Properties

Label 45.3.d.a
Level $45$
Weight $3$
Character orbit 45.d
Analytic conductor $1.226$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,3,Mod(44,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.44");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 45.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.22616118962\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 8x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{2} + 3 q^{4} + ( - \beta_{3} - \beta_1) q^{5} + \beta_{2} q^{7} - \beta_{3} q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{3} q^{2} + 3 q^{4} + ( - \beta_{3} - \beta_1) q^{5} + \beta_{2} q^{7} - \beta_{3} q^{8} + ( - \beta_{2} - 7) q^{10} - \beta_1 q^{11} - \beta_{2} q^{13} + 7 \beta_1 q^{14} - 19 q^{16} + 4 \beta_{3} q^{17} + 20 q^{19} + ( - 3 \beta_{3} - 3 \beta_1) q^{20} - \beta_{2} q^{22} - 2 \beta_{3} q^{23} + (2 \beta_{2} - 11) q^{25} - 7 \beta_1 q^{26} + 3 \beta_{2} q^{28} + 2 \beta_1 q^{29} + 26 q^{31} - 15 \beta_{3} q^{32} + 28 q^{34} + (18 \beta_{3} - 7 \beta_1) q^{35} - 3 \beta_{2} q^{37} + 20 \beta_{3} q^{38} + (\beta_{2} + 7) q^{40} + 13 \beta_1 q^{41} - 2 \beta_{2} q^{43} - 3 \beta_1 q^{44} - 14 q^{46} - 8 \beta_{3} q^{47} - 77 q^{49} + ( - 11 \beta_{3} + 14 \beta_1) q^{50} - 3 \beta_{2} q^{52} - 32 \beta_{3} q^{53} + (\beta_{2} - 18) q^{55} - 7 \beta_1 q^{56} + 2 \beta_{2} q^{58} - 11 \beta_1 q^{59} - 22 q^{61} + 26 \beta_{3} q^{62} - 29 q^{64} + ( - 18 \beta_{3} + 7 \beta_1) q^{65} + 8 \beta_{2} q^{67} + 12 \beta_{3} q^{68} + ( - 7 \beta_{2} + 126) q^{70} + 12 \beta_1 q^{71} - 6 \beta_{2} q^{73} - 21 \beta_1 q^{74} + 60 q^{76} + 18 \beta_{3} q^{77} + 14 q^{79} + (19 \beta_{3} + 19 \beta_1) q^{80} + 13 \beta_{2} q^{82} + 28 \beta_{3} q^{83} + ( - 4 \beta_{2} - 28) q^{85} - 14 \beta_1 q^{86} + \beta_{2} q^{88} - 21 \beta_1 q^{89} + 126 q^{91} - 6 \beta_{3} q^{92} - 56 q^{94} + ( - 20 \beta_{3} - 20 \beta_1) q^{95} - 2 \beta_{2} q^{97} - 77 \beta_{3} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 12 q^{4} - 28 q^{10} - 76 q^{16} + 80 q^{19} - 44 q^{25} + 104 q^{31} + 112 q^{34} + 28 q^{40} - 56 q^{46} - 308 q^{49} - 72 q^{55} - 88 q^{61} - 116 q^{64} + 504 q^{70} + 240 q^{76} + 56 q^{79} - 112 q^{85} + 504 q^{91} - 224 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 8x^{2} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{3} + 5\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} + 11\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - \beta_1 ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -5\beta_{2} + 11\beta_1 ) / 6 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
44.1
2.57794i
2.57794i
1.16372i
1.16372i
−2.64575 0 3.00000 2.64575 4.24264i 0 11.2250i 2.64575 0 −7.00000 + 11.2250i
44.2 −2.64575 0 3.00000 2.64575 + 4.24264i 0 11.2250i 2.64575 0 −7.00000 11.2250i
44.3 2.64575 0 3.00000 −2.64575 4.24264i 0 11.2250i −2.64575 0 −7.00000 11.2250i
44.4 2.64575 0 3.00000 −2.64575 + 4.24264i 0 11.2250i −2.64575 0 −7.00000 + 11.2250i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 45.3.d.a 4
3.b odd 2 1 inner 45.3.d.a 4
4.b odd 2 1 720.3.c.a 4
5.b even 2 1 inner 45.3.d.a 4
5.c odd 4 2 225.3.c.d 4
8.b even 2 1 2880.3.c.b 4
8.d odd 2 1 2880.3.c.g 4
9.c even 3 2 405.3.h.j 8
9.d odd 6 2 405.3.h.j 8
12.b even 2 1 720.3.c.a 4
15.d odd 2 1 inner 45.3.d.a 4
15.e even 4 2 225.3.c.d 4
20.d odd 2 1 720.3.c.a 4
20.e even 4 2 3600.3.l.s 4
24.f even 2 1 2880.3.c.g 4
24.h odd 2 1 2880.3.c.b 4
40.e odd 2 1 2880.3.c.g 4
40.f even 2 1 2880.3.c.b 4
45.h odd 6 2 405.3.h.j 8
45.j even 6 2 405.3.h.j 8
60.h even 2 1 720.3.c.a 4
60.l odd 4 2 3600.3.l.s 4
120.i odd 2 1 2880.3.c.b 4
120.m even 2 1 2880.3.c.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
45.3.d.a 4 1.a even 1 1 trivial
45.3.d.a 4 3.b odd 2 1 inner
45.3.d.a 4 5.b even 2 1 inner
45.3.d.a 4 15.d odd 2 1 inner
225.3.c.d 4 5.c odd 4 2
225.3.c.d 4 15.e even 4 2
405.3.h.j 8 9.c even 3 2
405.3.h.j 8 9.d odd 6 2
405.3.h.j 8 45.h odd 6 2
405.3.h.j 8 45.j even 6 2
720.3.c.a 4 4.b odd 2 1
720.3.c.a 4 12.b even 2 1
720.3.c.a 4 20.d odd 2 1
720.3.c.a 4 60.h even 2 1
2880.3.c.b 4 8.b even 2 1
2880.3.c.b 4 24.h odd 2 1
2880.3.c.b 4 40.f even 2 1
2880.3.c.b 4 120.i odd 2 1
2880.3.c.g 4 8.d odd 2 1
2880.3.c.g 4 24.f even 2 1
2880.3.c.g 4 40.e odd 2 1
2880.3.c.g 4 120.m even 2 1
3600.3.l.s 4 20.e even 4 2
3600.3.l.s 4 60.l odd 4 2

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(45, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 7)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 22T^{2} + 625 \) Copy content Toggle raw display
$7$ \( (T^{2} + 126)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 18)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 126)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 112)^{2} \) Copy content Toggle raw display
$19$ \( (T - 20)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} - 28)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 72)^{2} \) Copy content Toggle raw display
$31$ \( (T - 26)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + 1134)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 3042)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 504)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 448)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 7168)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 2178)^{2} \) Copy content Toggle raw display
$61$ \( (T + 22)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 8064)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 2592)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 4536)^{2} \) Copy content Toggle raw display
$79$ \( (T - 14)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} - 5488)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 7938)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 504)^{2} \) Copy content Toggle raw display
show more
show less