Properties

Label 45.3.g.a
Level $45$
Weight $3$
Character orbit 45.g
Analytic conductor $1.226$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,3,Mod(28,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.28");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 45.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.22616118962\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + \beta_{2} q^{4} + (\beta_{3} + 2 \beta_1) q^{5} + ( - 5 \beta_{2} - 5) q^{7} - 3 \beta_{3} q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{2} + \beta_{2} q^{4} + (\beta_{3} + 2 \beta_1) q^{5} + ( - 5 \beta_{2} - 5) q^{7} - 3 \beta_{3} q^{8} + (10 \beta_{2} - 5) q^{10} + (5 \beta_{3} - 5 \beta_1) q^{11} + ( - 10 \beta_{2} + 10) q^{13} + ( - 5 \beta_{3} - 5 \beta_1) q^{14} + 19 q^{16} - 2 \beta_1 q^{17} + 18 \beta_{2} q^{19} + (2 \beta_{3} - \beta_1) q^{20} + ( - 25 \beta_{2} - 25) q^{22} + 2 \beta_{3} q^{23} + (15 \beta_{2} - 20) q^{25} + ( - 10 \beta_{3} + 10 \beta_1) q^{26} + ( - 5 \beta_{2} + 5) q^{28} + (15 \beta_{3} + 15 \beta_1) q^{29} + 8 q^{31} + 7 \beta_1 q^{32} - 10 \beta_{2} q^{34} + ( - 15 \beta_{3} - 5 \beta_1) q^{35} + (10 \beta_{2} + 10) q^{37} + 18 \beta_{3} q^{38} + (15 \beta_{2} + 30) q^{40} + ( - 10 \beta_{3} + 10 \beta_1) q^{41} + ( - 10 \beta_{2} + 10) q^{43} + ( - 5 \beta_{3} - 5 \beta_1) q^{44} - 10 q^{46} - 26 \beta_1 q^{47} + \beta_{2} q^{49} + (15 \beta_{3} - 20 \beta_1) q^{50} + (10 \beta_{2} + 10) q^{52} - 16 \beta_{3} q^{53} + ( - 75 \beta_{2} - 25) q^{55} + (15 \beta_{3} - 15 \beta_1) q^{56} + (75 \beta_{2} - 75) q^{58} + ( - 15 \beta_{3} - 15 \beta_1) q^{59} - 58 q^{61} + 8 \beta_1 q^{62} - 41 \beta_{2} q^{64} + ( - 10 \beta_{3} + 30 \beta_1) q^{65} + (70 \beta_{2} + 70) q^{67} - 2 \beta_{3} q^{68} + ( - 25 \beta_{2} + 75) q^{70} + (20 \beta_{3} - 20 \beta_1) q^{71} + ( - 55 \beta_{2} + 55) q^{73} + (10 \beta_{3} + 10 \beta_1) q^{74} - 18 q^{76} + 50 \beta_1 q^{77} + 12 \beta_{2} q^{79} + (19 \beta_{3} + 38 \beta_1) q^{80} + (50 \beta_{2} + 50) q^{82} - 34 \beta_{3} q^{83} + ( - 20 \beta_{2} + 10) q^{85} + ( - 10 \beta_{3} + 10 \beta_1) q^{86} + (75 \beta_{2} - 75) q^{88} - 100 q^{91} - 2 \beta_1 q^{92} - 130 \beta_{2} q^{94} + (36 \beta_{3} - 18 \beta_1) q^{95} + ( - 5 \beta_{2} - 5) q^{97} + \beta_{3} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 20 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 20 q^{7} - 20 q^{10} + 40 q^{13} + 76 q^{16} - 100 q^{22} - 80 q^{25} + 20 q^{28} + 32 q^{31} + 40 q^{37} + 120 q^{40} + 40 q^{43} - 40 q^{46} + 40 q^{52} - 100 q^{55} - 300 q^{58} - 232 q^{61} + 280 q^{67} + 300 q^{70} + 220 q^{73} - 72 q^{76} + 200 q^{82} + 40 q^{85} - 300 q^{88} - 400 q^{91} - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 5\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 5\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
28.1
−1.58114 + 1.58114i
1.58114 1.58114i
−1.58114 1.58114i
1.58114 + 1.58114i
−1.58114 + 1.58114i 0 1.00000i −1.58114 + 4.74342i 0 −5.00000 + 5.00000i −4.74342 4.74342i 0 −5.00000 10.0000i
28.2 1.58114 1.58114i 0 1.00000i 1.58114 4.74342i 0 −5.00000 + 5.00000i 4.74342 + 4.74342i 0 −5.00000 10.0000i
37.1 −1.58114 1.58114i 0 1.00000i −1.58114 4.74342i 0 −5.00000 5.00000i −4.74342 + 4.74342i 0 −5.00000 + 10.0000i
37.2 1.58114 + 1.58114i 0 1.00000i 1.58114 + 4.74342i 0 −5.00000 5.00000i 4.74342 4.74342i 0 −5.00000 + 10.0000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.c odd 4 1 inner
15.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 45.3.g.a 4
3.b odd 2 1 inner 45.3.g.a 4
4.b odd 2 1 720.3.bh.j 4
5.b even 2 1 225.3.g.g 4
5.c odd 4 1 inner 45.3.g.a 4
5.c odd 4 1 225.3.g.g 4
9.c even 3 2 405.3.l.g 8
9.d odd 6 2 405.3.l.g 8
12.b even 2 1 720.3.bh.j 4
15.d odd 2 1 225.3.g.g 4
15.e even 4 1 inner 45.3.g.a 4
15.e even 4 1 225.3.g.g 4
20.e even 4 1 720.3.bh.j 4
45.k odd 12 2 405.3.l.g 8
45.l even 12 2 405.3.l.g 8
60.l odd 4 1 720.3.bh.j 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
45.3.g.a 4 1.a even 1 1 trivial
45.3.g.a 4 3.b odd 2 1 inner
45.3.g.a 4 5.c odd 4 1 inner
45.3.g.a 4 15.e even 4 1 inner
225.3.g.g 4 5.b even 2 1
225.3.g.g 4 5.c odd 4 1
225.3.g.g 4 15.d odd 2 1
225.3.g.g 4 15.e even 4 1
405.3.l.g 8 9.c even 3 2
405.3.l.g 8 9.d odd 6 2
405.3.l.g 8 45.k odd 12 2
405.3.l.g 8 45.l even 12 2
720.3.bh.j 4 4.b odd 2 1
720.3.bh.j 4 12.b even 2 1
720.3.bh.j 4 20.e even 4 1
720.3.bh.j 4 60.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 25 \) acting on \(S_{3}^{\mathrm{new}}(45, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 25 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 40T^{2} + 625 \) Copy content Toggle raw display
$7$ \( (T^{2} + 10 T + 50)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 250)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 20 T + 200)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 400 \) Copy content Toggle raw display
$19$ \( (T^{2} + 324)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 400 \) Copy content Toggle raw display
$29$ \( (T^{2} + 2250)^{2} \) Copy content Toggle raw display
$31$ \( (T - 8)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} - 20 T + 200)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 1000)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 20 T + 200)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 11424400 \) Copy content Toggle raw display
$53$ \( T^{4} + 1638400 \) Copy content Toggle raw display
$59$ \( (T^{2} + 2250)^{2} \) Copy content Toggle raw display
$61$ \( (T + 58)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} - 140 T + 9800)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 4000)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 110 T + 6050)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 144)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 33408400 \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} + 10 T + 50)^{2} \) Copy content Toggle raw display
show more
show less