.0204082i
\(50\) 55.3399 7.90569i 1.10680 0.158114i
\(51\) 0 0
\(52\) 10.0000 10.0000i 0.192308 0.192308i
\(53\) −25.2982 25.2982i −0.477325 0.477325i 0.426950 0.904275i \(-0.359588\pi\)
−0.904275 + 0.426950i \(0.859588\pi\)
\(54\) 0 0
\(55\) −25.0000 + 75.0000i −0.454545 + 1.36364i
\(56\) 47.4342 0.847039
\(57\) 0 0
\(58\) −75.0000 75.0000i −1.29310 1.29310i
\(59\) 47.4342i 0.803969i −0.915646 0.401984i \(-0.868321\pi\)
0.915646 0.401984i \(-0.131679\pi\)
\(60\) 0 0
\(61\) −58.0000 −0.950820 −0.475410 0.879764i \(-0.657700\pi\)
−0.475410 + 0.879764i \(0.657700\pi\)
\(62\) −12.6491 + 12.6491i −0.204018 + 0.204018i
\(63\) 0 0
\(64\) 41.0000i 0.640625i
\(65\) −63.2456 + 31.6228i −0.973009 + 0.486504i
\(66\) 0 0
\(67\) 70.0000 70.0000i 1.04478 1.04478i 0.0458267 0.998949i \(-0.485408\pi\)
0.998949 0.0458267i \(-0.0145922\pi\)
\(68\) −3.16228 3.16228i −0.0465041 0.0465041i
\(69\) 0 0
\(70\) 75.0000 + 25.0000i 1.07143 + 0.357143i
\(71\) 63.2456 0.890782 0.445391 0.895336i \(-0.353065\pi\)
0.445391 + 0.895336i \(0.353065\pi\)
\(72\) 0 0
\(73\) 55.0000 + 55.0000i 0.753425 + 0.753425i 0.975117 0.221692i \(-0.0711580\pi\)
−0.221692 + 0.975117i \(0.571158\pi\)
\(74\) 31.6228i 0.427335i
\(75\) 0 0
\(76\) −18.0000 −0.236842
\(77\) −79.0569 + 79.0569i −1.02671 + 1.02671i
\(78\) 0 0
\(79\) 12.0000i 0.151899i −0.997112 0.0759494i \(-0.975801\pi\)
0.997112 0.0759494i \(-0.0241987\pi\)
\(80\) −30.0416 + 90.1249i −0.375520 + 1.12656i
\(81\) 0 0
\(82\) 50.0000 50.0000i 0.609756 0.609756i
\(83\) −53.7587 53.7587i −0.647695 0.647695i 0.304740 0.952436i \(-0.401430\pi\)
−0.952436 + 0.304740i \(0.901430\pi\)
\(84\) 0 0
\(85\) 10.0000 + 20.0000i 0.117647 + 0.235294i
\(86\) −31.6228 −0.367707
\(87\) 0 0
\(88\) −75.0000 75.0000i −0.852273 0.852273i
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) −100.000 −1.09890
\(92\) 3.16228 3.16228i 0.0343726 0.0343726i
\(93\) 0 0
\(94\) 130.000i 1.38298i
\(95\) 85.3815 + 28.4605i 0.898753 + 0.299584i
\(96\) 0 0
\(97\) −5.00000 + 5.00000i −0.0515464 + 0.0515464i −0.732410 0.680864i \(-0.761605\pi\)
0.680864 + 0.732410i \(0.261605\pi\)
\(98\) 1.58114 + 1.58114i 0.0161341 + 0.0161341i
\(99\) 0 0
\(100\) −15.0000 + 20.0000i −0.150000 + 0.200000i
\(101\) 15.8114 0.156548 0.0782742 0.996932i \(-0.475059\pi\)
0.0782742 + 0.996932i \(0.475059\pi\)
\(102\) 0 0
\(103\) −35.0000 35.0000i −0.339806 0.339806i 0.516488 0.856294i \(-0.327239\pi\)
−0.856294 + 0.516488i \(0.827239\pi\)
\(104\) 94.8683i 0.912195i
\(105\) 0 0
\(106\) 80.0000 0.754717
\(107\) 60.0833 60.0833i 0.561526 0.561526i −0.368215 0.929741i \(-0.620031\pi\)
0.929741 + 0.368215i \(0.120031\pi\)
\(108\) 0 0
\(109\) 162.000i 1.48624i −0.669159 0.743119i \(-0.733345\pi\)
0.669159 0.743119i \(-0.266655\pi\)
\(110\) −79.0569 158.114i −0.718699 1.43740i
\(111\) 0 0
\(112\) −95.0000 + 95.0000i −0.848214 + 0.848214i
\(113\) 117.004 + 117.004i 1.03544 + 1.03544i 0.999349 + 0.0360874i \(0.0114895\pi\)
0.0360874 + 0.999349i \(0.488511\pi\)
\(114\) 0 0
\(115\) −20.0000 + 10.0000i −0.173913 + 0.0869565i
\(116\) 47.4342 0.408915
\(117\) 0 0
\(118\) 75.0000 + 75.0000i 0.635593 + 0.635593i
\(119\) 31.6228i 0.265738i
\(120\) 0 0
\(121\) 129.000 1.06612
\(122\) 91.7061 91.7061i 0.751689 0.751689i
\(123\) 0 0
\(124\) 8.00000i 0.0645161i
\(125\) 102.774 71.1512i 0.822192 0.569210i
\(126\) 0 0
\(127\) 55.0000 55.0000i 0.433071 0.433071i −0.456601 0.889672i \(-0.650933\pi\)
0.889672 + 0.456601i \(0.150933\pi\)
\(128\) −109.099 109.099i −0.852333 0.852333i
\(129\) 0 0
\(130\) 50.0000 150.000i 0.384615 1.15385i
\(131\) −173.925 −1.32767 −0.663837 0.747877i \(-0.731073\pi\)
−0.663837 + 0.747877i \(0.731073\pi\)
\(132\) 0 0
\(133\) 90.0000 + 90.0000i 0.676692 + 0.676692i
\(134\) 221.359i 1.65194i
\(135\) 0 0
\(136\) −30.0000 −0.220588
\(137\) −15.8114 + 15.8114i −0.115412 + 0.115412i −0.762454 0.647042i \(-0.776006\pi\)
0.647042 + 0.762454i \(0.276006\pi\)
\(138\) 0 0
\(139\) 102.000i 0.733813i 0.930258 + 0.366906i \(0.119583\pi\)
−0.930258 + 0.366906i \(0.880417\pi\)
\(140\) −31.6228 + 15.8114i −0.225877 + 0.112938i
\(141\) 0 0
\(142\) −100.000 + 100.000i −0.704225 + 0.704225i
\(143\) 158.114 + 158.114i 1.10569 + 1.10569i
\(144\) 0 0
\(145\) −225.000 75.0000i −1.55172 0.517241i
\(146\) −173.925 −1.19127
\(147\) 0 0
\(148\) −10.0000 10.0000i −0.0675676 0.0675676i
\(149\) 47.4342i 0.318350i −0.987250 0.159175i \(-0.949117\pi\)
0.987250 0.159175i \(-0.0508834\pi\)
\(150\) 0 0
\(151\) −22.0000 −0.145695 −0.0728477 0.997343i \(-0.523209\pi\)
−0.0728477 + 0.997343i \(0.523209\pi\)
\(152\) −85.3815 + 85.3815i −0.561720 + 0.561720i
\(153\) 0 0
\(154\) 250.000i 1.62338i
\(155\) −12.6491 + 37.9473i −0.0816072 + 0.244821i
\(156\) 0 0
\(157\) −200.000 + 200.000i −1.27389 + 1.27389i −0.329853 + 0.944032i \(0.606999\pi\)
−0.944032 + 0.329853i \(0.893001\pi\)
\(158\) 18.9737 + 18.9737i 0.120086 + 0.120086i
\(159\) 0 0
\(160\) −35.0000 70.0000i −0.218750 0.437500i
\(161\) −31.6228 −0.196415
\(162\) 0 0
\(163\) 100.000 + 100.000i 0.613497 + 0.613497i 0.943856 0.330359i \(-0.107170\pi\)
−0.330359 + 0.943856i \(0.607170\pi\)
\(164\) 31.6228i 0.192822i
\(165\) 0 0
\(166\) 170.000 1.02410
\(167\) −148.627 + 148.627i −0.889982 + 0.889982i −0.994521 0.104539i \(-0.966663\pi\)
0.104539 + 0.994521i \(0.466663\pi\)
\(168\) 0 0
\(169\) 31.0000i 0.183432i
\(170\) −47.4342 15.8114i −0.279024 0.0930082i
\(171\) 0 0
\(172\) 10.0000 10.0000i 0.0581395 0.0581395i
\(173\) −110.680 110.680i −0.639767 0.639767i 0.310731 0.950498i \(-0.399426\pi\)
−0.950498 + 0.310731i \(0.899426\pi\)
\(174\) 0 0
\(175\) 175.000 25.0000i 1.00000 0.142857i
\(176\) 300.416 1.70691
\(177\) 0 0
\(178\) 0 0
\(179\) 142.302i 0.794986i −0.917605 0.397493i \(-0.869880\pi\)
0.917605 0.397493i \(-0.130120\pi\)
\(180\) 0 0
\(181\) 218.000 1.20442 0.602210 0.798338i \(-0.294287\pi\)
0.602210 + 0.798338i \(0.294287\pi\)
\(182\) 158.114 158.114i 0.868758 0.868758i
\(183\) 0 0
\(184\) 30.0000i 0.163043i
\(185\) 31.6228 + 63.2456i 0.170934 + 0.341868i
\(186\) 0 0
\(187\) 50.0000 50.0000i 0.267380 0.267380i
\(188\) −41.1096 41.1096i −0.218668 0.218668i
\(189\) 0 0
\(190\) −180.000 + 90.0000i −0.947368 + 0.473684i
\(191\) 158.114 0.827821 0.413911 0.910317i \(-0.364163\pi\)
0.413911 + 0.910317i \(0.364163\pi\)
\(192\) 0 0
\(193\) −125.000 125.000i −0.647668 0.647668i 0.304761 0.952429i \(-0.401424\pi\)
−0.952429 + 0.304761i \(0.901424\pi\)
\(194\) 15.8114i 0.0815020i
\(195\) 0 0
\(196\) −1.00000 −0.00510204
\(197\) 145.465 145.465i 0.738400 0.738400i −0.233868 0.972268i \(-0.575138\pi\)
0.972268 + 0.233868i \(0.0751385\pi\)
\(198\) 0 0
\(199\) 18.0000i 0.0904523i 0.998977 + 0.0452261i \(0.0144008\pi\)
−0.998977 + 0.0452261i \(0.985599\pi\)
\(200\) 23.7171 + 166.020i 0.118585 + 0.830098i
\(201\) 0 0
\(202\) −25.0000 + 25.0000i −0.123762 + 0.123762i
\(203\) −237.171 237.171i −1.16833 1.16833i
\(204\) 0 0
\(205\) 50.0000 150.000i 0.243902 0.731707i
\(206\) 110.680 0.537280
\(207\) 0 0
\(208\) 190.000 + 190.000i 0.913462 + 0.913462i
\(209\) 284.605i 1.36175i
\(210\) 0 0
\(211\) −298.000 −1.41232 −0.706161 0.708051i \(-0.749575\pi\)
−0.706161 + 0.708051i \(0.749575\pi\)
\(212\) −25.2982 + 25.2982i −0.119331 + 0.119331i
\(213\) 0 0
\(214\) 190.000i 0.887850i
\(215\) −63.2456 + 31.6228i −0.294165 + 0.147083i
\(216\) 0 0
\(217\) −40.0000 + 40.0000i −0.184332 + 0.184332i
\(218\) 256.144 + 256.144i 1.17497 + 1.17497i
\(219\) 0 0
\(220\) 75.0000 + 25.0000i 0.340909 + 0.113636i
\(221\) 63.2456 0.286179
\(222\) 0 0
\(223\) −215.000 215.000i −0.964126 0.964126i 0.0352529 0.999378i \(-0.488776\pi\)
−0.999378 + 0.0352529i \(0.988776\pi\)
\(224\) 110.680i 0.494106i
\(225\) 0 0
\(226\) −370.000 −1.63717
\(227\) −271.956 + 271.956i −1.19804 + 1.19804i −0.223292 + 0.974752i \(0.571680\pi\)
−0.974752 + 0.223292i \(0.928320\pi\)
\(228\) 0 0
\(229\) 78.0000i 0.340611i −0.985391 0.170306i \(-0.945524\pi\)
0.985391 0.170306i \(-0.0544755\pi\)
\(230\) 15.8114 47.4342i 0.0687452 0.206235i
\(231\) 0 0
\(232\) 225.000 225.000i 0.969828 0.969828i
\(233\) −110.680 110.680i −0.475020 0.475020i 0.428515 0.903535i \(-0.359037\pi\)
−0.903535 + 0.428515i \(0.859037\pi\)
\(234\) 0 0
\(235\) 130.000 + 260.000i 0.553191 + 1.10638i
\(236\) −47.4342 −0.200992
\(237\) 0 0
\(238\) −50.0000 50.0000i −0.210084 0.210084i
\(239\) 379.473i 1.58775i 0.608078 + 0.793877i \(0.291941\pi\)
−0.608078 + 0.793877i \(0.708059\pi\)
\(240\) 0 0
\(241\) 212.000 0.879668 0.439834 0.898079i \(-0.355037\pi\)
0.439834 + 0.898079i \(0.355037\pi\)
\(242\) −203.967 + 203.967i −0.842838 + 0.842838i
\(243\) 0 0
\(244\) 58.0000i 0.237705i
\(245\) 4.74342 + 1.58114i 0.0193609 + 0.00645363i
\(246\) 0 0
\(247\) 180.000 180.000i 0.728745 0.728745i
\(248\) −37.9473 37.9473i −0.153013 0.153013i
\(249\) 0 0
\(250\) −50.0000 + 275.000i −0.200000 + 1.10000i
\(251\) −363.662 −1.44885 −0.724426 0.689352i \(-0.757895\pi\)
−0.724426 + 0.689352i \(0.757895\pi\)
\(252\) 0 0
\(253\) 50.0000 + 50.0000i 0.197628 + 0.197628i
\(254\) 173.925i 0.684745i
\(255\) 0 0
\(256\) 181.000 0.707031
\(257\) 306.741 306.741i 1.19354 1.19354i 0.217480 0.976065i \(-0.430216\pi\)
0.976065 0.217480i \(-0.0697836\pi\)
\(258\) 0 0
\(259\) 100.000i 0.386100i
\(260\) 31.6228 + 63.2456i 0.121626 + 0.243252i
\(261\) 0 0
\(262\) 275.000 275.000i 1.04962 1.04962i
\(263\) 287.767 + 287.767i 1.09417 + 1.09417i 0.995078 + 0.0990940i \(0.0315945\pi\)
0.0990940 + 0.995078i \(0.468406\pi\)
\(264\) 0 0
\(265\) 160.000 80.0000i 0.603774 0.301887i
\(266\) −284.605 −1.06994
\(267\) 0 0
\(268\) −70.0000 70.0000i −0.261194 0.261194i
\(269\) 142.302i 0.529006i 0.964385 + 0.264503i \(0.0852078\pi\)
−0.964385 + 0.264503i \(0.914792\pi\)
\(270\) 0 0
\(271\) −178.000 −0.656827 −0.328413 0.944534i \(-0.606514\pi\)
−0.328413 + 0.944534i \(0.606514\pi\)
\(272\) 60.0833 60.0833i 0.220894 0.220894i
\(273\) 0 0
\(274\) 50.0000i 0.182482i
\(275\) −316.228 237.171i −1.14992 0.862439i
\(276\) 0 0
\(277\) −230.000 + 230.000i −0.830325 + 0.830325i −0.987561 0.157236i \(-0.949742\pi\)
0.157236 + 0.987561i \(0.449742\pi\)
\(278\) −161.276 161.276i −0.580130 0.580130i
\(279\) 0 0
\(280\) −75.0000 + 225.000i −0.267857 + 0.803571i
\(281\) 158.114 0.562683 0.281341 0.959608i \(-0.409221\pi\)
0.281341 + 0.959608i \(0.409221\pi\)
\(282\) 0 0
\(283\) −350.000 350.000i −1.23675 1.23675i −0.961322 0.275427i \(-0.911181\pi\)
−0.275427 0.961322i \(-0.588819\pi\)
\(284\) 63.2456i 0.222696i
\(285\) 0 0
\(286\) −500.000 −1.74825
\(287\) 158.114 158.114i 0.550919 0.550919i
\(288\) 0 0
\(289\) 269.000i 0.930796i
\(290\) 474.342 237.171i 1.63566 0.817830i
\(291\) 0 0
\(292\) 55.0000 55.0000i 0.188356 0.188356i
\(293\) 202.386 + 202.386i 0.690736 + 0.690736i 0.962394 0.271658i \(-0.0875718\pi\)
−0.271658 + 0.962394i \(0.587572\pi\)
\(294\) 0 0
\(295\) 225.000 + 75.0000i 0.762712 + 0.254237i
\(296\) −94.8683 −0.320501
\(297\) 0 0
\(298\) 75.0000 + 75.0000i 0.251678 + 0.251678i
\(299\) 63.2456i 0.211524i
\(300\) 0 0
\(301\) −100.000 −0.332226
\(302\) 34.7851 34.7851i 0.115182 0.115182i
\(303\) 0 0
\(304\) 342.000i 1.12500i
\(305\) 91.7061 275.118i 0.300676 0.902027i
\(306\) 0 0
\(307\) 190.000 190.000i 0.618893 0.618893i −0.326355 0.945247i \(-0.605820\pi\)
0.945247 + 0.326355i \(0.105820\pi\)
\(308\) 79.0569 + 79.0569i 0.256678 + 0.256678i
\(309\) 0 0
\(310\) −40.0000 80.0000i −0.129032 0.258065i
\(311\) 252.982 0.813448 0.406724 0.913551i \(-0.366671\pi\)
0.406724 + 0.913551i \(0.366671\pi\)
\(312\) 0 0
\(313\) 145.000 + 145.000i 0.463259 + 0.463259i 0.899722 0.436463i \(-0.143769\pi\)
−0.436463 + 0.899722i \(0.643769\pi\)
\(314\) 632.456i 2.01419i
\(315\) 0 0
\(316\) −12.0000 −0.0379747
\(317\) −15.8114 + 15.8114i −0.0498782 + 0.0498782i −0.731606 0.681728i \(-0.761229\pi\)
0.681728 + 0.731606i \(0.261229\pi\)
\(318\) 0 0
\(319\) 750.000i 2.35110i
\(320\) −194.480 64.8267i −0.607750 0.202583i
\(321\) 0 0
\(322\) 50.0000 50.0000i 0.155280 0.155280i
\(323\) −56.9210 56.9210i −0.176226 0.176226i
\(324\) 0 0
\(325\) −50.0000 350.000i −0.153846 1.07692i
\(326\) −316.228 −0.970024
\(327\) 0 0
\(328\) 150.000 + 150.000i 0.457317 + 0.457317i
\(329\) 411.096i 1.24953i
\(330\) 0 0
\(331\) 482.000 1.45619 0.728097 0.685474i \(-0.240405\pi\)
0.728097 + 0.685474i \(0.240405\pi\)
\(332\) −53.7587 + 53.7587i −0.161924 + 0.161924i
\(333\) 0 0
\(334\) 470.000i 1.40719i
\(335\) 221.359 + 442.719i 0.660774 + 1.32155i
\(336\) 0 0
\(337\) −155.000 + 155.000i −0.459941 + 0.459941i −0.898636 0.438695i \(-0.855441\pi\)
0.438695 + 0.898636i \(0.355441\pi\)
\(338\) −49.0153 49.0153i −0.145016 0.145016i
\(339\) 0 0
\(340\) 20.0000 10.0000i 0.0588235 0.0294118i
\(341\) 126.491 0.370942
\(342\) 0 0
\(343\) −240.000 240.000i −0.699708 0.699708i
\(344\) 94.8683i 0.275780i
\(345\) 0 0
\(346\) 350.000 1.01156
\(347\) 164.438 164.438i 0.473886 0.473886i −0.429284 0.903170i \(-0.641234\pi\)
0.903170 + 0.429284i \(0.141234\pi\)
\(348\) 0 0
\(349\) 318.000i 0.911175i −0.890191 0.455587i \(-0.849429\pi\)
0.890191 0.455587i \(-0.150571\pi\)
\(350\) −237.171 + 316.228i −0.677631 + 0.903508i
\(351\) 0 0
\(352\) −175.000 + 175.000i −0.497159 + 0.497159i
\(353\) −224.522 224.522i −0.636039 0.636039i 0.313537 0.949576i \(-0.398486\pi\)
−0.949576 + 0.313537i \(0.898486\pi\)
\(354\) 0 0
\(355\) −100.000 + 300.000i −0.281690 + 0.845070i
\(356\) 0 0
\(357\) 0 0
\(358\) 225.000 + 225.000i 0.628492 + 0.628492i
\(359\) 284.605i 0.792772i 0.918084 + 0.396386i \(0.129736\pi\)
−0.918084 + 0.396386i \(0.870264\pi\)
\(360\) 0 0
\(361\) 37.0000 0.102493
\(362\) −344.688 + 344.688i −0.952178 + 0.952178i
\(363\) 0 0
\(364\) 100.000i 0.274725i
\(365\) −347.851 + 173.925i −0.953015 + 0.476508i
\(366\) 0 0
\(367\) −185.000 + 185.000i −0.504087 + 0.504087i −0.912705 0.408618i \(-0.866011\pi\)
0.408618 + 0.912705i \(0.366011\pi\)
\(368\) 60.0833 + 60.0833i 0.163270 + 0.163270i
\(369\) 0 0
\(370\) −150.000 50.0000i −0.405405 0.135135i
\(371\) 252.982 0.681893
\(372\) 0 0
\(373\) 100.000 + 100.000i 0.268097 + 0.268097i 0.828333 0.560236i \(-0.189290\pi\)
−0.560236 + 0.828333i \(0.689290\pi\)
\(374\) 158.114i 0.422764i
\(375\) 0 0
\(376\) −390.000 −1.03723
\(377\) −474.342 + 474.342i −1.25820 + 1.25820i
\(378\) 0 0
\(379\) 558.000i 1.47230i −0.676821 0.736148i \(-0.736643\pi\)
0.676821 0.736148i \(-0.263357\pi\)
\(380\) 28.4605 85.3815i 0.0748960 0.224688i
\(381\) 0 0
\(382\) −250.000 + 250.000i −0.654450 + 0.654450i
\(383\) −281.443 281.443i −0.734837 0.734837i 0.236737 0.971574i \(-0.423922\pi\)
−0.971574 + 0.236737i \(0.923922\pi\)
\(384\) 0 0
\(385\) −250.000 500.000i −0.649351 1.29870i
\(386\) 395.285 1.02405
\(387\) 0 0
\(388\) 5.00000 + 5.00000i 0.0128866 + 0.0128866i
\(389\) 521.776i 1.34133i −0.741762 0.670663i \(-0.766010\pi\)
0.741762 0.670663i \(-0.233990\pi\)
\(390\) 0 0
\(391\) 20.0000 0.0511509
\(392\) −4.74342 + 4.74342i −0.0121006 + 0.0121006i
\(393\) 0 0
\(394\) 460.000i 1.16751i
\(395\) 56.9210 + 18.9737i 0.144104 + 0.0480346i
\(396\) 0 0
\(397\) −260.000 + 260.000i −0.654912 + 0.654912i −0.954172 0.299260i \(-0.903260\pi\)
0.299260 + 0.954172i \(0.403260\pi\)
\(398\) −28.4605 28.4605i −0.0715088 0.0715088i
\(399\) 0 0
\(400\) −380.000 285.000i −0.950000 0.712500i
\(401\) 252.982 0.630878 0.315439 0.948946i \(-0.397848\pi\)
0.315439 + 0.948946i \(0.397848\pi\)
\(402\) 0 0
\(403\) 80.0000 + 80.0000i 0.198511 + 0.198511i
\(404\) 15.8114i 0.0391371i
\(405\) 0 0
\(406\) 750.000 1.84729
\(407\) 158.114 158.114i 0.388486 0.388486i
\(408\) 0 0
\(409\) 348.000i 0.850856i −0.904992 0.425428i \(-0.860124\pi\)
0.904992 0.425428i \(-0.139876\pi\)
\(410\) 158.114 + 316.228i 0.385644 + 0.771287i
\(411\) 0 0
\(412\) −35.0000 + 35.0000i −0.0849515 + 0.0849515i
\(413\) 237.171 + 237.171i 0.574263 + 0.574263i
\(414\) 0 0
\(415\) 340.000 170.000i 0.819277 0.409639i
\(416\) −221.359 −0.532114
\(417\) 0 0
\(418\) 450.000 + 450.000i 1.07656 + 1.07656i
\(419\) 616.644i 1.47170i −0.677142 0.735852i \(-0.736782\pi\)
0.677142 0.735852i \(-0.263218\pi\)
\(420\) 0 0
\(421\) 338.000 0.802850 0.401425 0.915892i \(-0.368515\pi\)
0.401425 + 0.915892i \(0.368515\pi\)
\(422\) 471.179 471.179i 1.11654 1.11654i
\(423\) 0 0
\(424\) 240.000i 0.566038i
\(425\) −110.680 + 15.8114i −0.260423 + 0.0372033i
\(426\) 0 0
\(427\) 290.000 290.000i 0.679157 0.679157i
\(428\) −60.0833 60.0833i −0.140381 0.140381i
\(429\) 0 0
\(430\) 50.0000 150.000i 0.116279 0.348837i
\(431\) −221.359 −0.513595 −0.256797 0.966465i \(-0.582667\pi\)
−0.256797 + 0.966465i \(0.582667\pi\)
\(432\) 0 0
\(433\) 145.000 + 145.000i 0.334873 + 0.334873i 0.854434 0.519561i \(-0.173904\pi\)
−0.519561 + 0.854434i \(0.673904\pi\)
\(434\) 126.491i 0.291454i
\(435\) 0 0
\(436\) −162.000 −0.371560
\(437\) 56.9210 56.9210i 0.130254 0.130254i
\(438\) 0 0
\(439\) 78.0000i 0.177677i 0.996046 + 0.0888383i \(0.0283154\pi\)
−0.996046 + 0.0888383i \(0.971685\pi\)
\(440\) 474.342 237.171i 1.07805 0.539025i
\(441\) 0 0
\(442\) −100.000 + 100.000i −0.226244 + 0.226244i
\(443\) −196.061 196.061i −0.442576 0.442576i 0.450301 0.892877i \(-0.351317\pi\)
−0.892877 + 0.450301i \(0.851317\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 679.890 1.52442
\(447\) 0 0
\(448\) −205.000 205.000i −0.457589 0.457589i
\(449\) 284.605i 0.633864i 0.948448 + 0.316932i \(0.102653\pi\)
−0.948448 + 0.316932i \(0.897347\pi\)
\(450\) 0 0
\(451\) −500.000 −1.10865
\(452\) 117.004 117.004i 0.258859 0.258859i
\(453\) 0 0
\(454\) 860.000i 1.89427i
\(455\) 158.114 474.342i 0.347503 1.04251i
\(456\) 0 0
\(457\) −365.000 + 365.000i −0.798687 + 0.798687i −0.982889 0.184201i \(-0.941030\pi\)
0.184201 + 0.982889i \(0.441030\pi\)
\(458\) 123.329 + 123.329i 0.269277 + 0.269277i
\(459\) 0 0
\(460\) 10.0000 + 20.0000i 0.0217391 + 0.0434783i
\(461\) −838.004 −1.81780 −0.908898 0.417019i \(-0.863075\pi\)
−0.908898 + 0.417019i \(0.863075\pi\)
\(462\) 0 0
\(463\) −35.0000 35.0000i −0.0755940 0.0755940i 0.668299 0.743893i \(-0.267023\pi\)
−0.743893 + 0.668299i \(0.767023\pi\)
\(464\) 901.249i 1.94235i
\(465\) 0 0
\(466\) 350.000 0.751073
\(467\) 117.004 117.004i 0.250544 0.250544i −0.570649 0.821194i \(-0.693308\pi\)
0.821194 + 0.570649i \(0.193308\pi\)
\(468\) 0 0
\(469\) 700.000i 1.49254i
\(470\) −616.644 205.548i −1.31201 0.437336i
\(471\) 0 0
\(472\) −225.000 + 225.000i −0.476695 + 0.476695i
\(473\) 158.114 + 158.114i 0.334279 + 0.334279i
\(474\) 0 0
\(475\) −270.000 + 360.000i −0.568421 + 0.757895i
\(476\) 31.6228 0.0664344
\(477\) 0 0
\(478\) −600.000 600.000i −1.25523 1.25523i
\(479\) 379.473i 0.792220i −0.918203 0.396110i \(-0.870360\pi\)
0.918203 0.396110i \(-0.129640\pi\)
\(480\) 0 0
\(481\) 200.000 0.415800
\(482\) −335.201 + 335.201i −0.695439 + 0.695439i
\(483\) 0 0
\(484\) 129.000i 0.266529i
\(485\) −15.8114 31.6228i −0.0326008 0.0652016i
\(486\) 0 0
\(487\) −125.000 + 125.000i −0.256674 + 0.256674i −0.823700 0.567026i \(-0.808094\pi\)
0.567026 + 0.823700i \(0.308094\pi\)
\(488\) 275.118 + 275.118i 0.563767 + 0.563767i
\(489\) 0 0
\(490\) −10.0000 + 5.00000i −0.0204082 + 0.0102041i
\(491\) −458.530 −0.933870 −0.466935 0.884292i \(-0.654642\pi\)
−0.466935 + 0.884292i \(0.654642\pi\)
\(492\) 0 0
\(493\) 150.000 + 150.000i 0.304260 + 0.304260i
\(494\) 569.210i 1.15225i
\(495\) 0 0
\(496\) 152.000 0.306452
\(497\) −316.228 + 316.228i −0.636273 + 0.636273i
\(498\) 0 0
\(499\) 222.000i 0.444890i −0.974945 0.222445i \(-0.928596\pi\)
0.974945 0.222445i \(-0.0714037\pi\)
\(500\) −71.1512 102.774i −0.142302 0.205548i
\(501\) 0 0
\(502\) 575.000 575.000i 1.14542 1.14542i
\(503\) 458.530 + 458.530i 0.911591 + 0.911591i 0.996397 0.0848065i \(-0.0270272\pi\)
−0.0848065 + 0.996397i \(0.527027\pi\)
\(504\) 0 0
\(505\) −25.0000 + 75.0000i −0.0495050 + 0.148515i
\(506\) −158.114 −0.312478
\(507\) 0 0
\(508\) −55.0000 55.0000i −0.108268 0.108268i
\(509\) 237.171i 0.465954i 0.972482 + 0.232977i \(0.0748468\pi\)
−0.972482 + 0.232977i \(0.925153\pi\)
\(510\) 0 0
\(511\) −550.000 −1.07632
\(512\) 150.208 150.208i 0.293375 0.293375i
\(513\) 0 0
\(514\) 970.000i 1.88716i
\(515\) 221.359 110.680i 0.429824 0.214912i
\(516\) 0 0
\(517\) 650.000 650.000i 1.25725 1.25725i
\(518\) −158.114 158.114i −0.305239 0.305239i
\(519\) 0 0
\(520\) 450.000 + 150.000i 0.865385 + 0.288462i
\(521\) −790.569 −1.51741 −0.758704 0.651436i \(-0.774167\pi\)
−0.758704 + 0.651436i \(0.774167\pi\)
\(522\) 0 0
\(523\) 370.000 + 370.000i 0.707457 + 0.707457i 0.966000 0.258543i \(-0.0832423\pi\)
−0.258543 + 0.966000i \(0.583242\pi\)
\(524\) 173.925i 0.331918i
\(525\) 0 0
\(526\) −910.000 −1.73004
\(527\) 25.2982 25.2982i 0.0480042 0.0480042i
\(528\) 0 0
\(529\) 509.000i 0.962193i
\(530\) −126.491 + 379.473i −0.238662 + 0.715987i
\(531\) 0 0
\(532\) 90.0000 90.0000i 0.169173 0.169173i
\(533\) −316.228 316.228i −0.593298 0.593298i
\(534\) 0 0
\(535\) 190.000 + 380.000i 0.355140 + 0.710280i
\(536\) −664.078 −1.23895
\(537\) 0 0
\(538\) −225.000 225.000i −0.418216 0.418216i
\(539\) 15.8114i 0.0293347i
\(540\) 0 0
\(541\) 362.000 0.669131 0.334566 0.942372i \(-0.391410\pi\)
0.334566 + 0.942372i \(0.391410\pi\)
\(542\) 281.443 281.443i 0.519267 0.519267i
\(543\) 0 0
\(544\) 70.0000i 0.128676i
\(545\) 768.433 + 256.144i 1.40997 + 0.469990i
\(546\) 0 0
\(547\) 490.000 490.000i 0.895795 0.895795i −0.0992657 0.995061i \(-0.531649\pi\)
0.995061 + 0.0992657i \(0.0316494\pi\)
\(548\) 15.8114 + 15.8114i 0.0288529 + 0.0288529i
\(549\) 0 0
\(550\) 875.000 125.000i 1.59091 0.227273i
\(551\) 853.815 1.54957
\(552\) 0 0
\(553\) 60.0000 + 60.0000i 0.108499 + 0.108499i
\(554\) 727.324i 1.31286i
\(555\) 0 0
\(556\) 102.000 0.183453
\(557\) −252.982 + 252.982i −0.454187 + 0.454187i −0.896742 0.442555i \(-0.854072\pi\)
0.442555 + 0.896742i \(0.354072\pi\)
\(558\) 0 0
\(559\) 200.000i 0.357782i
\(560\) −300.416 600.833i −0.536458 1.07292i
\(561\) 0 0
\(562\) −250.000 + 250.000i −0.444840 + 0.444840i
\(563\) 202.386 + 202.386i 0.359477 + 0.359477i 0.863620 0.504143i \(-0.168192\pi\)
−0.504143 + 0.863620i \(0.668192\pi\)
\(564\) 0 0
\(565\) −740.000 + 370.000i −1.30973 + 0.654867i
\(566\) 1106.80 1.95547
\(567\) 0 0
\(568\) −300.000 300.000i −0.528169 0.528169i
\(569\) 189.737i 0.333456i 0.986003 + 0.166728i \(0.0533202\pi\)
−0.986003 + 0.166728i \(0.946680\pi\)
\(570\) 0 0
\(571\) −658.000 −1.15236 −0.576182 0.817321i \(-0.695458\pi\)
−0.576182 + 0.817321i \(0.695458\pi\)
\(572\) 158.114 158.114i 0.276423 0.276423i
\(573\) 0 0
\(574\) 500.000i 0.871080i
\(575\) −15.8114 110.680i −0.0274981 0.192486i
\(576\) 0 0
\(577\) −35.0000 + 35.0000i −0.0606586 + 0.0606586i −0.736785 0.676127i \(-0.763657\pi\)
0.676127 + 0.736785i \(0.263657\pi\)
\(578\) −425.326 425.326i −0.735859 0.735859i
\(579\) 0 0
\(580\) −75.0000 + 225.000i −0.129310 + 0.387931i
\(581\) 537.587 0.925279
\(582\) 0 0
\(583\) −400.000 400.000i −0.686106 0.686106i
\(584\) 521.776i 0.893452i
\(585\) 0 0
\(586\) −640.000 −1.09215
\(587\) 154.952 154.952i 0.263972 0.263972i −0.562694 0.826666i \(-0.690235\pi\)
0.826666 + 0.562694i \(0.190235\pi\)
\(588\) 0 0
\(589\) 144.000i 0.244482i
\(590\) −474.342 + 237.171i −0.803969 + 0.401984i
\(591\) 0 0
\(592\) 190.000 190.000i 0.320946 0.320946i
\(593\) −167.601 167.601i −0.282632 0.282632i 0.551526 0.834158i \(-0.314046\pi\)
−0.834158 + 0.551526i \(0.814046\pi\)
\(594\) 0 0
\(595\) −150.000 50.0000i −0.252101 0.0840336i
\(596\) −47.4342 −0.0795875
\(597\) 0 0
\(598\) −100.000 100.000i −0.167224 0.167224i
\(599\) 1043.55i 1.74216i −0.491144 0.871078i \(-0.663421\pi\)
0.491144 0.871078i \(-0.336579\pi\)
\(600\) 0 0
\(601\) −382.000 −0.635607 −0.317804 0.948157i \(-0.602945\pi\)
−0.317804 + 0.948157i \(0.602945\pi\)
\(602\) 158.114 158.114i 0.262648 0.262648i
\(603\) 0 0
\(604\) 22.0000i 0.0364238i
\(605\) −203.967 + 611.901i −0.337135 + 1.01141i
\(606\) 0 0
\(607\) 655.000 655.000i 1.07908 1.07908i 0.0824851 0.996592i \(-0.473714\pi\)
0.996592 0.0824851i \(-0.0262857\pi\)
\(608\) 199.223 + 199.223i 0.327670 + 0.327670i
\(609\) 0 0
\(610\) 290.000 + 580.000i 0.475410 + 0.950820i
\(611\) 822.192 1.34565
\(612\) 0 0
\(613\) −620.000 620.000i −1.01142 1.01142i −0.999934 0.0114852i \(-0.996344\pi\)
−0.0114852 0.999934i \(-0.503656\pi\)
\(614\) 600.833i 0.978555i
\(615\) 0 0
\(616\) 750.000 1.21753
\(617\) −34.7851 + 34.7851i −0.0563777 + 0.0563777i −0.734734 0.678356i \(-0.762693\pi\)
0.678356 + 0.734734i \(0.262693\pi\)
\(618\) 0 0
\(619\) 258.000i 0.416801i 0.978044 + 0.208401i \(0.0668258\pi\)
−0.978044 + 0.208401i \(0.933174\pi\)
\(620\) 37.9473 + 12.6491i 0.0612054 + 0.0204018i
\(621\) 0 0
\(622\) −400.000 + 400.000i −0.643087 + 0.643087i
\(623\) 0 0
\(624\) 0 0
\(625\) 175.000 + 600.000i 0.280000 + 0.960000i
\(626\) −458.530 −0.732476
\(627\) 0 0
\(628\) 200.000 + 200.000i 0.318471 + 0.318471i
\(629\) 63.2456i 0.100549i
\(630\) 0 0
\(631\) 812.000 1.28685 0.643423 0.765511i \(-0.277514\pi\)
0.643423 + 0.765511i \(0.277514\pi\)
\(632\) −56.9210 + 56.9210i −0.0900649 + 0.0900649i
\(633\) 0 0
\(634\) 50.0000i 0.0788644i
\(635\) 173.925 + 347.851i 0.273898 + 0.547796i
\(636\) 0 0
\(637\) 10.0000 10.0000i 0.0156986 0.0156986i
\(638\) −1185.85 1185.85i −1.85871 1.85871i
\(639\) 0 0
\(640\) 690.000 345.000i 1.07812 0.539062i
\(641\) 442.719 0.690669 0.345335 0.938480i \(-0.387765\pi\)
0.345335 + 0.938480i \(0.387765\pi\)
\(642\) 0 0
\(643\) 820.000 + 820.000i 1.27527 + 1.27527i 0.943283 + 0.331989i \(0.107720\pi\)
0.331989 + 0.943283i \(0.392280\pi\)
\(644\) 31.6228i 0.0491037i
\(645\) 0 0
\(646\) 180.000 0.278638
\(647\) −679.890 + 679.890i −1.05083 + 1.05083i −0.0521974 + 0.998637i \(0.516622\pi\)
−0.998637 + 0.0521974i \(0.983378\pi\)
\(648\) 0 0
\(649\) 750.000i 1.15562i
\(650\) 632.456 + 474.342i 0.973009 + 0.729756i
\(651\) 0 0
\(652\) 100.000 100.000i 0.153374 0.153374i
\(653\) 515.451 + 515.451i 0.789359 + 0.789359i 0.981389 0.192030i \(-0.0615072\pi\)
−0.192030 + 0.981389i \(0.561507\pi\)
\(654\) 0 0
\(655\) 275.000 825.000i 0.419847 1.25954i
\(656\) −600.833 −0.915904
\(657\) 0 0
\(658\) −650.000 650.000i −0.987842 0.987842i
\(659\) 901.249i 1.36760i 0.729669 + 0.683801i \(0.239674\pi\)
−0.729669 + 0.683801i \(0.760326\pi\)
\(660\) 0 0
\(661\) −802.000 −1.21331 −0.606657 0.794964i \(-0.707490\pi\)
−0.606657 + 0.794964i \(0.707490\pi\)
\(662\) −762.109 + 762.109i −1.15122 + 1.15122i
\(663\) 0 0
\(664\) 510.000i 0.768072i
\(665\) −569.210 + 284.605i −0.855955 + 0.427977i
\(666\) 0 0
\(667\) −150.000 + 150.000i −0.224888 + 0.224888i
\(668\) 148.627 + 148.627i 0.222496 + 0.222496i
\(669\) 0 0
\(670\) −1050.00 350.000i −1.56716 0.522388i
\(671\) −917.061 −1.36671
\(672\) 0 0
\(673\) 775.000 + 775.000i 1.15156 + 1.15156i 0.986240 + 0.165320i \(0.0528658\pi\)
0.165320 + 0.986240i \(0.447134\pi\)
\(674\) 490.153i 0.727230i
\(675\) 0 0
\(676\) 31.0000 0.0458580
\(677\) 496.478 496.478i 0.733349 0.733349i −0.237932 0.971282i \(-0.576470\pi\)
0.971282 + 0.237932i \(0.0764696\pi\)
\(678\) 0 0
\(679\) 50.0000i 0.0736377i
\(680\) 47.4342 142.302i 0.0697561 0.209268i
\(681\) 0 0
\(682\) −200.000 + 200.000i −0.293255 + 0.293255i
\(683\) 60.0833 + 60.0833i 0.0879697 + 0.0879697i 0.749722 0.661753i \(-0.230187\pi\)
−0.661753 + 0.749722i \(0.730187\pi\)
\(684\) 0 0
\(685\) −50.0000 100.000i −0.0729927 0.145985i
\(686\) 758.947 1.10634
\(687\) 0 0
\(688\) 190.000 + 190.000i 0.276163 + 0.276163i
\(689\) 505.964i 0.734346i
\(690\) 0 0
\(691\) −562.000 −0.813314 −0.406657 0.913581i \(-0.633306\pi\)
−0.406657 + 0.913581i \(0.633306\pi\)
\(692\) −110.680 + 110.680i −0.159942 + 0.159942i
\(693\) 0 0
\(694\) 520.000i 0.749280i
\(695\) −483.828 161.276i −0.696156 0.232052i
\(696\) 0 0
\(697\) −100.000 + 100.000i −0.143472 + 0.143472i
\(698\) 502.802 + 502.802i 0.720347 + 0.720347i
\(699\) 0 0
\(700\) −25.0000 175.000i −0.0357143 0.250000i
\(701\) −363.662 −0.518776 −0.259388 0.965773i \(-0.583521\pi\)
−0.259388 + 0.965773i \(0.583521\pi\)
\(702\) 0 0
\(703\) −180.000 180.000i −0.256046 0.256046i
\(704\) 648.267i 0.920834i
\(705\) 0 0
\(706\) 710.000 1.00567
\(707\) −79.0569 + 79.0569i −0.111820 + 0.111820i
\(708\) 0 0
\(709\) 498.000i 0.702398i −0.936301 0.351199i \(-0.885774\pi\)
0.936301 0.351199i \(-0.114226\pi\)
\(710\) −316.228 632.456i −0.445391 0.890782i
\(711\) 0 0
\(712\) 0 0
\(713\) 25.2982 + 25.2982i 0.0354814 + 0.0354814i
\(714\) 0 0
\(715\) −1000.00 + 500.000i −1.39860 + 0.699301i
\(716\) −142.302 −0.198747
\(717\) 0 0
\(718\) −450.000 450.000i −0.626741 0.626741i
\(719\) 569.210i 0.791669i 0.918322 + 0.395834i \(0.129545\pi\)
−0.918322 + 0.395834i \(0.870455\pi\)
\(720\) 0 0
\(721\) 350.000 0.485437
\(722\) −58.5021 + 58.5021i −0.0810279 + 0.0810279i
\(723\) 0 0
\(724\) 218.000i 0.301105i
\(725\) 711.512 948.683i 0.981397 1.30853i
\(726\) 0 0
\(727\) −905.000 + 905.000i −1.24484 + 1.24484i −0.286873 + 0.957969i \(0.592616\pi\)
−0.957969 + 0.286873i \(0.907384\pi\)
\(728\) 474.342 + 474.342i 0.651568 + 0.651568i
\(729\) 0 0
\(730\) 275.000 825.000i 0.376712 1.13014i
\(731\) 63.2456 0.0865192
\(732\) 0 0
\(733\) 550.000 + 550.000i 0.750341 + 0.750341i 0.974543 0.224202i \(-0.0719774\pi\)
−0.224202 + 0.974543i \(0.571977\pi\)
\(734\) 585.021i 0.797032i
\(735\) 0 0
\(736\) −70.0000 −0.0951087
\(737\) 1106.80 1106.80i 1.50176 1.50176i
\(738\) 0 0
\(739\) 198.000i 0.267930i −0.990986 0.133965i \(-0.957229\pi\)
0.990986 0.133965i \(-0.0427709\pi\)
\(740\) 63.2456 31.6228i 0.0854670 0.0427335i
\(741\) 0 0
\(742\) −400.000 + 400.000i −0.539084 + 0.539084i
\(743\) −964.495 964.495i −1.29811 1.29811i −0.929640 0.368468i \(-0.879882\pi\)
−0.368468 0.929640i \(-0.620118\pi\)
\(744\) 0 0
\(745\) 225.000 + 75.0000i 0.302013 + 0.100671i
\(746\) −316.228 −0.423898
\(747\) 0 0
\(748\) −50.0000 50.0000i −0.0668449 0.0668449i
\(749\) 600.833i 0.802180i
\(750\) 0 0
\(751\) 728.000 0.969374 0.484687 0.874688i \(-0.338933\pi\)
0.484687 + 0.874688i \(0.338933\pi\)
\(752\) 781.083 781.083i 1.03867 1.03867i
\(753\) 0 0
\(754\) 1500.00i 1.98939i
\(755\) 34.7851 104.355i 0.0460729 0.138219i
\(756\) 0 0
\(757\) −170.000 + 170.000i −0.224571 + 0.224571i −0.810420 0.585849i \(-0.800761\pi\)
0.585849 + 0.810420i \(0.300761\pi\)
\(758\) 882.275 + 882.275i 1.16395 + 1.16395i
\(759\) 0 0
\(760\) −270.000 540.000i −0.355263 0.710526i
\(761\) −31.6228 −0.0415542 −0.0207771 0.999784i \(-0.506614\pi\)
−0.0207771 + 0.999784i \(0.506614\pi\)
\(762\) 0 0
\(763\) 810.000 + 810.000i 1.06160 + 1.06160i
\(764\) 158.114i 0.206955i
\(765\) 0 0
\(766\) 890.000 1.16188
\(767\) 474.342 474.342i 0.618438 0.618438i
\(768\) 0 0
\(769\) 318.000i 0.413524i 0.978391 + 0.206762i \(0.0662926\pi\)
−0.978391 + 0.206762i \(0.933707\pi\)
\(770\) 1185.85 + 395.285i 1.54007 + 0.513357i
\(771\) 0 0
\(772\) −125.000 + 125.000i −0.161917 + 0.161917i
\(773\) −452.206 452.206i −0.585001 0.585001i 0.351272 0.936273i \(-0.385749\pi\)
−0.936273 + 0.351272i \(0.885749\pi\)
\(774\) 0 0
\(775\) −160.000 120.000i −0.206452 0.154839i
\(776\) 47.4342 0.0611265
\(777\) 0 0
\(778\) 825.000 + 825.000i 1.06041 + 1.06041i
\(779\) 569.210i 0.730693i
\(780\) 0 0
\(781\) 1000.00 1.28041
\(782\) −31.6228 + 31.6228i −0.0404383 + 0.0404383i
\(783\) 0 0
\(784\) 19.0000i