Properties

Label 45.3.g
Level $45$
Weight $3$
Character orbit 45.g
Rep. character $\chi_{45}(28,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $8$
Newform subspaces $2$
Sturm bound $18$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 45.g (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 2 \)
Sturm bound: \(18\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(45, [\chi])\).

Total New Old
Modular forms 32 12 20
Cusp forms 16 8 8
Eisenstein series 16 4 12

Trace form

\( 8 q + 4 q^{2} + 4 q^{5} - 16 q^{7} - 12 q^{8} - 16 q^{10} - 16 q^{11} + 8 q^{13} + 56 q^{16} + 40 q^{17} + 36 q^{20} - 80 q^{22} - 56 q^{23} - 64 q^{25} - 88 q^{26} + 64 q^{28} + 16 q^{31} + 76 q^{32} + 40 q^{35}+ \cdots + 188 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(45, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
45.3.g.a 45.g 5.c $4$ $1.226$ \(\Q(i, \sqrt{10})\) None 45.3.g.a \(0\) \(0\) \(0\) \(-20\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{1}q^{2}+\beta _{2}q^{4}+(2\beta _{1}+\beta _{3})q^{5}+(-5+\cdots)q^{7}+\cdots\)
45.3.g.b 45.g 5.c $4$ $1.226$ \(\Q(i, \sqrt{6})\) None 15.3.f.a \(4\) \(0\) \(4\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1+\beta _{1}+\beta _{2})q^{2}+(2\beta _{1}+\beta _{2}+2\beta _{3})q^{4}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(45, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(45, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 2}\)