Properties

Label 45.2.l.a.38.1
Level $45$
Weight $2$
Character 45.38
Analytic conductor $0.359$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,2,Mod(2,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.2");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 45.l (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.359326809096\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 18 x^{14} - 36 x^{13} + 34 x^{12} + 18 x^{11} - 72 x^{10} + 132 x^{9} - 93 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 38.1
Root \(2.24352 + 0.601150i\) of defining polynomial
Character \(\chi\) \(=\) 45.38
Dual form 45.2.l.a.32.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.24352 + 0.601150i) q^{2} +(0.173261 - 1.72336i) q^{3} +(2.93996 - 1.69739i) q^{4} +(2.10323 - 0.759216i) q^{5} +(0.647285 + 3.97056i) q^{6} +(-0.201351 - 0.751454i) q^{7} +(-2.29074 + 2.29074i) q^{8} +(-2.93996 - 0.597183i) q^{9} +O(q^{10})\) \(q+(-2.24352 + 0.601150i) q^{2} +(0.173261 - 1.72336i) q^{3} +(2.93996 - 1.69739i) q^{4} +(2.10323 - 0.759216i) q^{5} +(0.647285 + 3.97056i) q^{6} +(-0.201351 - 0.751454i) q^{7} +(-2.29074 + 2.29074i) q^{8} +(-2.93996 - 0.597183i) q^{9} +(-4.26225 + 2.96768i) q^{10} +(-0.220188 - 0.127126i) q^{11} +(-2.41583 - 5.36071i) q^{12} +(-0.992714 + 3.70486i) q^{13} +(0.903473 + 1.56486i) q^{14} +(-0.943998 - 3.75618i) q^{15} +(0.367473 - 0.636483i) q^{16} +(3.93311 + 3.93311i) q^{17} +(6.95487 - 0.427565i) q^{18} -0.440377i q^{19} +(4.89474 - 5.80207i) q^{20} +(-1.32991 + 0.216804i) q^{21} +(0.570419 + 0.152843i) q^{22} +(-3.42258 - 0.917076i) q^{23} +(3.55088 + 4.34467i) q^{24} +(3.84718 - 3.19362i) q^{25} -8.90871i q^{26} +(-1.53854 + 4.96315i) q^{27} +(-1.86747 - 1.86747i) q^{28} +(-2.76265 + 4.78505i) q^{29} +(4.37591 + 7.85958i) q^{30} +(-0.0971829 - 0.168326i) q^{31} +(1.23512 - 4.60955i) q^{32} +(-0.257234 + 0.357439i) q^{33} +(-11.1884 - 6.45964i) q^{34} +(-0.994005 - 1.42761i) q^{35} +(-9.65702 + 3.23456i) q^{36} +(-0.123005 + 0.123005i) q^{37} +(0.264732 + 0.987995i) q^{38} +(6.21282 + 2.35271i) q^{39} +(-3.07879 + 6.55713i) q^{40} +(-3.88223 + 2.24141i) q^{41} +(2.85336 - 1.28588i) q^{42} +(1.33488 - 0.357680i) q^{43} -0.863127 q^{44} +(-6.63682 + 0.976052i) q^{45} +8.22993 q^{46} +(4.17348 - 1.11828i) q^{47} +(-1.03322 - 0.743568i) q^{48} +(5.53804 - 3.19739i) q^{49} +(-6.71139 + 9.47769i) q^{50} +(7.45964 - 6.09673i) q^{51} +(3.37004 + 12.5772i) q^{52} +(0.938022 - 0.938022i) q^{53} +(0.468157 - 12.0598i) q^{54} +(-0.559623 - 0.100205i) q^{55} +(2.18263 + 1.26014i) q^{56} +(-0.758929 - 0.0763000i) q^{57} +(3.32153 - 12.3961i) q^{58} +(-4.02279 - 6.96768i) q^{59} +(-9.15100 - 9.44069i) q^{60} +(-1.44186 + 2.49737i) q^{61} +(0.319221 + 0.319221i) q^{62} +(0.143210 + 2.32949i) q^{63} +12.5540i q^{64} +(0.724881 + 8.54587i) q^{65} +(0.362236 - 0.956558i) q^{66} +(-12.9666 - 3.47438i) q^{67} +(18.2392 + 4.88718i) q^{68} +(-2.17345 + 5.73945i) q^{69} +(3.08828 + 2.60534i) q^{70} +2.15986i q^{71} +(8.10268 - 5.36670i) q^{72} +(-9.18432 - 9.18432i) q^{73} +(0.202021 - 0.349910i) q^{74} +(-4.83720 - 7.18342i) q^{75} +(-0.747490 - 1.29469i) q^{76} +(-0.0511939 + 0.191058i) q^{77} +(-15.3529 - 1.54353i) q^{78} +(11.9729 + 6.91256i) q^{79} +(0.289654 - 1.61766i) q^{80} +(8.28675 + 3.51139i) q^{81} +(7.36245 - 7.36245i) q^{82} +(-1.39384 - 5.20187i) q^{83} +(-3.54190 + 2.89477i) q^{84} +(11.2583 + 5.28617i) q^{85} +(-2.77981 + 1.60493i) q^{86} +(7.76772 + 5.59011i) q^{87} +(0.795606 - 0.213182i) q^{88} +0.285526 q^{89} +(14.3031 - 6.17952i) q^{90} +2.98392 q^{91} +(-11.6189 + 3.11327i) q^{92} +(-0.306924 + 0.138317i) q^{93} +(-8.69105 + 5.01778i) q^{94} +(-0.334341 - 0.926215i) q^{95} +(-7.72993 - 2.92722i) q^{96} +(-2.34065 - 8.73543i) q^{97} +(-10.5026 + 10.5026i) q^{98} +(0.571428 + 0.505238i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} - 6 q^{3} - 6 q^{5} - 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 6 q^{2} - 6 q^{3} - 6 q^{5} - 2 q^{7} - 8 q^{10} - 6 q^{12} - 2 q^{13} - 6 q^{15} - 8 q^{16} + 36 q^{18} + 18 q^{20} - 12 q^{21} - 10 q^{22} + 18 q^{23} + 4 q^{25} + 18 q^{27} - 16 q^{28} + 30 q^{30} - 4 q^{31} + 30 q^{32} - 12 q^{33} - 48 q^{36} + 4 q^{37} - 30 q^{38} + 6 q^{40} - 24 q^{41} + 6 q^{42} - 2 q^{43} - 36 q^{45} + 32 q^{46} - 12 q^{47} - 30 q^{48} - 54 q^{50} + 36 q^{51} - 14 q^{52} - 16 q^{55} + 36 q^{56} - 6 q^{57} - 6 q^{58} + 18 q^{60} + 8 q^{61} + 36 q^{63} + 66 q^{65} + 36 q^{66} + 4 q^{67} + 42 q^{68} + 18 q^{70} + 18 q^{72} - 8 q^{73} + 42 q^{75} + 24 q^{76} - 6 q^{77} - 42 q^{78} - 48 q^{81} + 32 q^{82} - 66 q^{83} + 22 q^{85} - 48 q^{86} - 18 q^{87} + 18 q^{88} - 66 q^{90} - 40 q^{91} - 60 q^{92} - 18 q^{93} - 36 q^{95} - 24 q^{96} + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.24352 + 0.601150i −1.58641 + 0.425077i −0.940903 0.338677i \(-0.890021\pi\)
−0.645507 + 0.763754i \(0.723354\pi\)
\(3\) 0.173261 1.72336i 0.100032 0.994984i
\(4\) 2.93996 1.69739i 1.46998 0.848694i
\(5\) 2.10323 0.759216i 0.940595 0.339532i
\(6\) 0.647285 + 3.97056i 0.264253 + 1.62097i
\(7\) −0.201351 0.751454i −0.0761037 0.284023i 0.917378 0.398018i \(-0.130302\pi\)
−0.993481 + 0.113995i \(0.963635\pi\)
\(8\) −2.29074 + 2.29074i −0.809899 + 0.809899i
\(9\) −2.93996 0.597183i −0.979987 0.199061i
\(10\) −4.26225 + 2.96768i −1.34784 + 0.938462i
\(11\) −0.220188 0.127126i −0.0663893 0.0383299i 0.466438 0.884554i \(-0.345537\pi\)
−0.532827 + 0.846224i \(0.678870\pi\)
\(12\) −2.41583 5.36071i −0.697391 1.54750i
\(13\) −0.992714 + 3.70486i −0.275329 + 1.02754i 0.680291 + 0.732942i \(0.261853\pi\)
−0.955620 + 0.294601i \(0.904813\pi\)
\(14\) 0.903473 + 1.56486i 0.241463 + 0.418227i
\(15\) −0.943998 3.75618i −0.243739 0.969841i
\(16\) 0.367473 0.636483i 0.0918684 0.159121i
\(17\) 3.93311 + 3.93311i 0.953920 + 0.953920i 0.998984 0.0450642i \(-0.0143492\pi\)
−0.0450642 + 0.998984i \(0.514349\pi\)
\(18\) 6.95487 0.427565i 1.63928 0.100778i
\(19\) 0.440377i 0.101029i −0.998723 0.0505147i \(-0.983914\pi\)
0.998723 0.0505147i \(-0.0160862\pi\)
\(20\) 4.89474 5.80207i 1.09450 1.29738i
\(21\) −1.32991 + 0.216804i −0.290211 + 0.0473105i
\(22\) 0.570419 + 0.152843i 0.121614 + 0.0325863i
\(23\) −3.42258 0.917076i −0.713656 0.191224i −0.116317 0.993212i \(-0.537109\pi\)
−0.597339 + 0.801989i \(0.703775\pi\)
\(24\) 3.55088 + 4.34467i 0.724821 + 0.886853i
\(25\) 3.84718 3.19362i 0.769436 0.638724i
\(26\) 8.90871i 1.74714i
\(27\) −1.53854 + 4.96315i −0.296093 + 0.955159i
\(28\) −1.86747 1.86747i −0.352919 0.352919i
\(29\) −2.76265 + 4.78505i −0.513011 + 0.888561i 0.486875 + 0.873472i \(0.338137\pi\)
−0.999886 + 0.0150897i \(0.995197\pi\)
\(30\) 4.37591 + 7.85958i 0.798928 + 1.43496i
\(31\) −0.0971829 0.168326i −0.0174546 0.0302322i 0.857166 0.515040i \(-0.172223\pi\)
−0.874621 + 0.484808i \(0.838890\pi\)
\(32\) 1.23512 4.60955i 0.218341 0.814861i
\(33\) −0.257234 + 0.357439i −0.0447787 + 0.0622221i
\(34\) −11.1884 6.45964i −1.91880 1.10782i
\(35\) −0.994005 1.42761i −0.168018 0.241311i
\(36\) −9.65702 + 3.23456i −1.60950 + 0.539093i
\(37\) −0.123005 + 0.123005i −0.0202220 + 0.0202220i −0.717145 0.696924i \(-0.754552\pi\)
0.696924 + 0.717145i \(0.254552\pi\)
\(38\) 0.264732 + 0.987995i 0.0429453 + 0.160274i
\(39\) 6.21282 + 2.35271i 0.994848 + 0.376736i
\(40\) −3.07879 + 6.55713i −0.486800 + 1.03677i
\(41\) −3.88223 + 2.24141i −0.606303 + 0.350049i −0.771517 0.636209i \(-0.780502\pi\)
0.165214 + 0.986258i \(0.447168\pi\)
\(42\) 2.85336 1.28588i 0.440283 0.198416i
\(43\) 1.33488 0.357680i 0.203567 0.0545456i −0.155595 0.987821i \(-0.549729\pi\)
0.359162 + 0.933275i \(0.383063\pi\)
\(44\) −0.863127 −0.130121
\(45\) −6.63682 + 0.976052i −0.989358 + 0.145501i
\(46\) 8.22993 1.21344
\(47\) 4.17348 1.11828i 0.608765 0.163118i 0.0587499 0.998273i \(-0.481289\pi\)
0.550015 + 0.835155i \(0.314622\pi\)
\(48\) −1.03322 0.743568i −0.149133 0.107325i
\(49\) 5.53804 3.19739i 0.791148 0.456770i
\(50\) −6.71139 + 9.47769i −0.949134 + 1.34035i
\(51\) 7.45964 6.09673i 1.04456 0.853713i
\(52\) 3.37004 + 12.5772i 0.467341 + 1.74414i
\(53\) 0.938022 0.938022i 0.128847 0.128847i −0.639742 0.768589i \(-0.720959\pi\)
0.768589 + 0.639742i \(0.220959\pi\)
\(54\) 0.468157 12.0598i 0.0637081 1.64114i
\(55\) −0.559623 0.100205i −0.0754596 0.0135116i
\(56\) 2.18263 + 1.26014i 0.291666 + 0.168393i
\(57\) −0.758929 0.0763000i −0.100523 0.0101062i
\(58\) 3.32153 12.3961i 0.436139 1.62769i
\(59\) −4.02279 6.96768i −0.523723 0.907114i −0.999619 0.0276128i \(-0.991209\pi\)
0.475896 0.879502i \(-0.342124\pi\)
\(60\) −9.15100 9.44069i −1.18139 1.21879i
\(61\) −1.44186 + 2.49737i −0.184611 + 0.319755i −0.943445 0.331528i \(-0.892436\pi\)
0.758835 + 0.651283i \(0.225769\pi\)
\(62\) 0.319221 + 0.319221i 0.0405411 + 0.0405411i
\(63\) 0.143210 + 2.32949i 0.0180428 + 0.293488i
\(64\) 12.5540i 1.56925i
\(65\) 0.724881 + 8.54587i 0.0899104 + 1.05998i
\(66\) 0.362236 0.956558i 0.0445882 0.117744i
\(67\) −12.9666 3.47438i −1.58412 0.424463i −0.643919 0.765093i \(-0.722693\pi\)
−0.940197 + 0.340631i \(0.889359\pi\)
\(68\) 18.2392 + 4.88718i 2.21183 + 0.592658i
\(69\) −2.17345 + 5.73945i −0.261653 + 0.690948i
\(70\) 3.08828 + 2.60534i 0.369120 + 0.311397i
\(71\) 2.15986i 0.256328i 0.991753 + 0.128164i \(0.0409085\pi\)
−0.991753 + 0.128164i \(0.959092\pi\)
\(72\) 8.10268 5.36670i 0.954910 0.632471i
\(73\) −9.18432 9.18432i −1.07494 1.07494i −0.996954 0.0779897i \(-0.975150\pi\)
−0.0779897 0.996954i \(-0.524850\pi\)
\(74\) 0.202021 0.349910i 0.0234844 0.0406762i
\(75\) −4.83720 7.18342i −0.558552 0.829470i
\(76\) −0.747490 1.29469i −0.0857430 0.148511i
\(77\) −0.0511939 + 0.191058i −0.00583409 + 0.0217731i
\(78\) −15.3529 1.54353i −1.73838 0.174770i
\(79\) 11.9729 + 6.91256i 1.34706 + 0.777723i 0.987832 0.155528i \(-0.0497079\pi\)
0.359225 + 0.933251i \(0.383041\pi\)
\(80\) 0.289654 1.61766i 0.0323843 0.180860i
\(81\) 8.28675 + 3.51139i 0.920749 + 0.390154i
\(82\) 7.36245 7.36245i 0.813047 0.813047i
\(83\) −1.39384 5.20187i −0.152993 0.570979i −0.999269 0.0382335i \(-0.987827\pi\)
0.846275 0.532746i \(-0.178840\pi\)
\(84\) −3.54190 + 2.89477i −0.386452 + 0.315846i
\(85\) 11.2583 + 5.28617i 1.22114 + 0.573366i
\(86\) −2.77981 + 1.60493i −0.299755 + 0.173064i
\(87\) 7.76772 + 5.59011i 0.832787 + 0.599323i
\(88\) 0.795606 0.213182i 0.0848119 0.0227253i
\(89\) 0.285526 0.0302657 0.0151328 0.999885i \(-0.495183\pi\)
0.0151328 + 0.999885i \(0.495183\pi\)
\(90\) 14.3031 6.17952i 1.50768 0.651378i
\(91\) 2.98392 0.312799
\(92\) −11.6189 + 3.11327i −1.21135 + 0.324581i
\(93\) −0.306924 + 0.138317i −0.0318266 + 0.0143428i
\(94\) −8.69105 + 5.01778i −0.896413 + 0.517545i
\(95\) −0.334341 0.926215i −0.0343027 0.0950276i
\(96\) −7.72993 2.92722i −0.788932 0.298758i
\(97\) −2.34065 8.73543i −0.237657 0.886948i −0.976933 0.213546i \(-0.931499\pi\)
0.739276 0.673402i \(-0.235168\pi\)
\(98\) −10.5026 + 10.5026i −1.06092 + 1.06092i
\(99\) 0.571428 + 0.505238i 0.0574307 + 0.0507783i
\(100\) 5.88975 15.9193i 0.588975 1.59193i
\(101\) −11.3943 6.57848i −1.13377 0.654583i −0.188890 0.981998i \(-0.560489\pi\)
−0.944881 + 0.327415i \(0.893822\pi\)
\(102\) −13.0708 + 18.1625i −1.29420 + 1.79836i
\(103\) −4.23579 + 15.8082i −0.417364 + 1.55763i 0.362688 + 0.931911i \(0.381859\pi\)
−0.780052 + 0.625714i \(0.784808\pi\)
\(104\) −6.21282 10.7609i −0.609217 1.05520i
\(105\) −2.63252 + 1.46568i −0.256907 + 0.143036i
\(106\) −1.54058 + 2.66836i −0.149634 + 0.259175i
\(107\) −5.81401 5.81401i −0.562062 0.562062i 0.367831 0.929893i \(-0.380101\pi\)
−0.929893 + 0.367831i \(0.880101\pi\)
\(108\) 3.90114 + 17.2030i 0.375387 + 1.65536i
\(109\) 8.81907i 0.844713i −0.906430 0.422357i \(-0.861203\pi\)
0.906430 0.422357i \(-0.138797\pi\)
\(110\) 1.31577 0.111606i 0.125453 0.0106412i
\(111\) 0.190671 + 0.233295i 0.0180977 + 0.0221434i
\(112\) −0.552279 0.147983i −0.0521854 0.0139830i
\(113\) 13.0092 + 3.48580i 1.22380 + 0.327916i 0.812163 0.583431i \(-0.198290\pi\)
0.411638 + 0.911347i \(0.364957\pi\)
\(114\) 1.74854 0.285049i 0.163766 0.0266973i
\(115\) −7.89473 + 0.669650i −0.736188 + 0.0624452i
\(116\) 18.7571i 1.74156i
\(117\) 5.13102 10.2993i 0.474363 0.952172i
\(118\) 13.2138 + 13.2138i 1.21643 + 1.21643i
\(119\) 2.16361 3.74749i 0.198338 0.343532i
\(120\) 10.7669 + 6.44197i 0.982877 + 0.588069i
\(121\) −5.46768 9.47030i −0.497062 0.860936i
\(122\) 1.73354 6.46967i 0.156948 0.585736i
\(123\) 3.19012 + 7.07884i 0.287643 + 0.638278i
\(124\) −0.571428 0.329914i −0.0513157 0.0296272i
\(125\) 5.66687 9.63777i 0.506860 0.862028i
\(126\) −1.72167 5.14017i −0.153378 0.457923i
\(127\) −6.72167 + 6.72167i −0.596452 + 0.596452i −0.939366 0.342915i \(-0.888586\pi\)
0.342915 + 0.939366i \(0.388586\pi\)
\(128\) −5.07660 18.9461i −0.448712 1.67462i
\(129\) −0.385130 2.36245i −0.0339088 0.208002i
\(130\) −6.76364 18.7371i −0.593210 1.64335i
\(131\) 11.6482 6.72508i 1.01771 0.587573i 0.104267 0.994549i \(-0.466750\pi\)
0.913439 + 0.406977i \(0.133417\pi\)
\(132\) −0.149546 + 1.48748i −0.0130163 + 0.129469i
\(133\) −0.330923 + 0.0886705i −0.0286946 + 0.00768870i
\(134\) 31.1794 2.69349
\(135\) 0.532192 + 11.6068i 0.0458038 + 0.998950i
\(136\) −18.0195 −1.54516
\(137\) 9.45618 2.53378i 0.807896 0.216475i 0.168848 0.985642i \(-0.445995\pi\)
0.639048 + 0.769167i \(0.279329\pi\)
\(138\) 1.42592 14.1832i 0.121383 1.20735i
\(139\) −6.84922 + 3.95440i −0.580943 + 0.335408i −0.761508 0.648155i \(-0.775541\pi\)
0.180565 + 0.983563i \(0.442207\pi\)
\(140\) −5.34555 2.50992i −0.451781 0.212127i
\(141\) −1.20410 7.38618i −0.101404 0.622029i
\(142\) −1.29840 4.84570i −0.108959 0.406642i
\(143\) 0.689567 0.689567i 0.0576645 0.0576645i
\(144\) −1.46045 + 1.65179i −0.121705 + 0.137649i
\(145\) −2.17761 + 12.1615i −0.180841 + 1.00996i
\(146\) 26.1264 + 15.0841i 2.16224 + 1.24837i
\(147\) −4.55073 10.0980i −0.375338 0.832872i
\(148\) −0.152843 + 0.570419i −0.0125636 + 0.0468882i
\(149\) 4.56755 + 7.91123i 0.374188 + 0.648113i 0.990205 0.139620i \(-0.0445880\pi\)
−0.616017 + 0.787733i \(0.711255\pi\)
\(150\) 15.1707 + 13.2083i 1.23868 + 1.07845i
\(151\) −7.34991 + 12.7304i −0.598127 + 1.03599i 0.394970 + 0.918694i \(0.370755\pi\)
−0.993097 + 0.117293i \(0.962578\pi\)
\(152\) 1.00879 + 1.00879i 0.0818235 + 0.0818235i
\(153\) −9.21441 13.9120i −0.744941 1.12472i
\(154\) 0.459419i 0.0370210i
\(155\) −0.332194 0.280245i −0.0266825 0.0225098i
\(156\) 22.2589 3.62867i 1.78214 0.290527i
\(157\) 16.3566 + 4.38274i 1.30540 + 0.349781i 0.843490 0.537146i \(-0.180497\pi\)
0.461911 + 0.886926i \(0.347164\pi\)
\(158\) −31.0169 8.31097i −2.46758 0.661185i
\(159\) −1.45403 1.77907i −0.115312 0.141090i
\(160\) −0.901889 10.6327i −0.0713006 0.840587i
\(161\) 2.75656i 0.217248i
\(162\) −20.7024 2.89630i −1.62653 0.227555i
\(163\) 9.74771 + 9.74771i 0.763499 + 0.763499i 0.976953 0.213454i \(-0.0684713\pi\)
−0.213454 + 0.976953i \(0.568471\pi\)
\(164\) −7.60907 + 13.1793i −0.594169 + 1.02913i
\(165\) −0.269650 + 0.947073i −0.0209922 + 0.0737295i
\(166\) 6.25421 + 10.8326i 0.485421 + 0.840773i
\(167\) −5.10613 + 19.0563i −0.395124 + 1.47462i 0.426444 + 0.904514i \(0.359766\pi\)
−0.821568 + 0.570110i \(0.806900\pi\)
\(168\) 2.54985 3.54313i 0.196725 0.273358i
\(169\) −1.48218 0.855737i −0.114014 0.0658259i
\(170\) −28.4361 5.09169i −2.18095 0.390515i
\(171\) −0.262985 + 1.29469i −0.0201110 + 0.0990074i
\(172\) 3.31737 3.31737i 0.252947 0.252947i
\(173\) −2.68653 10.0263i −0.204253 0.762284i −0.989676 0.143324i \(-0.954221\pi\)
0.785422 0.618960i \(-0.212446\pi\)
\(174\) −20.7875 7.87197i −1.57590 0.596773i
\(175\) −3.17449 2.24794i −0.239969 0.169928i
\(176\) −0.161827 + 0.0934307i −0.0121981 + 0.00704260i
\(177\) −12.7048 + 5.72550i −0.954954 + 0.430355i
\(178\) −0.640584 + 0.171644i −0.0480138 + 0.0128653i
\(179\) −15.1015 −1.12874 −0.564370 0.825522i \(-0.690881\pi\)
−0.564370 + 0.825522i \(0.690881\pi\)
\(180\) −17.8552 + 14.1348i −1.33085 + 1.05355i
\(181\) −7.82954 −0.581965 −0.290983 0.956728i \(-0.593982\pi\)
−0.290983 + 0.956728i \(0.593982\pi\)
\(182\) −6.69448 + 1.79378i −0.496228 + 0.132964i
\(183\) 4.05405 + 2.91754i 0.299684 + 0.215671i
\(184\) 9.94101 5.73945i 0.732861 0.423118i
\(185\) −0.165321 + 0.352097i −0.0121547 + 0.0258867i
\(186\) 0.605442 0.494825i 0.0443932 0.0362823i
\(187\) −0.366025 1.36603i −0.0267664 0.0998937i
\(188\) 10.3717 10.3717i 0.756436 0.756436i
\(189\) 4.03937 + 0.156806i 0.293821 + 0.0114060i
\(190\) 1.30690 + 1.87699i 0.0948122 + 0.136171i
\(191\) 9.93557 + 5.73631i 0.718913 + 0.415065i 0.814352 0.580371i \(-0.197092\pi\)
−0.0954396 + 0.995435i \(0.530426\pi\)
\(192\) 21.6351 + 2.17512i 1.56138 + 0.156976i
\(193\) 1.42826 5.33034i 0.102808 0.383686i −0.895279 0.445506i \(-0.853024\pi\)
0.998087 + 0.0618198i \(0.0196904\pi\)
\(194\) 10.5026 + 18.1910i 0.754043 + 1.30604i
\(195\) 14.8532 + 0.231432i 1.06366 + 0.0165732i
\(196\) 10.8544 18.8004i 0.775315 1.34289i
\(197\) −2.32295 2.32295i −0.165504 0.165504i 0.619496 0.785000i \(-0.287337\pi\)
−0.785000 + 0.619496i \(0.787337\pi\)
\(198\) −1.58573 0.789998i −0.112693 0.0561427i
\(199\) 17.1978i 1.21912i −0.792741 0.609558i \(-0.791347\pi\)
0.792741 0.609558i \(-0.208653\pi\)
\(200\) −1.49714 + 16.1286i −0.105864 + 1.14047i
\(201\) −8.23421 + 21.7441i −0.580796 + 1.53371i
\(202\) 29.5179 + 7.90930i 2.07687 + 0.556497i
\(203\) 4.15201 + 1.11253i 0.291414 + 0.0780841i
\(204\) 11.5825 30.5860i 0.810940 2.14145i
\(205\) −6.46353 + 7.66166i −0.451432 + 0.535113i
\(206\) 38.0123i 2.64844i
\(207\) 9.51458 + 4.74007i 0.661309 + 0.329458i
\(208\) 1.99328 + 1.99328i 0.138209 + 0.138209i
\(209\) −0.0559832 + 0.0969658i −0.00387244 + 0.00670726i
\(210\) 5.02502 4.87083i 0.346759 0.336119i
\(211\) −2.27479 3.94005i −0.156603 0.271245i 0.777039 0.629453i \(-0.216721\pi\)
−0.933642 + 0.358209i \(0.883388\pi\)
\(212\) 1.16556 4.34993i 0.0800511 0.298755i
\(213\) 3.72223 + 0.374220i 0.255043 + 0.0256411i
\(214\) 16.5390 + 9.54878i 1.13058 + 0.652741i
\(215\) 2.53601 1.76575i 0.172954 0.120423i
\(216\) −7.84489 14.8937i −0.533777 1.01339i
\(217\) −0.106921 + 0.106921i −0.00725827 + 0.00725827i
\(218\) 5.30158 + 19.7858i 0.359068 + 1.34006i
\(219\) −17.4192 + 14.2366i −1.17708 + 0.962023i
\(220\) −1.81536 + 0.655300i −0.122391 + 0.0441803i
\(221\) −18.4761 + 10.6672i −1.24284 + 0.717552i
\(222\) −0.568020 0.408781i −0.0381230 0.0274356i
\(223\) 17.6922 4.74061i 1.18476 0.317455i 0.387946 0.921682i \(-0.373185\pi\)
0.796812 + 0.604227i \(0.206518\pi\)
\(224\) −3.71256 −0.248056
\(225\) −13.2177 + 7.09164i −0.881182 + 0.472776i
\(226\) −31.2819 −2.08084
\(227\) −10.8961 + 2.91961i −0.723202 + 0.193781i −0.601600 0.798798i \(-0.705470\pi\)
−0.121602 + 0.992579i \(0.538803\pi\)
\(228\) −2.36073 + 1.06388i −0.156343 + 0.0704570i
\(229\) −4.22418 + 2.43883i −0.279142 + 0.161163i −0.633035 0.774123i \(-0.718191\pi\)
0.353893 + 0.935286i \(0.384858\pi\)
\(230\) 17.3095 6.24830i 1.14135 0.412000i
\(231\) 0.320393 + 0.121329i 0.0210803 + 0.00798284i
\(232\) −4.63279 17.2898i −0.304158 1.13513i
\(233\) −7.90742 + 7.90742i −0.518033 + 0.518033i −0.916976 0.398943i \(-0.869377\pi\)
0.398943 + 0.916976i \(0.369377\pi\)
\(234\) −5.32013 + 26.1913i −0.347788 + 1.71218i
\(235\) 7.92879 5.52058i 0.517217 0.360123i
\(236\) −23.6537 13.6565i −1.53972 0.888960i
\(237\) 13.9873 19.4360i 0.908571 1.26250i
\(238\) −2.60131 + 9.70823i −0.168618 + 0.629291i
\(239\) −11.1362 19.2884i −0.720340 1.24767i −0.960864 0.277022i \(-0.910652\pi\)
0.240523 0.970643i \(-0.422681\pi\)
\(240\) −2.73764 0.779457i −0.176714 0.0503138i
\(241\) 14.4746 25.0708i 0.932392 1.61495i 0.153171 0.988200i \(-0.451051\pi\)
0.779220 0.626750i \(-0.215615\pi\)
\(242\) 17.9599 + 17.9599i 1.15451 + 1.15451i
\(243\) 7.48717 13.6727i 0.480302 0.877103i
\(244\) 9.78955i 0.626712i
\(245\) 9.22028 10.9294i 0.589062 0.698255i
\(246\) −11.4126 13.9638i −0.727638 0.890300i
\(247\) 1.63153 + 0.437168i 0.103812 + 0.0278163i
\(248\) 0.608211 + 0.162970i 0.0386214 + 0.0103486i
\(249\) −9.20620 + 1.50081i −0.583420 + 0.0951097i
\(250\) −6.92001 + 25.0292i −0.437660 + 1.58298i
\(251\) 20.4218i 1.28901i 0.764599 + 0.644507i \(0.222937\pi\)
−0.764599 + 0.644507i \(0.777063\pi\)
\(252\) 4.37508 + 6.60552i 0.275604 + 0.416109i
\(253\) 0.637027 + 0.637027i 0.0400496 + 0.0400496i
\(254\) 11.0395 19.1209i 0.692679 1.19975i
\(255\) 11.0606 18.4863i 0.692643 1.15766i
\(256\) 10.2249 + 17.7101i 0.639057 + 1.10688i
\(257\) 1.90043 7.09249i 0.118545 0.442417i −0.880982 0.473149i \(-0.843117\pi\)
0.999528 + 0.0307319i \(0.00978380\pi\)
\(258\) 2.28424 + 5.06870i 0.142210 + 0.315563i
\(259\) 0.117200 + 0.0676656i 0.00728247 + 0.00420453i
\(260\) 16.6368 + 23.8941i 1.03177 + 1.48185i
\(261\) 10.9796 12.4181i 0.679622 0.768658i
\(262\) −22.0902 + 22.0902i −1.36473 + 1.36473i
\(263\) 3.78069 + 14.1097i 0.233127 + 0.870044i 0.978984 + 0.203937i \(0.0653738\pi\)
−0.745857 + 0.666107i \(0.767960\pi\)
\(264\) −0.229543 1.40805i −0.0141274 0.0866598i
\(265\) 1.26072 2.68504i 0.0774452 0.164941i
\(266\) 0.689128 0.397868i 0.0422532 0.0243949i
\(267\) 0.0494705 0.492065i 0.00302754 0.0301139i
\(268\) −44.0185 + 11.7947i −2.68886 + 0.720478i
\(269\) −3.76010 −0.229257 −0.114629 0.993408i \(-0.536568\pi\)
−0.114629 + 0.993408i \(0.536568\pi\)
\(270\) −8.17139 25.7201i −0.497295 1.56527i
\(271\) 14.0785 0.855209 0.427604 0.903966i \(-0.359358\pi\)
0.427604 + 0.903966i \(0.359358\pi\)
\(272\) 3.94867 1.05804i 0.239423 0.0641533i
\(273\) 0.516996 5.14237i 0.0312900 0.311230i
\(274\) −19.6920 + 11.3692i −1.18964 + 0.686837i
\(275\) −1.25310 + 0.214122i −0.0755645 + 0.0129120i
\(276\) 3.35219 + 20.5629i 0.201778 + 1.23774i
\(277\) 0.541447 + 2.02071i 0.0325324 + 0.121413i 0.980283 0.197601i \(-0.0633151\pi\)
−0.947750 + 0.319014i \(0.896648\pi\)
\(278\) 12.9892 12.9892i 0.779040 0.779040i
\(279\) 0.185193 + 0.552907i 0.0110872 + 0.0331017i
\(280\) 5.54730 + 0.993284i 0.331514 + 0.0593600i
\(281\) 8.02672 + 4.63423i 0.478834 + 0.276455i 0.719930 0.694046i \(-0.244174\pi\)
−0.241097 + 0.970501i \(0.577507\pi\)
\(282\) 7.14164 + 15.8472i 0.425278 + 0.943688i
\(283\) 8.33602 31.1104i 0.495525 1.84932i −0.0315464 0.999502i \(-0.510043\pi\)
0.527071 0.849821i \(-0.323290\pi\)
\(284\) 3.66612 + 6.34991i 0.217544 + 0.376798i
\(285\) −1.65413 + 0.415714i −0.0979824 + 0.0246248i
\(286\) −1.13253 + 1.96159i −0.0669677 + 0.115991i
\(287\) 2.46601 + 2.46601i 0.145564 + 0.145564i
\(288\) −6.38396 + 12.8143i −0.376179 + 0.755090i
\(289\) 13.9387i 0.819926i
\(290\) −2.42539 28.5937i −0.142424 1.67908i
\(291\) −15.4599 + 2.52028i −0.906273 + 0.147742i
\(292\) −42.5909 11.4122i −2.49244 0.667849i
\(293\) 6.37987 + 1.70948i 0.372716 + 0.0998690i 0.440314 0.897844i \(-0.354867\pi\)
−0.0675984 + 0.997713i \(0.521534\pi\)
\(294\) 16.2801 + 19.9195i 0.949475 + 1.16173i
\(295\) −13.7508 11.6005i −0.800605 0.675406i
\(296\) 0.563547i 0.0327555i
\(297\) 0.969714 0.897240i 0.0562685 0.0520631i
\(298\) −15.0032 15.0032i −0.869114 0.869114i
\(299\) 6.79528 11.7698i 0.392981 0.680663i
\(300\) −26.4142 12.9084i −1.52503 0.745265i
\(301\) −0.537559 0.931080i −0.0309844 0.0536666i
\(302\) 8.83680 32.9794i 0.508501 1.89775i
\(303\) −13.3113 + 18.4966i −0.764713 + 1.06260i
\(304\) −0.280292 0.161827i −0.0160759 0.00928140i
\(305\) −1.13652 + 6.34723i −0.0650767 + 0.363441i
\(306\) 29.0359 + 25.6726i 1.65987 + 1.46761i
\(307\) 5.82120 5.82120i 0.332233 0.332233i −0.521201 0.853434i \(-0.674516\pi\)
0.853434 + 0.521201i \(0.174516\pi\)
\(308\) 0.173792 + 0.648600i 0.00990271 + 0.0369574i
\(309\) 26.5093 + 10.0387i 1.50806 + 0.571084i
\(310\) 0.913754 + 0.429038i 0.0518977 + 0.0243677i
\(311\) 9.98678 5.76587i 0.566299 0.326953i −0.189371 0.981906i \(-0.560645\pi\)
0.755670 + 0.654953i \(0.227312\pi\)
\(312\) −19.6214 + 8.84250i −1.11084 + 0.500608i
\(313\) −6.43287 + 1.72368i −0.363607 + 0.0974283i −0.435997 0.899948i \(-0.643604\pi\)
0.0723896 + 0.997376i \(0.476937\pi\)
\(314\) −39.3311 −2.21958
\(315\) 2.06979 + 4.79073i 0.116619 + 0.269927i
\(316\) 46.9331 2.64020
\(317\) 1.93788 0.519254i 0.108842 0.0291642i −0.203987 0.978974i \(-0.565390\pi\)
0.312829 + 0.949809i \(0.398723\pi\)
\(318\) 4.33164 + 3.11730i 0.242906 + 0.174810i
\(319\) 1.21661 0.702408i 0.0681169 0.0393273i
\(320\) 9.53121 + 26.4040i 0.532811 + 1.47603i
\(321\) −11.0270 + 9.01232i −0.615467 + 0.503018i
\(322\) −1.65711 6.18441i −0.0923470 0.344644i
\(323\) 1.73205 1.73205i 0.0963739 0.0963739i
\(324\) 30.3229 3.74247i 1.68461 0.207915i
\(325\) 8.01276 + 17.4236i 0.444468 + 0.966488i
\(326\) −27.7290 16.0094i −1.53577 0.886677i
\(327\) −15.1985 1.52800i −0.840477 0.0844986i
\(328\) 3.75870 14.0277i 0.207540 0.774548i
\(329\) −1.68067 2.91101i −0.0926585 0.160489i
\(330\) 0.0356324 2.28688i 0.00196150 0.125889i
\(331\) −11.7700 + 20.3862i −0.646937 + 1.12053i 0.336913 + 0.941536i \(0.390617\pi\)
−0.983850 + 0.178992i \(0.942716\pi\)
\(332\) −12.9274 12.9274i −0.709484 0.709484i
\(333\) 0.435088 0.288174i 0.0238427 0.0157919i
\(334\) 45.8229i 2.50732i
\(335\) −29.9095 + 2.53699i −1.63413 + 0.138611i
\(336\) −0.350716 + 0.926137i −0.0191331 + 0.0505249i
\(337\) 11.0048 + 2.94873i 0.599470 + 0.160627i 0.545778 0.837930i \(-0.316234\pi\)
0.0536923 + 0.998558i \(0.482901\pi\)
\(338\) 3.83973 + 1.02885i 0.208854 + 0.0559622i
\(339\) 8.26128 21.8156i 0.448691 1.18486i
\(340\) 42.0718 3.56863i 2.28166 0.193536i
\(341\) 0.0494178i 0.00267612i
\(342\) −0.188289 3.06276i −0.0101815 0.165615i
\(343\) −7.36850 7.36850i −0.397861 0.397861i
\(344\) −2.23851 + 3.87721i −0.120692 + 0.209045i
\(345\) −0.213798 + 13.7215i −0.0115105 + 0.738742i
\(346\) 12.0546 + 20.8792i 0.648059 + 1.12247i
\(347\) −3.69845 + 13.8028i −0.198543 + 0.740974i 0.792778 + 0.609511i \(0.208634\pi\)
−0.991321 + 0.131463i \(0.958033\pi\)
\(348\) 32.3254 + 3.24988i 1.73282 + 0.174212i
\(349\) −15.2113 8.78224i −0.814242 0.470103i 0.0341849 0.999416i \(-0.489116\pi\)
−0.848427 + 0.529313i \(0.822450\pi\)
\(350\) 8.47339 + 3.13496i 0.452922 + 0.167570i
\(351\) −16.8605 10.6271i −0.899944 0.567232i
\(352\) −0.857952 + 0.857952i −0.0457290 + 0.0457290i
\(353\) 4.51136 + 16.8366i 0.240116 + 0.896124i 0.975776 + 0.218773i \(0.0702054\pi\)
−0.735660 + 0.677351i \(0.763128\pi\)
\(354\) 25.0617 20.4828i 1.33201 1.08865i
\(355\) 1.63980 + 4.54269i 0.0870317 + 0.241101i
\(356\) 0.839435 0.484648i 0.0444900 0.0256863i
\(357\) −6.08342 4.37799i −0.321969 0.231708i
\(358\) 33.8806 9.07828i 1.79064 0.479802i
\(359\) 34.0577 1.79750 0.898748 0.438465i \(-0.144478\pi\)
0.898748 + 0.438465i \(0.144478\pi\)
\(360\) 12.9673 17.4391i 0.683439 0.919121i
\(361\) 18.8061 0.989793
\(362\) 17.5658 4.70673i 0.923236 0.247380i
\(363\) −17.2681 + 7.78196i −0.906340 + 0.408447i
\(364\) 8.77260 5.06486i 0.459809 0.265471i
\(365\) −26.2897 12.3439i −1.37606 0.646109i
\(366\) −10.8492 4.10847i −0.567099 0.214753i
\(367\) 3.65315 + 13.6337i 0.190693 + 0.711675i 0.993340 + 0.115221i \(0.0367577\pi\)
−0.802647 + 0.596454i \(0.796576\pi\)
\(368\) −1.84141 + 1.84141i −0.0959901 + 0.0959901i
\(369\) 12.7521 4.27125i 0.663850 0.222352i
\(370\) 0.159239 0.889320i 0.00827845 0.0462336i
\(371\) −0.893752 0.516008i −0.0464013 0.0267898i
\(372\) −0.667568 + 0.927616i −0.0346118 + 0.0480947i
\(373\) −5.57233 + 20.7962i −0.288524 + 1.07679i 0.657701 + 0.753279i \(0.271529\pi\)
−0.946225 + 0.323508i \(0.895138\pi\)
\(374\) 1.64237 + 2.84467i 0.0849251 + 0.147095i
\(375\) −15.6275 11.4359i −0.807002 0.590549i
\(376\) −6.99867 + 12.1221i −0.360929 + 0.625147i
\(377\) −14.9854 14.9854i −0.771788 0.771788i
\(378\) −9.15668 + 2.07647i −0.470969 + 0.106802i
\(379\) 9.52893i 0.489468i 0.969590 + 0.244734i \(0.0787007\pi\)
−0.969590 + 0.244734i \(0.921299\pi\)
\(380\) −2.55510 2.15553i −0.131074 0.110576i
\(381\) 10.4193 + 12.7485i 0.533795 + 0.653124i
\(382\) −25.7391 6.89676i −1.31693 0.352869i
\(383\) −9.61802 2.57714i −0.491458 0.131686i 0.00457478 0.999990i \(-0.498544\pi\)
−0.496033 + 0.868304i \(0.665210\pi\)
\(384\) −33.5306 + 5.46620i −1.71110 + 0.278946i
\(385\) 0.0373818 + 0.440707i 0.00190516 + 0.0224605i
\(386\) 12.8173i 0.652385i
\(387\) −4.13809 + 0.254398i −0.210351 + 0.0129318i
\(388\) −21.7088 21.7088i −1.10210 1.10210i
\(389\) −14.5672 + 25.2312i −0.738587 + 1.27927i 0.214544 + 0.976714i \(0.431173\pi\)
−0.953131 + 0.302557i \(0.902160\pi\)
\(390\) −33.4627 + 8.40980i −1.69445 + 0.425847i
\(391\) −9.85441 17.0683i −0.498359 0.863183i
\(392\) −5.36182 + 20.0106i −0.270813 + 1.01069i
\(393\) −9.57158 21.2392i −0.482822 1.07138i
\(394\) 6.60804 + 3.81516i 0.332908 + 0.192205i
\(395\) 30.4299 + 5.44870i 1.53110 + 0.274154i
\(396\) 2.53756 + 0.515445i 0.127517 + 0.0259021i
\(397\) −18.9354 + 18.9354i −0.950338 + 0.950338i −0.998824 0.0484856i \(-0.984561\pi\)
0.0484856 + 0.998824i \(0.484561\pi\)
\(398\) 10.3384 + 38.5836i 0.518219 + 1.93402i
\(399\) 0.0954754 + 0.585663i 0.00477975 + 0.0293198i
\(400\) −0.618946 3.62223i −0.0309473 0.181112i
\(401\) 21.2096 12.2453i 1.05916 0.611503i 0.133957 0.990987i \(-0.457232\pi\)
0.925198 + 0.379484i \(0.123898\pi\)
\(402\) 5.40217 53.7334i 0.269436 2.67998i
\(403\) 0.720098 0.192950i 0.0358706 0.00961151i
\(404\) −44.6649 −2.22216
\(405\) 20.0949 + 1.09384i 0.998522 + 0.0543532i
\(406\) −9.98392 −0.495493
\(407\) 0.0427215 0.0114472i 0.00211763 0.000567417i
\(408\) −3.12207 + 31.0541i −0.154566 + 1.53741i
\(409\) −12.2649 + 7.08116i −0.606462 + 0.350141i −0.771579 0.636133i \(-0.780533\pi\)
0.165118 + 0.986274i \(0.447200\pi\)
\(410\) 9.89526 21.0747i 0.488692 1.04080i
\(411\) −2.72823 16.7354i −0.134574 0.825498i
\(412\) 14.3795 + 53.6652i 0.708429 + 2.64389i
\(413\) −4.42589 + 4.42589i −0.217784 + 0.217784i
\(414\) −24.1957 4.91477i −1.18915 0.241548i
\(415\) −6.88091 9.88252i −0.337770 0.485114i
\(416\) 15.8516 + 9.15193i 0.777189 + 0.448710i
\(417\) 5.62816 + 12.4888i 0.275612 + 0.611581i
\(418\) 0.0673086 0.251199i 0.00329217 0.0122866i
\(419\) 13.8808 + 24.0422i 0.678120 + 1.17454i 0.975546 + 0.219794i \(0.0705385\pi\)
−0.297426 + 0.954745i \(0.596128\pi\)
\(420\) −5.25167 + 8.77745i −0.256255 + 0.428296i
\(421\) −0.429901 + 0.744611i −0.0209521 + 0.0362901i −0.876311 0.481745i \(-0.840003\pi\)
0.855359 + 0.518035i \(0.173336\pi\)
\(422\) 7.47211 + 7.47211i 0.363737 + 0.363737i
\(423\) −12.9377 + 0.795372i −0.629053 + 0.0386723i
\(424\) 4.29753i 0.208706i
\(425\) 27.6923 + 2.57053i 1.34327 + 0.124689i
\(426\) −8.57586 + 1.39805i −0.415502 + 0.0677356i
\(427\) 2.16698 + 0.580639i 0.104867 + 0.0280991i
\(428\) −26.9616 7.22434i −1.30324 0.349202i
\(429\) −1.06890 1.30785i −0.0516070 0.0631436i
\(430\) −4.62811 + 5.48601i −0.223187 + 0.264559i
\(431\) 25.5770i 1.23200i −0.787746 0.616000i \(-0.788752\pi\)
0.787746 0.616000i \(-0.211248\pi\)
\(432\) 2.59359 + 2.80308i 0.124784 + 0.134863i
\(433\) 6.30733 + 6.30733i 0.303111 + 0.303111i 0.842230 0.539119i \(-0.181243\pi\)
−0.539119 + 0.842230i \(0.681243\pi\)
\(434\) 0.175604 0.304155i 0.00842927 0.0145999i
\(435\) 20.5814 + 5.85993i 0.986804 + 0.280962i
\(436\) −14.9694 25.9277i −0.716903 1.24171i
\(437\) −0.403859 + 1.50722i −0.0193192 + 0.0721002i
\(438\) 30.5220 42.4118i 1.45840 2.02651i
\(439\) 12.4666 + 7.19760i 0.594999 + 0.343523i 0.767072 0.641561i \(-0.221713\pi\)
−0.172073 + 0.985084i \(0.555046\pi\)
\(440\) 1.51149 1.05241i 0.0720577 0.0501716i
\(441\) −18.1910 + 6.09297i −0.866240 + 0.290142i
\(442\) 35.0390 35.0390i 1.66663 1.66663i
\(443\) −5.67359 21.1741i −0.269560 1.00601i −0.959400 0.282050i \(-0.908986\pi\)
0.689839 0.723962i \(-0.257681\pi\)
\(444\) 0.956558 + 0.362236i 0.0453962 + 0.0171910i
\(445\) 0.600528 0.216776i 0.0284677 0.0102762i
\(446\) −36.8430 + 21.2713i −1.74457 + 1.00723i
\(447\) 14.4253 6.50084i 0.682293 0.307479i
\(448\) 9.43376 2.52777i 0.445703 0.119426i
\(449\) 23.6447 1.11586 0.557931 0.829888i \(-0.311596\pi\)
0.557931 + 0.829888i \(0.311596\pi\)
\(450\) 25.3911 23.8561i 1.19695 1.12459i
\(451\) 1.13976 0.0536693
\(452\) 44.1632 11.8335i 2.07726 0.556601i
\(453\) 20.6657 + 14.8722i 0.970958 + 0.698759i
\(454\) 22.6906 13.1004i 1.06492 0.614833i
\(455\) 6.27587 2.26544i 0.294217 0.106205i
\(456\) 1.91329 1.56373i 0.0895981 0.0732281i
\(457\) −1.47628 5.50956i −0.0690575 0.257726i 0.922763 0.385369i \(-0.125926\pi\)
−0.991820 + 0.127642i \(0.959259\pi\)
\(458\) 8.01095 8.01095i 0.374327 0.374327i
\(459\) −25.5719 + 13.4694i −1.19359 + 0.628697i
\(460\) −22.0736 + 15.3692i −1.02919 + 0.716591i
\(461\) −27.8943 16.1048i −1.29916 0.750073i −0.318905 0.947787i \(-0.603315\pi\)
−0.980260 + 0.197713i \(0.936648\pi\)
\(462\) −0.791745 0.0795993i −0.0368353 0.00370329i
\(463\) −1.65471 + 6.17544i −0.0769007 + 0.286997i −0.993658 0.112448i \(-0.964131\pi\)
0.916757 + 0.399446i \(0.130797\pi\)
\(464\) 2.03040 + 3.51676i 0.0942590 + 0.163261i
\(465\) −0.540521 + 0.523935i −0.0250660 + 0.0242969i
\(466\) 12.9869 22.4940i 0.601608 1.04202i
\(467\) −12.7982 12.7982i −0.592230 0.592230i 0.346003 0.938233i \(-0.387539\pi\)
−0.938233 + 0.346003i \(0.887539\pi\)
\(468\) −2.39692 38.9889i −0.110798 1.80226i
\(469\) 10.4433i 0.482228i
\(470\) −14.4697 + 17.1520i −0.667439 + 0.791161i
\(471\) 10.3870 27.4290i 0.478609 1.26386i
\(472\) 25.1763 + 6.74597i 1.15883 + 0.310508i
\(473\) −0.339395 0.0909406i −0.0156054 0.00418145i
\(474\) −19.6968 + 52.0135i −0.904706 + 2.38906i
\(475\) −1.40639 1.69421i −0.0645298 0.0777356i
\(476\) 14.6900i 0.673314i
\(477\) −3.31792 + 2.19758i −0.151917 + 0.100620i
\(478\) 36.5795 + 36.5795i 1.67311 + 1.67311i
\(479\) −1.76166 + 3.05128i −0.0804921 + 0.139416i −0.903461 0.428669i \(-0.858983\pi\)
0.822969 + 0.568086i \(0.192316\pi\)
\(480\) −18.4802 0.287945i −0.843503 0.0131428i
\(481\) −0.333609 0.577827i −0.0152112 0.0263467i
\(482\) −17.4028 + 64.9482i −0.792677 + 2.95831i
\(483\) 4.75056 + 0.477604i 0.216158 + 0.0217318i
\(484\) −32.1495 18.5615i −1.46134 0.843706i
\(485\) −11.5550 16.5956i −0.524686 0.753566i
\(486\) −8.57829 + 35.1759i −0.389119 + 1.59561i
\(487\) 29.3442 29.3442i 1.32971 1.32971i 0.424098 0.905616i \(-0.360591\pi\)
0.905616 0.424098i \(-0.139409\pi\)
\(488\) −2.41790 9.02373i −0.109453 0.408485i
\(489\) 18.4877 15.1099i 0.836044 0.683295i
\(490\) −14.1157 + 30.0632i −0.637681 + 1.35812i
\(491\) 17.9001 10.3346i 0.807819 0.466395i −0.0383788 0.999263i \(-0.512219\pi\)
0.846198 + 0.532869i \(0.178886\pi\)
\(492\) 21.3944 + 15.3967i 0.964533 + 0.694135i
\(493\) −29.6859 + 7.95433i −1.33699 + 0.358245i
\(494\) −3.92319 −0.176513
\(495\) 1.58543 + 0.628795i 0.0712598 + 0.0282622i
\(496\) −0.142849 −0.00641409
\(497\) 1.62304 0.434891i 0.0728031 0.0195075i
\(498\) 19.7521 8.90140i 0.885114 0.398881i
\(499\) 22.6691 13.0880i 1.01481 0.585901i 0.102214 0.994762i \(-0.467407\pi\)
0.912596 + 0.408862i \(0.134074\pi\)
\(500\) 0.301355 37.9535i 0.0134770 1.69733i
\(501\) 31.9563 + 12.1014i 1.42770 + 0.540652i
\(502\) −12.2766 45.8168i −0.547930 2.04490i
\(503\) −6.72022 + 6.72022i −0.299640 + 0.299640i −0.840873 0.541233i \(-0.817958\pi\)
0.541233 + 0.840873i \(0.317958\pi\)
\(504\) −5.66431 5.00820i −0.252308 0.223083i
\(505\) −28.9593 5.18536i −1.28867 0.230746i
\(506\) −1.81213 1.04624i −0.0805592 0.0465109i
\(507\) −1.73155 + 2.40607i −0.0769008 + 0.106857i
\(508\) −8.35217 + 31.1707i −0.370568 + 1.38298i
\(509\) −11.9676 20.7285i −0.530454 0.918773i −0.999369 0.0355293i \(-0.988688\pi\)
0.468915 0.883243i \(-0.344645\pi\)
\(510\) −13.7017 + 48.1236i −0.606721 + 2.13095i
\(511\) −5.05232 + 8.75087i −0.223501 + 0.387116i
\(512\) −5.84717 5.84717i −0.258411 0.258411i
\(513\) 2.18566 + 0.677538i 0.0964991 + 0.0299141i
\(514\) 17.0546i 0.752246i
\(515\) 3.09298 + 36.4641i 0.136293 + 1.60680i
\(516\) −5.14226 6.29181i −0.226376 0.276981i
\(517\) −1.06111 0.284325i −0.0466678 0.0125046i
\(518\) −0.303618 0.0813543i −0.0133402 0.00357450i
\(519\) −17.7444 + 2.89271i −0.778893 + 0.126976i
\(520\) −21.2369 17.9159i −0.931299 0.785662i
\(521\) 3.23141i 0.141571i 0.997492 + 0.0707853i \(0.0225505\pi\)
−0.997492 + 0.0707853i \(0.977449\pi\)
\(522\) −17.1679 + 34.4606i −0.751420 + 1.50830i
\(523\) −8.67002 8.67002i −0.379114 0.379114i 0.491669 0.870782i \(-0.336387\pi\)
−0.870782 + 0.491669i \(0.836387\pi\)
\(524\) 22.8301 39.5429i 0.997339 1.72744i
\(525\) −4.42403 + 5.08132i −0.193080 + 0.221767i
\(526\) −16.9641 29.3827i −0.739672 1.28115i
\(527\) 0.279813 1.04427i 0.0121888 0.0454893i
\(528\) 0.132977 + 0.295074i 0.00578707 + 0.0128415i
\(529\) −9.04559 5.22247i −0.393286 0.227064i
\(530\) −1.21434 + 6.78183i −0.0527474 + 0.294584i
\(531\) 7.66587 + 22.8870i 0.332670 + 0.993213i
\(532\) −0.822392 + 0.822392i −0.0356552 + 0.0356552i
\(533\) −4.45016 16.6082i −0.192758 0.719381i
\(534\) 0.184817 + 1.13370i 0.00799780 + 0.0490599i
\(535\) −16.6423 7.81413i −0.719510 0.337834i
\(536\) 37.6619 21.7441i 1.62675 0.939202i
\(537\) −2.61650 + 26.0254i −0.112910 + 1.12308i
\(538\) 8.43586 2.26038i 0.363696 0.0974520i
\(539\) −1.62588 −0.0700317
\(540\) 21.2658 + 33.2201i 0.915134 + 1.42956i
\(541\) −11.1502 −0.479386 −0.239693 0.970849i \(-0.577047\pi\)
−0.239693 + 0.970849i \(0.577047\pi\)
\(542\) −31.5855 + 8.46330i −1.35671 + 0.363530i
\(543\) −1.35655 + 13.4931i −0.0582153 + 0.579046i
\(544\) 22.9878 13.2720i 0.985592 0.569032i
\(545\) −6.69558 18.5486i −0.286807 0.794533i
\(546\) 1.93144 + 11.8478i 0.0826582 + 0.507040i
\(547\) 3.54511 + 13.2305i 0.151578 + 0.565697i 0.999374 + 0.0353748i \(0.0112625\pi\)
−0.847796 + 0.530323i \(0.822071\pi\)
\(548\) 23.5000 23.5000i 1.00387 1.00387i
\(549\) 5.73038 6.48111i 0.244567 0.276607i
\(550\) 2.68263 1.23369i 0.114388 0.0526045i
\(551\) 2.10722 + 1.21661i 0.0897708 + 0.0518292i
\(552\) −8.16876 18.1264i −0.347686 0.771511i
\(553\) 2.78371 10.3889i 0.118375 0.441782i
\(554\) −2.42950 4.20802i −0.103220 0.178781i
\(555\) 0.578147 + 0.345913i 0.0245410 + 0.0146832i
\(556\) −13.4243 + 23.2516i −0.569317 + 0.986086i
\(557\) 11.8934 + 11.8934i 0.503938 + 0.503938i 0.912659 0.408721i \(-0.134025\pi\)
−0.408721 + 0.912659i \(0.634025\pi\)
\(558\) −0.747864 1.12913i −0.0316596 0.0477999i
\(559\) 5.30061i 0.224192i
\(560\) −1.27392 + 0.108057i −0.0538330 + 0.00456624i
\(561\) −2.41758 + 0.394116i −0.102070 + 0.0166396i
\(562\) −20.7940 5.57173i −0.877141 0.235029i
\(563\) −23.7986 6.37683i −1.00299 0.268751i −0.280294 0.959914i \(-0.590432\pi\)
−0.722699 + 0.691163i \(0.757099\pi\)
\(564\) −16.0772 19.6713i −0.676974 0.828310i
\(565\) 30.0078 2.54533i 1.26244 0.107083i
\(566\) 74.8082i 3.14442i
\(567\) 0.970098 6.93413i 0.0407403 0.291206i
\(568\) −4.94768 4.94768i −0.207600 0.207600i
\(569\) 6.24856 10.8228i 0.261953 0.453716i −0.704808 0.709399i \(-0.748967\pi\)
0.966761 + 0.255682i \(0.0823000\pi\)
\(570\) 3.46118 1.92705i 0.144973 0.0807151i
\(571\) 13.7065 + 23.7404i 0.573601 + 0.993506i 0.996192 + 0.0871853i \(0.0277872\pi\)
−0.422591 + 0.906320i \(0.638879\pi\)
\(572\) 0.856838 3.19776i 0.0358262 0.133705i
\(573\) 11.6072 16.1287i 0.484897 0.673787i
\(574\) −7.01498 4.05010i −0.292800 0.169048i
\(575\) −16.0961 + 7.40224i −0.671252 + 0.308695i
\(576\) 7.49704 36.9083i 0.312377 1.53785i
\(577\) −11.1638 + 11.1638i −0.464755 + 0.464755i −0.900210 0.435455i \(-0.856587\pi\)
0.435455 + 0.900210i \(0.356587\pi\)
\(578\) −8.37928 31.2719i −0.348532 1.30074i
\(579\) −8.93865 3.38495i −0.371478 0.140674i
\(580\) 14.2407 + 39.4507i 0.591314 + 1.63810i
\(581\) −3.62831 + 2.09481i −0.150528 + 0.0869072i
\(582\) 33.1695 14.9480i 1.37492 0.619615i
\(583\) −0.325788 + 0.0872947i −0.0134928 + 0.00361538i
\(584\) 42.0778 1.74119
\(585\) 2.97233 25.5574i 0.122891 1.05667i
\(586\) −15.3410 −0.633733
\(587\) 17.7860 4.76574i 0.734106 0.196703i 0.127649 0.991819i \(-0.459257\pi\)
0.606457 + 0.795116i \(0.292590\pi\)
\(588\) −30.5193 21.9635i −1.25859 0.905758i
\(589\) −0.0741267 + 0.0427971i −0.00305434 + 0.00176342i
\(590\) 37.8240 + 17.7596i 1.55719 + 0.731152i
\(591\) −4.40577 + 3.60082i −0.181229 + 0.148118i
\(592\) 0.0330896 + 0.123492i 0.00135997 + 0.00507549i
\(593\) −14.5424 + 14.5424i −0.597186 + 0.597186i −0.939563 0.342377i \(-0.888768\pi\)
0.342377 + 0.939563i \(0.388768\pi\)
\(594\) −1.63620 + 2.59592i −0.0671341 + 0.106512i
\(595\) 1.70543 9.52450i 0.0699158 0.390466i
\(596\) 26.8568 + 15.5058i 1.10010 + 0.635143i
\(597\) −29.6380 2.97970i −1.21300 0.121951i
\(598\) −8.16997 + 30.4907i −0.334095 + 1.24686i
\(599\) 17.6972 + 30.6525i 0.723089 + 1.25243i 0.959756 + 0.280836i \(0.0906118\pi\)
−0.236666 + 0.971591i \(0.576055\pi\)
\(600\) 27.5361 + 5.37458i 1.12416 + 0.219416i
\(601\) 7.31737 12.6741i 0.298482 0.516986i −0.677307 0.735700i \(-0.736853\pi\)
0.975789 + 0.218715i \(0.0701864\pi\)
\(602\) 1.76575 + 1.76575i 0.0719664 + 0.0719664i
\(603\) 36.0463 + 17.9579i 1.46792 + 0.731304i
\(604\) 49.9026i 2.03051i
\(605\) −18.6898 15.7671i −0.759849 0.641023i
\(606\) 18.7449 49.4997i 0.761460 2.01079i
\(607\) −7.54883 2.02270i −0.306397 0.0820989i 0.102344 0.994749i \(-0.467366\pi\)
−0.408742 + 0.912650i \(0.634032\pi\)
\(608\) −2.02994 0.543920i −0.0823248 0.0220589i
\(609\) 2.63667 6.96266i 0.106843 0.282141i
\(610\) −1.26583 14.9234i −0.0512522 0.604229i
\(611\) 16.5723i 0.670444i
\(612\) −50.7040 25.2603i −2.04959 1.02109i
\(613\) 3.49830 + 3.49830i 0.141295 + 0.141295i 0.774216 0.632921i \(-0.218144\pi\)
−0.632921 + 0.774216i \(0.718144\pi\)
\(614\) −9.56058 + 16.5594i −0.385833 + 0.668283i
\(615\) 12.0839 + 12.4665i 0.487272 + 0.502697i
\(616\) −0.320393 0.554937i −0.0129090 0.0223590i
\(617\) 6.40561 23.9061i 0.257880 0.962421i −0.708585 0.705625i \(-0.750666\pi\)
0.966466 0.256796i \(-0.0826670\pi\)
\(618\) −65.5090 6.58605i −2.63516 0.264930i
\(619\) −15.4357 8.91182i −0.620414 0.358196i 0.156616 0.987660i \(-0.449941\pi\)
−0.777030 + 0.629463i \(0.783275\pi\)
\(620\) −1.45232 0.260049i −0.0583267 0.0104438i
\(621\) 9.81737 15.5758i 0.393958 0.625035i
\(622\) −18.9394 + 18.9394i −0.759402 + 0.759402i
\(623\) −0.0574910 0.214559i −0.00230333 0.00859614i
\(624\) 3.78051 3.08979i 0.151342 0.123691i
\(625\) 4.60160 24.5729i 0.184064 0.982914i
\(626\) 13.3961 7.73424i 0.535416 0.309122i
\(627\) 0.157408 + 0.113280i 0.00628625 + 0.00452396i
\(628\) 55.5270 14.8784i 2.21577 0.593714i
\(629\) −0.967588 −0.0385803
\(630\) −7.52357 9.50386i −0.299746 0.378643i
\(631\) −29.9153 −1.19091 −0.595454 0.803389i \(-0.703028\pi\)
−0.595454 + 0.803389i \(0.703028\pi\)
\(632\) −43.2617 + 11.5919i −1.72086 + 0.461102i
\(633\) −7.18428 + 3.23763i −0.285549 + 0.128684i
\(634\) −4.03553 + 2.32991i −0.160271 + 0.0925327i
\(635\) −9.03403 + 19.2404i −0.358505 + 0.763533i
\(636\) −7.29457 2.76236i −0.289249 0.109535i
\(637\) 6.34819 + 23.6917i 0.251524 + 0.938701i
\(638\) −2.30723 + 2.30723i −0.0913441 + 0.0913441i
\(639\) 1.28983 6.34991i 0.0510250 0.251199i
\(640\) −25.0615 35.9939i −0.990642 1.42278i
\(641\) −13.7403 7.93299i −0.542711 0.313334i 0.203466 0.979082i \(-0.434779\pi\)
−0.746177 + 0.665748i \(0.768113\pi\)
\(642\) 19.3216 26.8482i 0.762561 1.05961i
\(643\) 6.01727 22.4568i 0.237298 0.885608i −0.739801 0.672825i \(-0.765081\pi\)
0.977099 0.212783i \(-0.0682527\pi\)
\(644\) 4.67895 + 8.10419i 0.184377 + 0.319350i
\(645\) −2.60363 4.67639i −0.102518 0.184133i
\(646\) −2.84467 + 4.92712i −0.111922 + 0.193855i
\(647\) −8.90965 8.90965i −0.350274 0.350274i 0.509937 0.860212i \(-0.329669\pi\)
−0.860212 + 0.509937i \(0.829669\pi\)
\(648\) −27.0265 + 10.9391i −1.06170 + 0.429728i
\(649\) 2.04560i 0.0802969i
\(650\) −28.4510 34.2734i −1.11594 1.34431i
\(651\) 0.165739 + 0.202789i 0.00649581 + 0.00794793i
\(652\) 45.2035 + 12.1122i 1.77031 + 0.474352i
\(653\) 14.0422 + 3.76260i 0.549515 + 0.147242i 0.522885 0.852403i \(-0.324856\pi\)
0.0266300 + 0.999645i \(0.491522\pi\)
\(654\) 35.0166 5.70845i 1.36926 0.223218i
\(655\) 19.3930 22.9879i 0.757749 0.898211i
\(656\) 3.29463i 0.128634i
\(657\) 21.5168 + 32.4863i 0.839452 + 1.26741i
\(658\) 5.52058 + 5.52058i 0.215215 + 0.215215i
\(659\) −4.50735 + 7.80696i −0.175582 + 0.304116i −0.940362 0.340174i \(-0.889514\pi\)
0.764781 + 0.644291i \(0.222847\pi\)
\(660\) 0.814790 + 3.24206i 0.0317156 + 0.126197i
\(661\) 15.0034 + 25.9866i 0.583564 + 1.01076i 0.995053 + 0.0993481i \(0.0316757\pi\)
−0.411488 + 0.911415i \(0.634991\pi\)
\(662\) 14.1511 52.8125i 0.549996 2.05261i
\(663\) 15.1822 + 33.6892i 0.589629 + 1.30838i
\(664\) 15.1090 + 8.72321i 0.586345 + 0.338526i
\(665\) −0.628687 + 0.437737i −0.0243795 + 0.0169747i
\(666\) −0.802894 + 0.908079i −0.0311115 + 0.0351874i
\(667\) 13.8436 13.8436i 0.536028 0.536028i
\(668\) 17.3342 + 64.6920i 0.670679 + 2.50301i
\(669\) −5.10443 31.3115i −0.197349 1.21057i
\(670\) 65.5775 23.6719i 2.53348 0.914525i
\(671\) 0.634959 0.366594i 0.0245123 0.0141522i
\(672\) −0.643241 + 6.39808i −0.0248136 + 0.246811i
\(673\) 26.2818 7.04218i 1.01309 0.271456i 0.286169 0.958179i \(-0.407618\pi\)
0.726919 + 0.686723i \(0.240951\pi\)
\(674\) −26.4622 −1.01928
\(675\) 9.93136 + 24.0077i 0.382258 + 0.924056i
\(676\) −5.81007 −0.223464
\(677\) 16.7622 4.49141i 0.644223 0.172619i 0.0781075 0.996945i \(-0.475112\pi\)
0.566116 + 0.824326i \(0.308446\pi\)
\(678\) −5.41993 + 53.9100i −0.208151 + 2.07040i
\(679\) −6.09297 + 3.51778i −0.233827 + 0.135000i
\(680\) −37.8992 + 13.6807i −1.45337 + 0.524630i
\(681\) 3.14367 + 19.2838i 0.120466 + 0.738959i
\(682\) −0.0297075 0.110870i −0.00113756 0.00424543i
\(683\) 27.4945 27.4945i 1.05205 1.05205i 0.0534806 0.998569i \(-0.482968\pi\)
0.998569 0.0534806i \(-0.0170315\pi\)
\(684\) 1.42442 + 4.25273i 0.0544642 + 0.162607i
\(685\) 17.9649 12.5084i 0.686403 0.477922i
\(686\) 20.9610 + 12.1018i 0.800293 + 0.462049i
\(687\) 3.47111 + 7.70236i 0.132431 + 0.293863i
\(688\) 0.262876 0.981065i 0.0100220 0.0374028i
\(689\) 2.54405 + 4.40643i 0.0969207 + 0.167872i
\(690\) −7.76903 30.9131i −0.295762 1.17684i
\(691\) −9.07512 + 15.7186i −0.345234 + 0.597962i −0.985396 0.170277i \(-0.945534\pi\)
0.640162 + 0.768240i \(0.278867\pi\)
\(692\) −24.9168 24.9168i −0.947195 0.947195i
\(693\) 0.264605 0.531132i 0.0100515 0.0201760i
\(694\) 33.1902i 1.25988i
\(695\) −11.4033 + 13.5171i −0.432550 + 0.512731i
\(696\) −30.5993 + 4.98833i −1.15986 + 0.189082i
\(697\) −24.0850 6.45355i −0.912283 0.244446i
\(698\) 39.4063 + 10.5589i 1.49155 + 0.399660i
\(699\) 12.2573 + 14.9974i 0.463614 + 0.567254i
\(700\) −13.1485 1.22051i −0.496967 0.0461309i
\(701\) 5.23510i 0.197727i −0.995101 0.0988635i \(-0.968479\pi\)
0.995101 0.0988635i \(-0.0315207\pi\)
\(702\) 44.2153 + 13.7064i 1.66880 + 0.517316i
\(703\) 0.0541687 + 0.0541687i 0.00204301 + 0.00204301i
\(704\) 1.59594 2.76425i 0.0601492 0.104181i
\(705\) −8.14022 14.6207i −0.306579 0.550647i
\(706\) −20.2427 35.0614i −0.761844 1.31955i
\(707\) −2.64917 + 9.88684i −0.0996323 + 0.371833i
\(708\) −27.6333 + 38.3978i −1.03852 + 1.44308i
\(709\) −14.7176 8.49720i −0.552730 0.319119i 0.197492 0.980304i \(-0.436720\pi\)
−0.750222 + 0.661186i \(0.770054\pi\)
\(710\) −6.40977 9.20587i −0.240555 0.345490i
\(711\) −31.0718 27.4727i −1.16528 1.03031i
\(712\) −0.654066 + 0.654066i −0.0245121 + 0.0245121i
\(713\) 0.178248 + 0.665231i 0.00667545 + 0.0249131i
\(714\) 16.2801 + 6.16507i 0.609268 + 0.230722i
\(715\) 0.926790 1.97385i 0.0346600 0.0738179i
\(716\) −44.3979 + 25.6331i −1.65923 + 0.957955i
\(717\) −35.1705 + 15.8498i −1.31346 + 0.591920i
\(718\) −76.4092 + 20.4738i −2.85157 + 0.764075i
\(719\) −49.3502 −1.84045 −0.920225 0.391389i \(-0.871995\pi\)
−0.920225 + 0.391389i \(0.871995\pi\)
\(720\) −1.81761 + 4.58289i −0.0677385 + 0.170794i
\(721\) 12.7320 0.474164
\(722\) −42.1918 + 11.3053i −1.57022 + 0.420739i
\(723\) −40.6981 29.2888i −1.51358 1.08926i
\(724\) −23.0186 + 13.2898i −0.855478 + 0.493910i
\(725\) 4.65321 + 27.2318i 0.172816 + 1.01136i
\(726\) 34.0632 27.8397i 1.26421 1.03323i
\(727\) −10.1550 37.8991i −0.376630 1.40560i −0.850949 0.525249i \(-0.823972\pi\)
0.474319 0.880353i \(-0.342694\pi\)
\(728\) −6.83537 + 6.83537i −0.253336 + 0.253336i
\(729\) −22.2658 15.2721i −0.824658 0.565632i
\(730\) 66.4020 + 11.8898i 2.45765 + 0.440060i
\(731\) 6.65702 + 3.84343i 0.246219 + 0.142155i
\(732\) 16.8709 + 1.69615i 0.623568 + 0.0626914i
\(733\) −1.96236 + 7.32362i −0.0724813 + 0.270504i −0.992650 0.121017i \(-0.961384\pi\)
0.920169 + 0.391521i \(0.128051\pi\)
\(734\) −16.3918 28.3915i −0.605034 1.04795i
\(735\) −17.2378 17.7835i −0.635828 0.655955i
\(736\) −8.45462 + 14.6438i −0.311641 + 0.539778i
\(737\) 2.41340 + 2.41340i 0.0888987 + 0.0888987i
\(738\) −26.0421 + 17.2486i −0.958621 + 0.634930i
\(739\) 43.8329i 1.61242i 0.591629 + 0.806210i \(0.298485\pi\)
−0.591629 + 0.806210i \(0.701515\pi\)
\(740\) 0.111606 + 1.31577i 0.00410273 + 0.0483685i
\(741\) 1.03608 2.73598i 0.0380614 0.100509i
\(742\) 2.31535 + 0.620396i 0.0849992 + 0.0227755i
\(743\) −9.01884 2.41659i −0.330869 0.0886561i 0.0895603 0.995981i \(-0.471454\pi\)
−0.420429 + 0.907325i \(0.638121\pi\)
\(744\) 0.386235 1.01993i 0.0141601 0.0373925i
\(745\) 15.6130 + 13.1714i 0.572015 + 0.482563i
\(746\) 50.0066i 1.83087i
\(747\) 0.991358 + 16.1257i 0.0362719 + 0.590007i
\(748\) −3.39477 3.39477i −0.124125 0.124125i
\(749\) −3.19830 + 5.53962i −0.116863 + 0.202413i
\(750\) 41.9354 + 16.2623i 1.53126 + 0.593814i
\(751\) 23.6963 + 41.0432i 0.864689 + 1.49769i 0.867355 + 0.497690i \(0.165818\pi\)
−0.00266566 + 0.999996i \(0.500849\pi\)
\(752\) 0.821878 3.06729i 0.0299708 0.111853i
\(753\) 35.1942 + 3.53830i 1.28255 + 0.128943i
\(754\) 42.6286 + 24.6116i 1.55244 + 0.896303i
\(755\) −5.79343 + 32.3552i −0.210845 + 1.17753i
\(756\) 12.1417 6.39537i 0.441591 0.232597i
\(757\) 1.37906 1.37906i 0.0501227 0.0501227i −0.681601 0.731724i \(-0.738716\pi\)
0.731724 + 0.681601i \(0.238716\pi\)
\(758\) −5.72832 21.3784i −0.208062 0.776497i
\(759\) 1.20820 0.987457i 0.0438549 0.0358424i
\(760\) 2.88761 + 1.35583i 0.104744 + 0.0491811i
\(761\) −41.8540 + 24.1644i −1.51720 + 0.875958i −0.517409 + 0.855738i \(0.673103\pi\)
−0.999796 + 0.0202203i \(0.993563\pi\)
\(762\) −31.0396 22.3379i −1.12445 0.809218i
\(763\) −6.62712 + 1.77573i −0.239918 + 0.0642858i
\(764\)