Defining parameters
Level: | \( N \) | \(=\) | \( 45 = 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 45.g (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(18\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(45, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 32 | 12 | 20 |
Cusp forms | 16 | 8 | 8 |
Eisenstein series | 16 | 4 | 12 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(45, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
45.3.g.a | $4$ | $1.226$ | \(\Q(i, \sqrt{10})\) | None | \(0\) | \(0\) | \(0\) | \(-20\) | \(q+\beta _{1}q^{2}+\beta _{2}q^{4}+(2\beta _{1}+\beta _{3})q^{5}+(-5+\cdots)q^{7}+\cdots\) |
45.3.g.b | $4$ | $1.226$ | \(\Q(i, \sqrt{6})\) | None | \(4\) | \(0\) | \(4\) | \(4\) | \(q+(1+\beta _{1}+\beta _{2})q^{2}+(2\beta _{1}+\beta _{2}+2\beta _{3})q^{4}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(45, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(45, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 2}\)