[N,k,chi] = [45,22,Mod(1,45)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(45, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 22, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("45.1");
S:= CuspForms(chi, 22);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(3\)
\(-1\)
\(5\)
\(1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{3} - 2300T_{2}^{2} - 1132928T_{2} + 2165809152 \)
T2^3 - 2300*T2^2 - 1132928*T2 + 2165809152
acting on \(S_{22}^{\mathrm{new}}(\Gamma_0(45))\).
$p$
$F_p(T)$
$2$
\( T^{3} - 2300 T^{2} + \cdots + 2165809152 \)
T^3 - 2300*T^2 - 1132928*T + 2165809152
$3$
\( T^{3} \)
T^3
$5$
\( (T + 9765625)^{3} \)
(T + 9765625)^3
$7$
\( T^{3} - 465666872 T^{2} + \cdots + 46\!\cdots\!00 \)
T^3 - 465666872*T^2 - 436218881710886400*T + 46395886619682574016716800
$11$
\( T^{3} - 167336332556 T^{2} + \cdots + 24\!\cdots\!32 \)
T^3 - 167336332556*T^2 + 4251539374691898602800*T + 249305724798699382528659519364032
$13$
\( T^{3} + 545571033878 T^{2} + \cdots - 16\!\cdots\!04 \)
T^3 + 545571033878*T^2 - 466535371677846717219700*T - 161600388421388294062406156792494904
$17$
\( T^{3} - 8104424487194 T^{2} + \cdots - 41\!\cdots\!92 \)
T^3 - 8104424487194*T^2 - 84778681015112469956091188*T - 41583819116654311413001978517626073592
$19$
\( T^{3} - 3937700740828 T^{2} + \cdots - 10\!\cdots\!20 \)
T^3 - 3937700740828*T^2 - 1362947561234322693076094224*T - 10455874897637975898112908687262902969920
$23$
\( T^{3} - 156235274730744 T^{2} + \cdots + 96\!\cdots\!00 \)
T^3 - 156235274730744*T^2 - 77989972910529699566747136000*T + 9698914907578349244916946802165665061273600
$29$
\( T^{3} - 930273612785494 T^{2} + \cdots + 56\!\cdots\!40 \)
T^3 - 930273612785494*T^2 - 4959695168341011763732032371636*T + 5679657755355333801024866868877438378284410040
$31$
\( T^{3} + \cdots - 49\!\cdots\!00 \)
T^3 + 6257709152718928*T^2 + 4989516837731881083786832027200*T - 49784597177607254451877862894486457120000000
$37$
\( T^{3} + \cdots + 45\!\cdots\!00 \)
T^3 + 22246337613227118*T^2 - 1069663277611798682323877074438740*T + 4547653555602415201470494889438834513018042341800
$41$
\( T^{3} + \cdots - 16\!\cdots\!00 \)
T^3 - 186265908060974338*T^2 + 10146921127597689917187596389786540*T - 163703781942477198156742128747958679360368950543000
$43$
\( T^{3} + \cdots + 36\!\cdots\!84 \)
T^3 + 268609288174096316*T^2 + 18538907339779069094113589540840624*T + 360695130082890593805771136160209748733610320357184
$47$
\( T^{3} + \cdots - 40\!\cdots\!72 \)
T^3 - 900034127817222032*T^2 + 204925180999979316416495602773522496*T - 4053827587172600785689589664386626621130376622569472
$53$
\( T^{3} + \cdots + 45\!\cdots\!00 \)
T^3 - 1269623243180583374*T^2 - 3397081317413878727777369532050976020*T + 4590342466421379433188229873655703755621800785108538200
$59$
\( T^{3} + \cdots - 34\!\cdots\!60 \)
T^3 - 8551487099411338268*T^2 + 10395303323180684239975067420560363696*T - 3429298588647185377578902624382613699362253367832740160
$61$
\( T^{3} + \cdots - 87\!\cdots\!28 \)
T^3 + 7181148471323735222*T^2 + 12533081687437001132018831700649513676*T - 875268808168886753142778332188020528234396245910793528
$67$
\( T^{3} + \cdots + 23\!\cdots\!32 \)
T^3 - 2946635148405656396*T^2 - 302653221477948792378649028057978942928*T + 2351267885453764858874586950166138704189445691999661034432
$71$
\( T^{3} + \cdots + 51\!\cdots\!88 \)
T^3 - 37849731561832987624*T^2 - 1414404934755210611683415631229695487808*T + 51151215705327712440810908510172716070907910371965501669888
$73$
\( T^{3} + \cdots + 62\!\cdots\!00 \)
T^3 + 7149058835824826594*T^2 - 3214654523632397023992720851347492160980*T + 62532184224754020859849747639542637220399628157609132351000
$79$
\( T^{3} + \cdots - 82\!\cdots\!00 \)
T^3 - 309682369826312504000*T^2 + 29741458421884548924061044971746252142400*T - 829973561139970744551558295375543369896703994171997052800000
$83$
\( T^{3} + \cdots - 24\!\cdots\!36 \)
T^3 + 199780825758268631580*T^2 + 7426235957857263605820822701530721619888*T - 244050558137333500384127354076990714925901175579132252025536
$89$
\( T^{3} + \cdots + 13\!\cdots\!00 \)
T^3 + 162380735751340085838*T^2 - 137858243768800611881860923427094821298964*T + 13238275838947305800304149081595902516675946931053281227833000
$97$
\( T^{3} + \cdots - 27\!\cdots\!68 \)
T^3 + 1208943423358924299354*T^2 - 209131642601810869747013790365645978259828*T - 271788334094849866759131280927619038848022291385157660009221768
show more
show less