Properties

Label 45.2.l.a.32.3
Level $45$
Weight $2$
Character 45.32
Analytic conductor $0.359$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,2,Mod(2,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.2");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 45.l (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.359326809096\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 18 x^{14} - 36 x^{13} + 34 x^{12} + 18 x^{11} - 72 x^{10} + 132 x^{9} - 93 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 32.3
Root \(-0.186243 + 0.0499037i\) of defining polynomial
Character \(\chi\) \(=\) 45.32
Dual form 45.2.l.a.38.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.186243 + 0.0499037i) q^{2} +(1.53295 + 0.806271i) q^{3} +(-1.69985 - 0.981412i) q^{4} +(-2.04963 + 0.893868i) q^{5} +(0.245265 + 0.226662i) q^{6} +(0.632007 - 2.35868i) q^{7} +(-0.540289 - 0.540289i) q^{8} +(1.69985 + 2.47194i) q^{9} +O(q^{10})\) \(q+(0.186243 + 0.0499037i) q^{2} +(1.53295 + 0.806271i) q^{3} +(-1.69985 - 0.981412i) q^{4} +(-2.04963 + 0.893868i) q^{5} +(0.245265 + 0.226662i) q^{6} +(0.632007 - 2.35868i) q^{7} +(-0.540289 - 0.540289i) q^{8} +(1.69985 + 2.47194i) q^{9} +(-0.426337 + 0.0641924i) q^{10} +(-2.14390 + 1.23778i) q^{11} +(-1.81450 - 2.87500i) q^{12} +(-0.422032 - 1.57505i) q^{13} +(0.235414 - 0.407749i) q^{14} +(-3.86268 - 0.282308i) q^{15} +(1.88916 + 3.27212i) q^{16} +(0.403949 - 0.403949i) q^{17} +(0.193227 + 0.545211i) q^{18} +4.28779i q^{19} +(4.36133 + 0.492089i) q^{20} +(2.87057 - 3.10617i) q^{21} +(-0.461055 + 0.123539i) q^{22} +(6.82387 - 1.82845i) q^{23} +(-0.392615 - 1.26385i) q^{24} +(3.40200 - 3.66420i) q^{25} -0.314402i q^{26} +(0.612733 + 5.15990i) q^{27} +(-3.38916 + 3.38916i) q^{28} +(-3.20524 - 5.55164i) q^{29} +(-0.705309 - 0.245340i) q^{30} +(-1.97194 + 3.41550i) q^{31} +(0.584071 + 2.17978i) q^{32} +(-4.28446 + 0.168889i) q^{33} +(0.0953913 - 0.0550742i) q^{34} +(0.812968 + 5.39937i) q^{35} +(-0.463514 - 5.87020i) q^{36} +(-0.171954 - 0.171954i) q^{37} +(-0.213977 + 0.798571i) q^{38} +(0.622960 - 2.75474i) q^{39} +(1.59034 + 0.624448i) q^{40} +(-6.52359 - 3.76639i) q^{41} +(0.689633 - 0.435250i) q^{42} +(-4.95226 - 1.32695i) q^{43} +4.85908 q^{44} +(-5.69367 - 3.54713i) q^{45} +1.36214 q^{46} +(2.91430 + 0.780885i) q^{47} +(0.257767 + 6.53917i) q^{48} +(0.898221 + 0.518588i) q^{49} +(0.816456 - 0.512660i) q^{50} +(0.944926 - 0.293541i) q^{51} +(-0.828375 + 3.09154i) q^{52} +(-6.12030 - 6.12030i) q^{53} +(-0.143381 + 0.991573i) q^{54} +(3.28779 - 4.45335i) q^{55} +(-1.61584 + 0.932904i) q^{56} +(-3.45712 + 6.57296i) q^{57} +(-0.319907 - 1.19391i) q^{58} +(-2.27234 + 3.93581i) q^{59} +(6.28894 + 4.27076i) q^{60} +(-0.235795 - 0.408408i) q^{61} +(-0.537706 + 0.537706i) q^{62} +(6.90485 - 2.44713i) q^{63} -7.12153i q^{64} +(2.27289 + 2.85103i) q^{65} +(-0.806380 - 0.182356i) q^{66} +(1.65496 - 0.443446i) q^{67} +(-1.08310 + 0.290215i) q^{68} +(11.9349 + 2.69897i) q^{69} +(-0.118039 + 1.04617i) q^{70} +3.50583i q^{71} +(0.417150 - 2.25397i) q^{72} +(6.88847 - 6.88847i) q^{73} +(-0.0234441 - 0.0406064i) q^{74} +(8.16943 - 2.87410i) q^{75} +(4.20809 - 7.28862i) q^{76} +(1.56457 + 5.83906i) q^{77} +(0.253493 - 0.481962i) q^{78} +(-6.50159 + 3.75369i) q^{79} +(-6.79693 - 5.01799i) q^{80} +(-3.22099 + 8.40388i) q^{81} +(-1.02702 - 1.02702i) q^{82} +(-2.85794 + 10.6660i) q^{83} +(-7.92799 + 2.46282i) q^{84} +(-0.466871 + 1.18903i) q^{85} +(-0.856104 - 0.494272i) q^{86} +(-0.437340 - 11.0947i) q^{87} +(1.82708 + 0.489565i) q^{88} +2.90124 q^{89} +(-0.883391 - 0.944763i) q^{90} -3.98176 q^{91} +(-13.3941 - 3.58893i) q^{92} +(-5.77670 + 3.64587i) q^{93} +(0.503800 + 0.290869i) q^{94} +(-3.83272 - 8.78840i) q^{95} +(-0.862145 + 3.81241i) q^{96} +(-0.379633 + 1.41681i) q^{97} +(0.141408 + 0.141408i) q^{98} +(-6.70403 - 3.19554i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} - 6 q^{3} - 6 q^{5} - 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 6 q^{2} - 6 q^{3} - 6 q^{5} - 2 q^{7} - 8 q^{10} - 6 q^{12} - 2 q^{13} - 6 q^{15} - 8 q^{16} + 36 q^{18} + 18 q^{20} - 12 q^{21} - 10 q^{22} + 18 q^{23} + 4 q^{25} + 18 q^{27} - 16 q^{28} + 30 q^{30} - 4 q^{31} + 30 q^{32} - 12 q^{33} - 48 q^{36} + 4 q^{37} - 30 q^{38} + 6 q^{40} - 24 q^{41} + 6 q^{42} - 2 q^{43} - 36 q^{45} + 32 q^{46} - 12 q^{47} - 30 q^{48} - 54 q^{50} + 36 q^{51} - 14 q^{52} - 16 q^{55} + 36 q^{56} - 6 q^{57} - 6 q^{58} + 18 q^{60} + 8 q^{61} + 36 q^{63} + 66 q^{65} + 36 q^{66} + 4 q^{67} + 42 q^{68} + 18 q^{70} + 18 q^{72} - 8 q^{73} + 42 q^{75} + 24 q^{76} - 6 q^{77} - 42 q^{78} - 48 q^{81} + 32 q^{82} - 66 q^{83} + 22 q^{85} - 48 q^{86} - 18 q^{87} + 18 q^{88} - 66 q^{90} - 40 q^{91} - 60 q^{92} - 18 q^{93} - 36 q^{95} - 24 q^{96} + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.186243 + 0.0499037i 0.131694 + 0.0352872i 0.324064 0.946035i \(-0.394951\pi\)
−0.192370 + 0.981322i \(0.561617\pi\)
\(3\) 1.53295 + 0.806271i 0.885048 + 0.465501i
\(4\) −1.69985 0.981412i −0.849927 0.490706i
\(5\) −2.04963 + 0.893868i −0.916624 + 0.399750i
\(6\) 0.245265 + 0.226662i 0.100129 + 0.0925344i
\(7\) 0.632007 2.35868i 0.238876 0.891499i −0.737487 0.675362i \(-0.763988\pi\)
0.976363 0.216137i \(-0.0693458\pi\)
\(8\) −0.540289 0.540289i −0.191021 0.191021i
\(9\) 1.69985 + 2.47194i 0.566618 + 0.823980i
\(10\) −0.426337 + 0.0641924i −0.134820 + 0.0202994i
\(11\) −2.14390 + 1.23778i −0.646409 + 0.373204i −0.787079 0.616852i \(-0.788408\pi\)
0.140670 + 0.990057i \(0.455074\pi\)
\(12\) −1.81450 2.87500i −0.523802 0.829940i
\(13\) −0.422032 1.57505i −0.117051 0.436839i 0.882381 0.470535i \(-0.155939\pi\)
−0.999432 + 0.0336956i \(0.989272\pi\)
\(14\) 0.235414 0.407749i 0.0629170 0.108975i
\(15\) −3.86268 0.282308i −0.997340 0.0728916i
\(16\) 1.88916 + 3.27212i 0.472290 + 0.818031i
\(17\) 0.403949 0.403949i 0.0979721 0.0979721i −0.656422 0.754394i \(-0.727931\pi\)
0.754394 + 0.656422i \(0.227931\pi\)
\(18\) 0.193227 + 0.545211i 0.0455441 + 0.128507i
\(19\) 4.28779i 0.983687i 0.870684 + 0.491843i \(0.163677\pi\)
−0.870684 + 0.491843i \(0.836323\pi\)
\(20\) 4.36133 + 0.492089i 0.975224 + 0.110035i
\(21\) 2.87057 3.10617i 0.626410 0.677822i
\(22\) −0.461055 + 0.123539i −0.0982973 + 0.0263387i
\(23\) 6.82387 1.82845i 1.42288 0.381258i 0.536373 0.843981i \(-0.319794\pi\)
0.886503 + 0.462723i \(0.153128\pi\)
\(24\) −0.392615 1.26385i −0.0801422 0.257983i
\(25\) 3.40200 3.66420i 0.680400 0.732841i
\(26\) 0.314402i 0.0616594i
\(27\) 0.612733 + 5.15990i 0.117921 + 0.993023i
\(28\) −3.38916 + 3.38916i −0.640491 + 0.640491i
\(29\) −3.20524 5.55164i −0.595199 1.03091i −0.993519 0.113668i \(-0.963740\pi\)
0.398320 0.917247i \(-0.369593\pi\)
\(30\) −0.705309 0.245340i −0.128771 0.0447927i
\(31\) −1.97194 + 3.41550i −0.354171 + 0.613442i −0.986976 0.160869i \(-0.948570\pi\)
0.632805 + 0.774312i \(0.281904\pi\)
\(32\) 0.584071 + 2.17978i 0.103250 + 0.385335i
\(33\) −4.28446 + 0.168889i −0.745829 + 0.0293998i
\(34\) 0.0953913 0.0550742i 0.0163595 0.00944515i
\(35\) 0.812968 + 5.39937i 0.137417 + 0.912660i
\(36\) −0.463514 5.87020i −0.0772524 0.978366i
\(37\) −0.171954 0.171954i −0.0282691 0.0282691i 0.692831 0.721100i \(-0.256363\pi\)
−0.721100 + 0.692831i \(0.756363\pi\)
\(38\) −0.213977 + 0.798571i −0.0347116 + 0.129545i
\(39\) 0.622960 2.75474i 0.0997535 0.441111i
\(40\) 1.59034 + 0.624448i 0.251455 + 0.0987338i
\(41\) −6.52359 3.76639i −1.01881 0.588212i −0.105053 0.994467i \(-0.533501\pi\)
−0.913760 + 0.406255i \(0.866835\pi\)
\(42\) 0.689633 0.435250i 0.106413 0.0671606i
\(43\) −4.95226 1.32695i −0.755213 0.202359i −0.139384 0.990238i \(-0.544512\pi\)
−0.615829 + 0.787880i \(0.711179\pi\)
\(44\) 4.85908 0.732534
\(45\) −5.69367 3.54713i −0.848762 0.528775i
\(46\) 1.36214 0.200837
\(47\) 2.91430 + 0.780885i 0.425095 + 0.113904i 0.465023 0.885299i \(-0.346046\pi\)
−0.0399279 + 0.999203i \(0.512713\pi\)
\(48\) 0.257767 + 6.53917i 0.0372055 + 0.943847i
\(49\) 0.898221 + 0.518588i 0.128317 + 0.0740841i
\(50\) 0.816456 0.512660i 0.115464 0.0725011i
\(51\) 0.944926 0.293541i 0.132316 0.0411039i
\(52\) −0.828375 + 3.09154i −0.114875 + 0.428719i
\(53\) −6.12030 6.12030i −0.840688 0.840688i 0.148260 0.988948i \(-0.452633\pi\)
−0.988948 + 0.148260i \(0.952633\pi\)
\(54\) −0.143381 + 0.991573i −0.0195116 + 0.134936i
\(55\) 3.28779 4.45335i 0.443326 0.600490i
\(56\) −1.61584 + 0.932904i −0.215925 + 0.124665i
\(57\) −3.45712 + 6.57296i −0.457907 + 0.870610i
\(58\) −0.319907 1.19391i −0.0420058 0.156768i
\(59\) −2.27234 + 3.93581i −0.295833 + 0.512399i −0.975178 0.221421i \(-0.928931\pi\)
0.679345 + 0.733819i \(0.262264\pi\)
\(60\) 6.28894 + 4.27076i 0.811898 + 0.551353i
\(61\) −0.235795 0.408408i −0.0301904 0.0522913i 0.850535 0.525918i \(-0.176278\pi\)
−0.880726 + 0.473626i \(0.842945\pi\)
\(62\) −0.537706 + 0.537706i −0.0682888 + 0.0682888i
\(63\) 6.90485 2.44713i 0.869929 0.308310i
\(64\) 7.12153i 0.890191i
\(65\) 2.27289 + 2.85103i 0.281918 + 0.353626i
\(66\) −0.806380 0.182356i −0.0992585 0.0224465i
\(67\) 1.65496 0.443446i 0.202186 0.0541756i −0.156305 0.987709i \(-0.549958\pi\)
0.358491 + 0.933533i \(0.383291\pi\)
\(68\) −1.08310 + 0.290215i −0.131345 + 0.0351937i
\(69\) 11.9349 + 2.69897i 1.43679 + 0.324918i
\(70\) −0.118039 + 1.04617i −0.0141083 + 0.125041i
\(71\) 3.50583i 0.416065i 0.978122 + 0.208032i \(0.0667060\pi\)
−0.978122 + 0.208032i \(0.933294\pi\)
\(72\) 0.417150 2.25397i 0.0491616 0.265633i
\(73\) 6.88847 6.88847i 0.806234 0.806234i −0.177827 0.984062i \(-0.556907\pi\)
0.984062 + 0.177827i \(0.0569069\pi\)
\(74\) −0.0234441 0.0406064i −0.00272533 0.00472040i
\(75\) 8.16943 2.87410i 0.943324 0.331872i
\(76\) 4.20809 7.28862i 0.482701 0.836062i
\(77\) 1.56457 + 5.83906i 0.178299 + 0.665422i
\(78\) 0.253493 0.481962i 0.0287025 0.0545715i
\(79\) −6.50159 + 3.75369i −0.731485 + 0.422323i −0.818965 0.573843i \(-0.805452\pi\)
0.0874799 + 0.996166i \(0.472119\pi\)
\(80\) −6.79693 5.01799i −0.759920 0.561029i
\(81\) −3.22099 + 8.40388i −0.357888 + 0.933765i
\(82\) −1.02702 1.02702i −0.113415 0.113415i
\(83\) −2.85794 + 10.6660i −0.313700 + 1.17074i 0.611493 + 0.791249i \(0.290569\pi\)
−0.925194 + 0.379495i \(0.876098\pi\)
\(84\) −7.92799 + 2.46282i −0.865014 + 0.268716i
\(85\) −0.466871 + 1.18903i −0.0506393 + 0.128968i
\(86\) −0.856104 0.494272i −0.0923161 0.0532987i
\(87\) −0.437340 11.0947i −0.0468878 1.18947i
\(88\) 1.82708 + 0.489565i 0.194767 + 0.0521878i
\(89\) 2.90124 0.307531 0.153765 0.988107i \(-0.450860\pi\)
0.153765 + 0.988107i \(0.450860\pi\)
\(90\) −0.883391 0.944763i −0.0931176 0.0995868i
\(91\) −3.98176 −0.417402
\(92\) −13.3941 3.58893i −1.39643 0.374171i
\(93\) −5.77670 + 3.64587i −0.599016 + 0.378059i
\(94\) 0.503800 + 0.290869i 0.0519630 + 0.0300008i
\(95\) −3.83272 8.78840i −0.393229 0.901671i
\(96\) −0.862145 + 3.81241i −0.0879923 + 0.389103i
\(97\) −0.379633 + 1.41681i −0.0385459 + 0.143855i −0.982517 0.186173i \(-0.940392\pi\)
0.943971 + 0.330028i \(0.107058\pi\)
\(98\) 0.141408 + 0.141408i 0.0142844 + 0.0142844i
\(99\) −6.70403 3.19554i −0.673780 0.321164i
\(100\) −9.37900 + 2.88985i −0.937900 + 0.288985i
\(101\) 15.3563 8.86596i 1.52801 0.882196i 0.528563 0.848894i \(-0.322731\pi\)
0.999445 0.0333015i \(-0.0106022\pi\)
\(102\) 0.190635 0.00751461i 0.0188756 0.000744058i
\(103\) 2.74330 + 10.2381i 0.270305 + 1.00879i 0.958922 + 0.283668i \(0.0915515\pi\)
−0.688617 + 0.725125i \(0.741782\pi\)
\(104\) −0.622960 + 1.07900i −0.0610863 + 0.105805i
\(105\) −3.10712 + 8.93242i −0.303224 + 0.871715i
\(106\) −0.834438 1.44529i −0.0810478 0.140379i
\(107\) 10.4591 10.4591i 1.01112 1.01112i 0.0111806 0.999937i \(-0.496441\pi\)
0.999937 0.0111806i \(-0.00355898\pi\)
\(108\) 4.02243 9.37242i 0.387058 0.901862i
\(109\) 0.343204i 0.0328730i 0.999865 + 0.0164365i \(0.00523214\pi\)
−0.999865 + 0.0164365i \(0.994768\pi\)
\(110\) 0.834567 0.665333i 0.0795728 0.0634370i
\(111\) −0.124955 0.402239i −0.0118602 0.0381788i
\(112\) 8.91187 2.38793i 0.842092 0.225638i
\(113\) 5.19250 1.39133i 0.488469 0.130885i −0.00617426 0.999981i \(-0.501965\pi\)
0.494643 + 0.869096i \(0.335299\pi\)
\(114\) −0.971879 + 1.05164i −0.0910248 + 0.0984955i
\(115\) −12.3520 + 9.84729i −1.15183 + 0.918265i
\(116\) 12.5827i 1.16827i
\(117\) 3.17603 3.72059i 0.293624 0.343969i
\(118\) −0.619619 + 0.619619i −0.0570405 + 0.0570405i
\(119\) −0.697490 1.20809i −0.0639388 0.110745i
\(120\) 1.93444 + 2.23949i 0.176589 + 0.204437i
\(121\) −2.43581 + 4.21894i −0.221437 + 0.383540i
\(122\) −0.0235340 0.0878302i −0.00213067 0.00795177i
\(123\) −6.96358 11.0335i −0.627885 0.994854i
\(124\) 6.70403 3.87057i 0.602039 0.347588i
\(125\) −3.69754 + 10.5512i −0.330718 + 0.943730i
\(126\) 1.40810 0.111184i 0.125444 0.00990510i
\(127\) −3.59190 3.59190i −0.318729 0.318729i 0.529550 0.848279i \(-0.322361\pi\)
−0.848279 + 0.529550i \(0.822361\pi\)
\(128\) 1.52353 5.68590i 0.134662 0.502567i
\(129\) −6.52167 6.02702i −0.574201 0.530649i
\(130\) 0.281034 + 0.644410i 0.0246483 + 0.0565185i
\(131\) 14.5188 + 8.38241i 1.26851 + 0.732375i 0.974706 0.223491i \(-0.0717453\pi\)
0.293804 + 0.955866i \(0.405079\pi\)
\(132\) 7.44872 + 3.91774i 0.648327 + 0.340995i
\(133\) 10.1135 + 2.70992i 0.876956 + 0.234980i
\(134\) 0.330355 0.0285383
\(135\) −5.86815 10.0282i −0.505050 0.863090i
\(136\) −0.436499 −0.0374295
\(137\) −6.17718 1.65517i −0.527752 0.141411i −0.0149021 0.999889i \(-0.504744\pi\)
−0.512850 + 0.858478i \(0.671410\pi\)
\(138\) 2.08810 + 1.09826i 0.177751 + 0.0934899i
\(139\) 9.09433 + 5.25061i 0.771371 + 0.445351i 0.833364 0.552725i \(-0.186412\pi\)
−0.0619924 + 0.998077i \(0.519745\pi\)
\(140\) 3.91708 9.97600i 0.331054 0.843126i
\(141\) 3.83787 + 3.54677i 0.323207 + 0.298692i
\(142\) −0.174954 + 0.652936i −0.0146818 + 0.0547931i
\(143\) 2.85435 + 2.85435i 0.238693 + 0.238693i
\(144\) −4.87720 + 10.2320i −0.406433 + 0.852669i
\(145\) 11.5320 + 8.51378i 0.957682 + 0.707031i
\(146\) 1.62669 0.939170i 0.134626 0.0777262i
\(147\) 0.958803 + 1.51918i 0.0790808 + 0.125300i
\(148\) 0.123539 + 0.461055i 0.0101549 + 0.0378985i
\(149\) −4.96581 + 8.60103i −0.406815 + 0.704624i −0.994531 0.104443i \(-0.966694\pi\)
0.587716 + 0.809067i \(0.300027\pi\)
\(150\) 1.66493 0.127596i 0.135941 0.0104182i
\(151\) −6.95939 12.0540i −0.566347 0.980942i −0.996923 0.0783879i \(-0.975023\pi\)
0.430576 0.902555i \(-0.358311\pi\)
\(152\) 2.31665 2.31665i 0.187905 0.187905i
\(153\) 1.68519 + 0.311884i 0.136240 + 0.0252143i
\(154\) 1.16556i 0.0939236i
\(155\) 0.988751 8.76319i 0.0794184 0.703876i
\(156\) −3.76247 + 4.07127i −0.301239 + 0.325962i
\(157\) −20.2365 + 5.42234i −1.61505 + 0.432750i −0.949541 0.313644i \(-0.898450\pi\)
−0.665504 + 0.746394i \(0.731784\pi\)
\(158\) −1.39820 + 0.374646i −0.111235 + 0.0298052i
\(159\) −4.44748 14.3167i −0.352708 1.13539i
\(160\) −3.14557 3.94567i −0.248679 0.311933i
\(161\) 17.2510i 1.35957i
\(162\) −1.01927 + 1.40443i −0.0800815 + 0.110342i
\(163\) −2.42872 + 2.42872i −0.190232 + 0.190232i −0.795796 0.605564i \(-0.792948\pi\)
0.605564 + 0.795796i \(0.292948\pi\)
\(164\) 7.39277 + 12.8046i 0.577278 + 0.999875i
\(165\) 8.63062 4.17591i 0.671893 0.325094i
\(166\) −1.06454 + 1.84385i −0.0826247 + 0.143110i
\(167\) −2.20590 8.23252i −0.170697 0.637052i −0.997245 0.0741841i \(-0.976365\pi\)
0.826547 0.562868i \(-0.190302\pi\)
\(168\) −3.22917 + 0.127290i −0.249136 + 0.00982066i
\(169\) 8.95567 5.17056i 0.688898 0.397735i
\(170\) −0.146288 + 0.198149i −0.0112198 + 0.0151974i
\(171\) −10.5992 + 7.28862i −0.810539 + 0.557375i
\(172\) 7.11584 + 7.11584i 0.542577 + 0.542577i
\(173\) −4.57458 + 17.0726i −0.347799 + 1.29800i 0.541509 + 0.840695i \(0.317853\pi\)
−0.889308 + 0.457308i \(0.848814\pi\)
\(174\) 0.472213 2.08813i 0.0357984 0.158301i
\(175\) −6.49261 10.3400i −0.490795 0.781634i
\(176\) −8.10033 4.67673i −0.610585 0.352521i
\(177\) −6.65670 + 4.20126i −0.500348 + 0.315786i
\(178\) 0.540336 + 0.144783i 0.0404999 + 0.0108519i
\(179\) −8.30788 −0.620960 −0.310480 0.950580i \(-0.600490\pi\)
−0.310480 + 0.950580i \(0.600490\pi\)
\(180\) 6.19722 + 11.6174i 0.461913 + 0.865913i
\(181\) −4.73429 −0.351897 −0.175948 0.984399i \(-0.556299\pi\)
−0.175948 + 0.984399i \(0.556299\pi\)
\(182\) −0.741576 0.198705i −0.0549693 0.0147290i
\(183\) −0.0321731 0.816183i −0.00237830 0.0603340i
\(184\) −4.67475 2.69897i −0.344627 0.198971i
\(185\) 0.506148 + 0.198739i 0.0372127 + 0.0146116i
\(186\) −1.25781 + 0.390739i −0.0922273 + 0.0286503i
\(187\) −0.366025 + 1.36603i −0.0267664 + 0.0998937i
\(188\) −4.18752 4.18752i −0.305406 0.305406i
\(189\) 12.5578 + 1.81585i 0.913447 + 0.132084i
\(190\) −0.275244 1.82805i −0.0199683 0.132620i
\(191\) −3.34902 + 1.93356i −0.242327 + 0.139907i −0.616246 0.787554i \(-0.711347\pi\)
0.373919 + 0.927461i \(0.378014\pi\)
\(192\) 5.74188 10.9169i 0.414384 0.787861i
\(193\) −4.44530 16.5901i −0.319979 1.19418i −0.919263 0.393643i \(-0.871215\pi\)
0.599284 0.800536i \(-0.295452\pi\)
\(194\) −0.141408 + 0.244926i −0.0101525 + 0.0175847i
\(195\) 1.18553 + 6.20304i 0.0848974 + 0.444209i
\(196\) −1.01790 1.76305i −0.0727070 0.125932i
\(197\) −11.0386 + 11.0386i −0.786469 + 0.786469i −0.980913 0.194445i \(-0.937709\pi\)
0.194445 + 0.980913i \(0.437709\pi\)
\(198\) −1.08911 0.929703i −0.0773996 0.0660711i
\(199\) 3.60138i 0.255295i −0.991820 0.127648i \(-0.959257\pi\)
0.991820 0.127648i \(-0.0407427\pi\)
\(200\) −3.81779 + 0.141666i −0.269959 + 0.0100173i
\(201\) 2.89451 + 0.654569i 0.204163 + 0.0461698i
\(202\) 3.30245 0.884888i 0.232359 0.0622605i
\(203\) −15.1203 + 4.05148i −1.06124 + 0.284358i
\(204\) −1.89432 0.428385i −0.132629 0.0299929i
\(205\) 16.7376 + 1.88851i 1.16901 + 0.131899i
\(206\) 2.04368i 0.142390i
\(207\) 16.1194 + 13.7601i 1.12038 + 0.956394i
\(208\) 4.35646 4.35646i 0.302066 0.302066i
\(209\) −5.30734 9.19258i −0.367116 0.635864i
\(210\) −1.02444 + 1.50854i −0.0706931 + 0.104099i
\(211\) 9.56007 16.5585i 0.658142 1.13994i −0.322954 0.946415i \(-0.604676\pi\)
0.981096 0.193521i \(-0.0619909\pi\)
\(212\) 4.39709 + 16.4102i 0.301993 + 1.12705i
\(213\) −2.82664 + 5.37425i −0.193678 + 0.368237i
\(214\) 2.46988 1.42599i 0.168837 0.0974783i
\(215\) 11.3364 1.70690i 0.773139 0.116409i
\(216\) 2.45678 3.11889i 0.167163 0.212213i
\(217\) 6.80981 + 6.80981i 0.462280 + 0.462280i
\(218\) −0.0171272 + 0.0639194i −0.00116000 + 0.00432917i
\(219\) 16.1136 5.00569i 1.08886 0.338253i
\(220\) −9.95934 + 4.34338i −0.671459 + 0.292830i
\(221\) −0.806719 0.465759i −0.0542658 0.0313304i
\(222\) −0.00319884 0.0811499i −0.000214692 0.00544642i
\(223\) 4.03530 + 1.08126i 0.270224 + 0.0724062i 0.391386 0.920226i \(-0.371996\pi\)
−0.121163 + 0.992633i \(0.538662\pi\)
\(224\) 5.51055 0.368189
\(225\) 14.8406 + 2.18093i 0.989374 + 0.145395i
\(226\) 1.03650 0.0689469
\(227\) 13.2857 + 3.55990i 0.881803 + 0.236279i 0.671185 0.741290i \(-0.265786\pi\)
0.210618 + 0.977568i \(0.432452\pi\)
\(228\) 12.3274 7.78022i 0.816401 0.515257i
\(229\) −13.2694 7.66109i −0.876866 0.506259i −0.00724242 0.999974i \(-0.502305\pi\)
−0.869624 + 0.493715i \(0.835639\pi\)
\(230\) −2.79190 + 1.21758i −0.184092 + 0.0802847i
\(231\) −2.30946 + 10.2124i −0.151951 + 0.671929i
\(232\) −1.26773 + 4.73125i −0.0832308 + 0.310622i
\(233\) −2.98562 2.98562i −0.195595 0.195595i 0.602514 0.798108i \(-0.294166\pi\)
−0.798108 + 0.602514i \(0.794166\pi\)
\(234\) 0.777184 0.534438i 0.0508061 0.0349373i
\(235\) −6.67126 + 1.00447i −0.435185 + 0.0655246i
\(236\) 7.72529 4.46020i 0.502874 0.290334i
\(237\) −12.9931 + 0.512173i −0.843991 + 0.0332692i
\(238\) −0.0696146 0.259805i −0.00451245 0.0168407i
\(239\) 2.59439 4.49362i 0.167817 0.290668i −0.769835 0.638243i \(-0.779661\pi\)
0.937652 + 0.347575i \(0.112995\pi\)
\(240\) −6.37348 13.1725i −0.411406 0.850280i
\(241\) 1.85872 + 3.21939i 0.119730 + 0.207379i 0.919661 0.392714i \(-0.128464\pi\)
−0.799930 + 0.600093i \(0.795130\pi\)
\(242\) −0.664193 + 0.664193i −0.0426959 + 0.0426959i
\(243\) −11.7134 + 10.2857i −0.751416 + 0.659829i
\(244\) 0.925646i 0.0592584i
\(245\) −2.30457 0.260025i −0.147234 0.0166124i
\(246\) −0.746308 2.40241i −0.0475829 0.153172i
\(247\) 6.75347 1.80959i 0.429713 0.115141i
\(248\) 2.91078 0.779940i 0.184834 0.0495262i
\(249\) −12.9808 + 14.0461i −0.822622 + 0.890137i
\(250\) −1.21519 + 1.78057i −0.0768551 + 0.112613i
\(251\) 3.97271i 0.250755i 0.992109 + 0.125378i \(0.0400142\pi\)
−0.992109 + 0.125378i \(0.959986\pi\)
\(252\) −14.1389 2.61673i −0.890666 0.164838i
\(253\) −12.3665 + 12.3665i −0.777472 + 0.777472i
\(254\) −0.489717 0.848215i −0.0307276 0.0532217i
\(255\) −1.67437 + 1.44629i −0.104853 + 0.0905702i
\(256\) −6.55403 + 11.3519i −0.409627 + 0.709495i
\(257\) −4.42437 16.5120i −0.275985 1.02999i −0.955179 0.296030i \(-0.904337\pi\)
0.679194 0.733959i \(-0.262329\pi\)
\(258\) −0.913846 1.44794i −0.0568935 0.0901451i
\(259\) −0.514262 + 0.296909i −0.0319547 + 0.0184491i
\(260\) −1.06556 7.07698i −0.0660832 0.438896i
\(261\) 8.27489 17.3602i 0.512203 1.07457i
\(262\) 2.28571 + 2.28571i 0.141211 + 0.141211i
\(263\) 2.77155 10.3436i 0.170901 0.637812i −0.826312 0.563212i \(-0.809565\pi\)
0.997214 0.0746001i \(-0.0237680\pi\)
\(264\) 2.40610 + 2.22360i 0.148085 + 0.136853i
\(265\) 18.0151 + 7.07364i 1.10666 + 0.434530i
\(266\) 1.74834 + 1.00941i 0.107198 + 0.0618907i
\(267\) 4.44745 + 2.33919i 0.272179 + 0.143156i
\(268\) −3.24840 0.870407i −0.198428 0.0531685i
\(269\) 15.8925 0.968985 0.484492 0.874796i \(-0.339004\pi\)
0.484492 + 0.874796i \(0.339004\pi\)
\(270\) −0.592457 2.16052i −0.0360558 0.131485i
\(271\) 0.974200 0.0591785 0.0295892 0.999562i \(-0.490580\pi\)
0.0295892 + 0.999562i \(0.490580\pi\)
\(272\) 2.08490 + 0.558646i 0.126415 + 0.0338729i
\(273\) −6.10383 3.21038i −0.369421 0.194301i
\(274\) −1.06786 0.616528i −0.0645117 0.0372458i
\(275\) −2.75806 + 12.0666i −0.166317 + 0.727643i
\(276\) −17.6387 16.3009i −1.06173 0.981197i
\(277\) 6.18395 23.0788i 0.371557 1.38667i −0.486753 0.873540i \(-0.661819\pi\)
0.858310 0.513131i \(-0.171515\pi\)
\(278\) 1.43173 + 1.43173i 0.0858695 + 0.0858695i
\(279\) −11.7949 + 0.931335i −0.706144 + 0.0557576i
\(280\) 2.47798 3.35646i 0.148088 0.200587i
\(281\) −23.9241 + 13.8126i −1.42720 + 0.823991i −0.996899 0.0786961i \(-0.974924\pi\)
−0.430296 + 0.902688i \(0.641591\pi\)
\(282\) 0.537779 + 0.852086i 0.0320243 + 0.0507410i
\(283\) 4.40870 + 16.4535i 0.262070 + 0.978058i 0.964020 + 0.265831i \(0.0856465\pi\)
−0.701950 + 0.712227i \(0.747687\pi\)
\(284\) 3.44066 5.95939i 0.204165 0.353625i
\(285\) 1.21048 16.5624i 0.0717025 0.981070i
\(286\) 0.389161 + 0.674046i 0.0230115 + 0.0398572i
\(287\) −13.0067 + 13.0067i −0.767761 + 0.767761i
\(288\) −4.39546 + 5.14910i −0.259005 + 0.303414i
\(289\) 16.6736i 0.980803i
\(290\) 1.72289 + 2.16112i 0.101171 + 0.126905i
\(291\) −1.72429 + 1.86581i −0.101080 + 0.109376i
\(292\) −18.4698 + 4.94897i −1.08086 + 0.289617i
\(293\) 25.7566 6.90146i 1.50472 0.403188i 0.590041 0.807374i \(-0.299112\pi\)
0.914677 + 0.404186i \(0.132445\pi\)
\(294\) 0.102758 + 0.330784i 0.00599296 + 0.0192917i
\(295\) 1.13937 10.0981i 0.0663369 0.587936i
\(296\) 0.185810i 0.0108000i
\(297\) −7.70045 10.3039i −0.446825 0.597890i
\(298\) −1.35407 + 1.35407i −0.0784392 + 0.0784392i
\(299\) −5.75979 9.97625i −0.333097 0.576941i
\(300\) −16.7075 3.13202i −0.964609 0.180827i
\(301\) −6.25973 + 10.8422i −0.360805 + 0.624933i
\(302\) −0.694599 2.59228i −0.0399697 0.149169i
\(303\) 30.6887 1.20972i 1.76302 0.0694965i
\(304\) −14.0302 + 8.10033i −0.804686 + 0.464586i
\(305\) 0.848356 + 0.626318i 0.0485767 + 0.0358629i
\(306\) 0.298292 + 0.142184i 0.0170522 + 0.00812810i
\(307\) −12.3556 12.3556i −0.705171 0.705171i 0.260345 0.965516i \(-0.416164\pi\)
−0.965516 + 0.260345i \(0.916164\pi\)
\(308\) 3.07098 11.4610i 0.174985 0.653053i
\(309\) −4.04938 + 17.9064i −0.230361 + 1.01866i
\(310\) 0.621463 1.58274i 0.0352967 0.0898936i
\(311\) 7.49228 + 4.32567i 0.424848 + 0.245286i 0.697149 0.716926i \(-0.254451\pi\)
−0.272301 + 0.962212i \(0.587785\pi\)
\(312\) −1.82493 + 1.15177i −0.103316 + 0.0652064i
\(313\) −18.1094 4.85240i −1.02360 0.274274i −0.292301 0.956326i \(-0.594421\pi\)
−0.731303 + 0.682052i \(0.761088\pi\)
\(314\) −4.03949 −0.227962
\(315\) −11.9650 + 11.1878i −0.674151 + 0.630358i
\(316\) 14.7357 0.828946
\(317\) 18.7418 + 5.02186i 1.05265 + 0.282056i 0.743345 0.668908i \(-0.233238\pi\)
0.309301 + 0.950964i \(0.399905\pi\)
\(318\) −0.113855 2.88834i −0.00638468 0.161970i
\(319\) 13.7434 + 7.93476i 0.769484 + 0.444262i
\(320\) 6.36570 + 14.5965i 0.355854 + 0.815970i
\(321\) 24.4661 7.60037i 1.36556 0.424211i
\(322\) 0.860886 3.21287i 0.0479753 0.179046i
\(323\) 1.73205 + 1.73205i 0.0963739 + 0.0963739i
\(324\) 13.7229 11.1243i 0.762382 0.618015i
\(325\) −7.20704 3.81190i −0.399775 0.211446i
\(326\) −0.573535 + 0.331131i −0.0317652 + 0.0183396i
\(327\) −0.276716 + 0.526114i −0.0153024 + 0.0290942i
\(328\) 1.48968 + 5.55956i 0.0822538 + 0.306975i
\(329\) 3.68372 6.38039i 0.203090 0.351763i
\(330\) 1.81579 0.347034i 0.0999557 0.0191036i
\(331\) 17.1969 + 29.7859i 0.945226 + 1.63718i 0.755298 + 0.655382i \(0.227492\pi\)
0.189929 + 0.981798i \(0.439174\pi\)
\(332\) 15.3258 15.3258i 0.841114 0.841114i
\(333\) 0.132764 0.717358i 0.00727540 0.0393110i
\(334\) 1.64333i 0.0899191i
\(335\) −2.99569 + 2.38822i −0.163672 + 0.130482i
\(336\) 15.5867 + 3.52481i 0.850326 + 0.192294i
\(337\) 30.9291 8.28744i 1.68482 0.451445i 0.715773 0.698333i \(-0.246075\pi\)
0.969044 + 0.246888i \(0.0794079\pi\)
\(338\) 1.92596 0.516060i 0.104758 0.0280700i
\(339\) 9.08161 + 2.05373i 0.493245 + 0.111543i
\(340\) 1.96054 1.56298i 0.106325 0.0847644i
\(341\) 9.76331i 0.528713i
\(342\) −2.33775 + 0.828518i −0.126411 + 0.0448011i
\(343\) 13.8776 13.8776i 0.749320 0.749320i
\(344\) 1.95871 + 3.39259i 0.105607 + 0.182916i
\(345\) −26.8746 + 5.13629i −1.44688 + 0.276528i
\(346\) −1.70397 + 2.95136i −0.0916059 + 0.158666i
\(347\) −4.15647 15.5122i −0.223131 0.832737i −0.983145 0.182829i \(-0.941474\pi\)
0.760014 0.649907i \(-0.225192\pi\)
\(348\) −10.1450 + 19.2885i −0.543830 + 1.03397i
\(349\) −15.1664 + 8.75630i −0.811837 + 0.468714i −0.847593 0.530646i \(-0.821949\pi\)
0.0357566 + 0.999361i \(0.488616\pi\)
\(350\) −0.693197 2.24977i −0.0370529 0.120255i
\(351\) 7.86849 3.14273i 0.419989 0.167746i
\(352\) −3.95028 3.95028i −0.210550 0.210550i
\(353\) 4.95294 18.4846i 0.263618 0.983837i −0.699472 0.714660i \(-0.746582\pi\)
0.963091 0.269177i \(-0.0867517\pi\)
\(354\) −1.44942 + 0.450262i −0.0770360 + 0.0239312i
\(355\) −3.13374 7.18566i −0.166322 0.381375i
\(356\) −4.93169 2.84731i −0.261379 0.150907i
\(357\) −0.0951692 2.41430i −0.00503689 0.127778i
\(358\) −1.54728 0.414594i −0.0817766 0.0219120i
\(359\) −23.0127 −1.21457 −0.607283 0.794486i \(-0.707741\pi\)
−0.607283 + 0.794486i \(0.707741\pi\)
\(360\) 1.15975 + 4.99270i 0.0611242 + 0.263138i
\(361\) 0.614846 0.0323603
\(362\) −0.881728 0.236258i −0.0463426 0.0124175i
\(363\) −7.13557 + 4.50350i −0.374521 + 0.236372i
\(364\) 6.76842 + 3.90775i 0.354762 + 0.204822i
\(365\) −7.96146 + 20.2762i −0.416722 + 1.06131i
\(366\) 0.0347385 0.153614i 0.00181581 0.00802953i
\(367\) −7.01692 + 26.1875i −0.366280 + 1.36698i 0.499397 + 0.866373i \(0.333555\pi\)
−0.865677 + 0.500603i \(0.833112\pi\)
\(368\) 18.8743 + 18.8743i 0.983891 + 0.983891i
\(369\) −1.77884 22.5282i −0.0926029 1.17277i
\(370\) 0.0843487 + 0.0622724i 0.00438508 + 0.00323739i
\(371\) −18.3039 + 10.5678i −0.950293 + 0.548652i
\(372\) 13.3977 0.528121i 0.694636 0.0273818i
\(373\) −7.76440 28.9771i −0.402025 1.50038i −0.809477 0.587152i \(-0.800249\pi\)
0.407451 0.913227i \(-0.366418\pi\)
\(374\) −0.136339 + 0.236147i −0.00704994 + 0.0122109i
\(375\) −14.1753 + 13.1932i −0.732008 + 0.681296i
\(376\) −1.15266 1.99647i −0.0594440 0.102960i
\(377\) −7.39138 + 7.39138i −0.380675 + 0.380675i
\(378\) 2.24819 + 0.964871i 0.115634 + 0.0496276i
\(379\) 20.0943i 1.03218i −0.856535 0.516089i \(-0.827388\pi\)
0.856535 0.516089i \(-0.172612\pi\)
\(380\) −2.10998 + 18.7005i −0.108240 + 0.959315i
\(381\) −2.61015 8.40224i −0.133722 0.430460i
\(382\) −0.720223 + 0.192983i −0.0368498 + 0.00987388i
\(383\) −26.6536 + 7.14181i −1.36194 + 0.364929i −0.864527 0.502587i \(-0.832382\pi\)
−0.497409 + 0.867516i \(0.665715\pi\)
\(384\) 6.91987 7.48780i 0.353128 0.382110i
\(385\) −8.42614 10.5694i −0.429436 0.538667i
\(386\) 3.31162i 0.168557i
\(387\) −5.13797 14.4973i −0.261178 0.736941i
\(388\) 2.03579 2.03579i 0.103352 0.103352i
\(389\) 6.71184 + 11.6253i 0.340304 + 0.589424i 0.984489 0.175446i \(-0.0561367\pi\)
−0.644185 + 0.764870i \(0.722803\pi\)
\(390\) −0.0887583 + 1.21444i −0.00449445 + 0.0614953i
\(391\) 2.01790 3.49510i 0.102049 0.176755i
\(392\) −0.205111 0.765487i −0.0103597 0.0386629i
\(393\) 15.4980 + 24.5558i 0.781771 + 1.23868i
\(394\) −2.60673 + 1.50500i −0.131325 + 0.0758207i
\(395\) 9.97057 13.5053i 0.501674 0.679523i
\(396\) 8.25973 + 12.0114i 0.415067 + 0.603594i
\(397\) −12.8716 12.8716i −0.646008 0.646008i 0.306018 0.952026i \(-0.401003\pi\)
−0.952026 + 0.306018i \(0.901003\pi\)
\(398\) 0.179722 0.670732i 0.00900866 0.0336208i
\(399\) 13.3186 + 12.3084i 0.666764 + 0.616191i
\(400\) 18.4166 + 4.20949i 0.920832 + 0.210475i
\(401\) −21.7606 12.5635i −1.08667 0.627391i −0.153985 0.988073i \(-0.549211\pi\)
−0.932689 + 0.360682i \(0.882544\pi\)
\(402\) 0.506417 + 0.266356i 0.0252578 + 0.0132846i
\(403\) 6.21180 + 1.66445i 0.309432 + 0.0829120i
\(404\) −34.8046 −1.73159
\(405\) −0.910113 20.1040i −0.0452239 0.998977i
\(406\) −3.01824 −0.149793
\(407\) 0.581494 + 0.155811i 0.0288236 + 0.00772325i
\(408\) −0.669129 0.351936i −0.0331268 0.0174234i
\(409\) −9.81878 5.66888i −0.485508 0.280308i 0.237201 0.971461i \(-0.423770\pi\)
−0.722709 + 0.691153i \(0.757103\pi\)
\(410\) 3.02302 + 1.18699i 0.149296 + 0.0586213i
\(411\) −8.13478 7.51777i −0.401259 0.370824i
\(412\) 5.38461 20.0957i 0.265281 0.990042i
\(413\) 7.84719 + 7.84719i 0.386135 + 0.386135i
\(414\) 2.31545 + 3.36714i 0.113798 + 0.165486i
\(415\) −3.67625 24.4160i −0.180460 1.19853i
\(416\) 3.18676 1.83988i 0.156244 0.0902074i
\(417\) 9.70771 + 15.3814i 0.475389 + 0.753231i
\(418\) −0.529711 1.97691i −0.0259090 0.0966938i
\(419\) 4.26264 7.38311i 0.208244 0.360688i −0.742918 0.669383i \(-0.766559\pi\)
0.951161 + 0.308694i \(0.0998920\pi\)
\(420\) 14.0480 12.1345i 0.685474 0.592101i
\(421\) 1.10329 + 1.91095i 0.0537710 + 0.0931341i 0.891658 0.452710i \(-0.149543\pi\)
−0.837887 + 0.545844i \(0.816209\pi\)
\(422\) 2.60683 2.60683i 0.126898 0.126898i
\(423\) 3.02359 + 8.53138i 0.147012 + 0.414810i
\(424\) 6.61346i 0.321178i
\(425\) −0.105917 2.85439i −0.00513772 0.138458i
\(426\) −0.794637 + 0.859856i −0.0385003 + 0.0416601i
\(427\) −1.11233 + 0.298048i −0.0538294 + 0.0144235i
\(428\) −28.0436 + 7.51426i −1.35554 + 0.363215i
\(429\) 2.07419 + 6.67695i 0.100143 + 0.322366i
\(430\) 2.19651 + 0.247833i 0.105925 + 0.0119516i
\(431\) 1.95738i 0.0942838i −0.998888 0.0471419i \(-0.984989\pi\)
0.998888 0.0471419i \(-0.0150113\pi\)
\(432\) −15.7263 + 11.7528i −0.756630 + 0.565458i
\(433\) −9.71652 + 9.71652i −0.466946 + 0.466946i −0.900924 0.433978i \(-0.857110\pi\)
0.433978 + 0.900924i \(0.357110\pi\)
\(434\) 0.928445 + 1.60811i 0.0445668 + 0.0771919i
\(435\) 10.8136 + 22.3491i 0.518470 + 1.07156i
\(436\) 0.336825 0.583398i 0.0161310 0.0279397i
\(437\) 7.84002 + 29.2593i 0.375039 + 1.39966i
\(438\) 3.25085 0.128145i 0.155332 0.00612302i
\(439\) −4.68008 + 2.70205i −0.223368 + 0.128962i −0.607509 0.794313i \(-0.707831\pi\)
0.384141 + 0.923275i \(0.374498\pi\)
\(440\) −4.18245 + 0.629740i −0.199391 + 0.0300217i
\(441\) 0.244926 + 3.10188i 0.0116631 + 0.147708i
\(442\) −0.127003 0.127003i −0.00604090 0.00604090i
\(443\) 6.98940 26.0848i 0.332077 1.23933i −0.574927 0.818204i \(-0.694970\pi\)
0.907004 0.421122i \(-0.138364\pi\)
\(444\) −0.182356 + 0.806380i −0.00865424 + 0.0382691i
\(445\) −5.94648 + 2.59333i −0.281890 + 0.122935i
\(446\) 0.697588 + 0.402752i 0.0330317 + 0.0190709i
\(447\) −14.5471 + 9.18114i −0.688053 + 0.434253i
\(448\) −16.7974 4.50086i −0.793604 0.212646i
\(449\) 23.8541 1.12574 0.562872 0.826544i \(-0.309696\pi\)
0.562872 + 0.826544i \(0.309696\pi\)
\(450\) 2.65512 + 1.14678i 0.125164 + 0.0540599i
\(451\) 18.6479 0.878093
\(452\) −10.1920 2.73093i −0.479389 0.128452i
\(453\) −0.949576 24.0893i −0.0446150 1.13182i
\(454\) 2.29672 + 1.32601i 0.107790 + 0.0622328i
\(455\) 8.16116 3.55917i 0.382601 0.166856i
\(456\) 5.41914 1.68345i 0.253774 0.0788349i
\(457\) −5.13035 + 19.1467i −0.239988 + 0.895647i 0.735849 + 0.677146i \(0.236783\pi\)
−0.975837 + 0.218501i \(0.929883\pi\)
\(458\) −2.08902 2.08902i −0.0976133 0.0976133i
\(459\) 2.33185 + 1.83682i 0.108842 + 0.0857356i
\(460\) 30.6609 4.61653i 1.42957 0.215247i
\(461\) −1.14371 + 0.660321i −0.0532679 + 0.0307542i −0.526397 0.850239i \(-0.676458\pi\)
0.473130 + 0.880993i \(0.343124\pi\)
\(462\) −0.939758 + 1.78674i −0.0437215 + 0.0831269i
\(463\) 3.98780 + 14.8827i 0.185329 + 0.691656i 0.994560 + 0.104166i \(0.0332172\pi\)
−0.809231 + 0.587490i \(0.800116\pi\)
\(464\) 12.1104 20.9759i 0.562213 0.973782i
\(465\) 8.58120 12.6363i 0.397944 0.585994i
\(466\) −0.407058 0.705045i −0.0188566 0.0326606i
\(467\) −1.77645 + 1.77645i −0.0822044 + 0.0822044i −0.747013 0.664809i \(-0.768513\pi\)
0.664809 + 0.747013i \(0.268513\pi\)
\(468\) −9.05022 + 3.20747i −0.418346 + 0.148265i
\(469\) 4.18380i 0.193190i
\(470\) −1.29260 0.145844i −0.0596233 0.00672730i
\(471\) −35.3933 8.00390i −1.63084 0.368800i
\(472\) 3.35419 0.898753i 0.154389 0.0413685i
\(473\) 12.2596 3.28495i 0.563697 0.151042i
\(474\) −2.44543 0.553014i −0.112322 0.0254008i
\(475\) 15.7113 + 14.5871i 0.720886 + 0.669301i
\(476\) 2.73810i 0.125501i
\(477\) 4.72541 25.5327i 0.216361 1.16906i
\(478\) 0.707436 0.707436i 0.0323574 0.0323574i
\(479\) 18.9907 + 32.8928i 0.867705 + 1.50291i 0.864336 + 0.502915i \(0.167739\pi\)
0.00336919 + 0.999994i \(0.498928\pi\)
\(480\) −1.64071 8.58469i −0.0748878 0.391836i
\(481\) −0.198266 + 0.343406i −0.00904014 + 0.0156580i
\(482\) 0.185513 + 0.692346i 0.00844991 + 0.0315355i
\(483\) 13.9089 26.4448i 0.632879 1.20328i
\(484\) 8.28104 4.78106i 0.376411 0.217321i
\(485\) −0.488332 3.24328i −0.0221740 0.147270i
\(486\) −2.69484 + 1.33110i −0.122240 + 0.0603800i
\(487\) 23.6900 + 23.6900i 1.07350 + 1.07350i 0.997076 + 0.0764213i \(0.0243494\pi\)
0.0764213 + 0.997076i \(0.475651\pi\)
\(488\) −0.0932612 + 0.348056i −0.00422174 + 0.0157557i
\(489\) −5.68131 + 1.76490i −0.256918 + 0.0798114i
\(490\) −0.416235 0.163435i −0.0188036 0.00738322i
\(491\) 18.9114 + 10.9185i 0.853460 + 0.492746i 0.861817 0.507220i \(-0.169327\pi\)
−0.00835660 + 0.999965i \(0.502660\pi\)
\(492\) 1.00871 + 25.5894i 0.0454761 + 1.15366i
\(493\) −3.53734 0.947827i −0.159314 0.0426880i
\(494\) 1.34809 0.0606535
\(495\) 16.5972 + 0.557174i 0.745988 + 0.0250431i
\(496\) −14.9013 −0.669086
\(497\) 8.26913 + 2.21571i 0.370921 + 0.0993881i
\(498\) −3.11853 + 1.96821i −0.139745 + 0.0881974i
\(499\) −2.74862 1.58691i −0.123045 0.0710401i 0.437214 0.899357i \(-0.355965\pi\)
−0.560259 + 0.828317i \(0.689298\pi\)
\(500\) 16.6404 14.3067i 0.744180 0.639816i
\(501\) 3.25612 14.3986i 0.145473 0.643281i
\(502\) −0.198253 + 0.739889i −0.00884845 + 0.0330229i
\(503\) −7.00484 7.00484i −0.312330 0.312330i 0.533481 0.845812i \(-0.320883\pi\)
−0.845812 + 0.533481i \(0.820883\pi\)
\(504\) −5.05277 2.40845i −0.225068 0.107281i
\(505\) −23.5498 + 31.8985i −1.04795 + 1.41946i
\(506\) −2.92030 + 1.68603i −0.129823 + 0.0749534i
\(507\) 17.8974 0.705498i 0.794853 0.0313323i
\(508\) 2.58058 + 9.63084i 0.114495 + 0.427299i
\(509\) 8.36206 14.4835i 0.370642 0.641971i −0.619023 0.785373i \(-0.712471\pi\)
0.989664 + 0.143403i \(0.0458044\pi\)
\(510\) −0.384014 + 0.185804i −0.0170044 + 0.00822755i
\(511\) −11.8942 20.6013i −0.526167 0.911347i
\(512\) −10.1119 + 10.1119i −0.446886 + 0.446886i
\(513\) −22.1246 + 2.62727i −0.976824 + 0.115997i
\(514\) 3.29603i 0.145382i
\(515\) −14.7743 18.5323i −0.651034 0.816630i
\(516\) 5.17091 + 16.6455i 0.227637 + 0.732777i
\(517\) −7.21452 + 1.93313i −0.317294 + 0.0850188i
\(518\) −0.110595 + 0.0296337i −0.00485925 + 0.00130203i
\(519\) −20.7777 + 22.4830i −0.912040 + 0.986894i
\(520\) 0.312358 2.76840i 0.0136978 0.121402i
\(521\) 1.34092i 0.0587466i 0.999569 + 0.0293733i \(0.00935116\pi\)
−0.999569 + 0.0293733i \(0.990649\pi\)
\(522\) 2.40748 2.82026i 0.105372 0.123440i
\(523\) −9.19187 + 9.19187i −0.401933 + 0.401933i −0.878914 0.476981i \(-0.841731\pi\)
0.476981 + 0.878914i \(0.341731\pi\)
\(524\) −16.4532 28.4978i −0.718761 1.24493i
\(525\) −1.61595 21.0856i −0.0705258 0.920249i
\(526\) 1.03237 1.78811i 0.0450133 0.0779653i
\(527\) 0.583126 + 2.17625i 0.0254014 + 0.0947991i
\(528\) −8.64667 13.7002i −0.376298 0.596226i
\(529\) 23.3034 13.4542i 1.01319 0.584967i
\(530\) 3.00219 + 2.21644i 0.130407 + 0.0962759i
\(531\) −13.5917 + 1.07321i −0.589831 + 0.0465734i
\(532\) −14.5320 14.5320i −0.630043 0.630043i
\(533\) −3.17908 + 11.8645i −0.137701 + 0.513908i
\(534\) 0.711572 + 0.657601i 0.0307927 + 0.0284572i
\(535\) −12.0883 + 30.7863i −0.522621 + 1.33101i
\(536\) −1.13375 0.654569i −0.0489704 0.0282731i
\(537\) −12.7355 6.69840i −0.549579 0.289057i
\(538\) 2.95987 + 0.793096i 0.127609 + 0.0341928i
\(539\) −2.56759 −0.110594
\(540\) 0.133203 + 22.8056i 0.00573215 + 0.981395i
\(541\) −34.0389 −1.46345 −0.731724 0.681601i \(-0.761284\pi\)
−0.731724 + 0.681601i \(0.761284\pi\)
\(542\) 0.181438 + 0.0486162i 0.00779343 + 0.00208824i
\(543\) −7.25741 3.81712i −0.311445 0.163808i
\(544\) 1.11646 + 0.644587i 0.0478677 + 0.0276364i
\(545\) −0.306779 0.703444i −0.0131410 0.0301322i
\(546\) −0.976587 0.902515i −0.0417941 0.0386241i
\(547\) 2.44487 9.12437i 0.104535 0.390130i −0.893757 0.448552i \(-0.851940\pi\)
0.998292 + 0.0584215i \(0.0186067\pi\)
\(548\) 8.87591 + 8.87591i 0.379160 + 0.379160i
\(549\) 0.608745 1.27711i 0.0259806 0.0545055i
\(550\) −1.11584 + 2.10968i −0.0475794 + 0.0899571i
\(551\) 23.8043 13.7434i 1.01410 0.585489i
\(552\) −4.99005 7.90650i −0.212391 0.336523i
\(553\) 4.74472 + 17.7075i 0.201766 + 0.753001i
\(554\) 2.30343 3.98967i 0.0978636 0.169505i
\(555\) 0.615661 + 0.712749i 0.0261333 + 0.0302545i
\(556\) −10.3060 17.8506i −0.437073 0.757033i
\(557\) 1.48579 1.48579i 0.0629551 0.0629551i −0.674928 0.737883i \(-0.735825\pi\)
0.737883 + 0.674928i \(0.235825\pi\)
\(558\) −2.24320 0.415156i −0.0949623 0.0175750i
\(559\) 8.36006i 0.353593i
\(560\) −16.1316 + 12.8604i −0.681683 + 0.543451i
\(561\) −1.66248 + 1.79893i −0.0701901 + 0.0759509i
\(562\) −5.14501 + 1.37860i −0.217029 + 0.0581527i
\(563\) −20.6371 + 5.52969i −0.869750 + 0.233049i −0.665979 0.745970i \(-0.731986\pi\)
−0.203770 + 0.979019i \(0.565319\pi\)
\(564\) −3.04297 9.79553i −0.128132 0.412466i
\(565\) −9.39906 + 7.49312i −0.395421 + 0.315238i
\(566\) 3.28436i 0.138052i
\(567\) 17.7864 + 12.9086i 0.746959 + 0.542111i
\(568\) 1.89416 1.89416i 0.0794771 0.0794771i
\(569\) 5.82589 + 10.0907i 0.244234 + 0.423026i 0.961916 0.273345i \(-0.0881301\pi\)
−0.717682 + 0.696371i \(0.754797\pi\)
\(570\) 1.05197 3.02422i 0.0440620 0.126671i
\(571\) 10.5623 18.2945i 0.442020 0.765601i −0.555819 0.831303i \(-0.687595\pi\)
0.997839 + 0.0657023i \(0.0209288\pi\)
\(572\) −2.05069 7.65328i −0.0857436 0.320000i
\(573\) −6.69284 + 0.263825i −0.279598 + 0.0110214i
\(574\) −3.07149 + 1.77332i −0.128201 + 0.0740171i
\(575\) 16.5150 31.2244i 0.688723 1.30215i
\(576\) 17.6040 12.1056i 0.733500 0.504398i
\(577\) 30.1119 + 30.1119i 1.25357 + 1.25357i 0.954106 + 0.299469i \(0.0968094\pi\)
0.299469 + 0.954106i \(0.403191\pi\)
\(578\) −0.832076 + 3.10535i −0.0346098 + 0.129166i
\(579\) 6.56168 29.0158i 0.272694 1.20586i
\(580\) −11.2472 25.7898i −0.467016 1.07086i
\(581\) 23.3515 + 13.4820i 0.968782 + 0.559327i
\(582\) −0.414248 + 0.261445i −0.0171711 + 0.0108373i
\(583\) 20.6969 + 5.54571i 0.857177 + 0.229680i
\(584\) −7.44353 −0.308015
\(585\) −3.18398 + 10.4648i −0.131641 + 0.432666i
\(586\) 5.14140 0.212389
\(587\) −8.53262 2.28631i −0.352179 0.0943661i 0.0783924 0.996923i \(-0.475021\pi\)
−0.430571 + 0.902556i \(0.641688\pi\)
\(588\) −0.138887 3.52336i −0.00572761 0.145301i
\(589\) −14.6450 8.45527i −0.603435 0.348393i
\(590\) 0.716134 1.82385i 0.0294828 0.0750867i
\(591\) −25.8217 + 8.02150i −1.06216 + 0.329960i
\(592\) 0.237806 0.887505i 0.00977377 0.0364762i
\(593\) 24.5829 + 24.5829i 1.00950 + 1.00950i 0.999954 + 0.00954475i \(0.00303823\pi\)
0.00954475 + 0.999954i \(0.496962\pi\)
\(594\) −0.919955 2.30330i −0.0377462 0.0945056i
\(595\) 2.50947 + 1.85267i 0.102878 + 0.0759523i
\(596\) 16.8823 9.74700i 0.691526 0.399253i
\(597\) 2.90369 5.52073i 0.118840 0.225948i
\(598\) −0.574869 2.14544i −0.0235082 0.0877336i
\(599\) −18.8291 + 32.6129i −0.769335 + 1.33253i 0.168590 + 0.985686i \(0.446079\pi\)
−0.937924 + 0.346840i \(0.887255\pi\)
\(600\) −5.96669 2.86101i −0.243589 0.116800i
\(601\) 11.1158 + 19.2532i 0.453424 + 0.785354i 0.998596 0.0529703i \(-0.0168689\pi\)
−0.545172 + 0.838324i \(0.683536\pi\)
\(602\) −1.70690 + 1.70690i −0.0695679 + 0.0695679i
\(603\) 3.90937 + 3.33718i 0.159202 + 0.135900i
\(604\) 27.3201i 1.11164i
\(605\) 1.22134 10.8246i 0.0496544 0.440082i
\(606\) 5.77593 + 1.30618i 0.234631 + 0.0530599i
\(607\) −20.8988 + 5.59982i −0.848257 + 0.227290i −0.656663 0.754184i \(-0.728032\pi\)
−0.191594 + 0.981474i \(0.561366\pi\)
\(608\) −9.34645 + 2.50437i −0.379049 + 0.101566i
\(609\) −26.4452 5.98037i −1.07161 0.242337i
\(610\) 0.126745 + 0.158983i 0.00513175 + 0.00643705i
\(611\) 4.91972i 0.199031i
\(612\) −2.55850 2.18403i −0.103421 0.0882841i
\(613\) 15.7726 15.7726i 0.637051 0.637051i −0.312776 0.949827i \(-0.601259\pi\)
0.949827 + 0.312776i \(0.101259\pi\)
\(614\) −1.68455 2.91773i −0.0679830 0.117750i
\(615\) 24.1352 + 16.3900i 0.973227 + 0.660910i
\(616\) 2.30946 4.00010i 0.0930507 0.161169i
\(617\) −10.9568 40.8914i −0.441104 1.64622i −0.726021 0.687672i \(-0.758633\pi\)
0.284917 0.958552i \(-0.408034\pi\)
\(618\) −1.64776 + 3.13286i −0.0662827 + 0.126022i
\(619\) 27.5855 15.9265i 1.10876 0.640141i 0.170250 0.985401i \(-0.445543\pi\)
0.938507 + 0.345260i \(0.112209\pi\)
\(620\) −10.2810 + 13.9258i −0.412896 + 0.559272i
\(621\) 13.6158 + 34.0901i 0.546385 + 1.36799i
\(622\) 1.17952 + 1.17952i 0.0472944 + 0.0472944i
\(623\) 1.83361 6.84311i 0.0734619 0.274163i
\(624\) 10.1907 3.16573i 0.407955 0.126731i
\(625\) −1.85278 24.9312i −0.0741113 0.997250i
\(626\) −3.13060 1.80745i −0.125124 0.0722403i
\(627\) −0.724161 18.3709i −0.0289202 0.733663i
\(628\) 39.7206 + 10.6431i 1.58502 + 0.424706i
\(629\) −0.138922 −0.00553917
\(630\) −2.78671 + 1.48654i −0.111025 + 0.0592253i
\(631\) 15.7931 0.628713 0.314356 0.949305i \(-0.398211\pi\)
0.314356 + 0.949305i \(0.398211\pi\)
\(632\) 5.54081 + 1.48466i 0.220402 + 0.0590564i
\(633\) 28.0057 17.6753i 1.11313 0.702532i
\(634\) 3.23993 + 1.87057i 0.128674 + 0.0742899i
\(635\) 10.5728 + 4.15140i 0.419567 + 0.164743i
\(636\) −6.49053 + 28.7012i −0.257366 + 1.13808i
\(637\) 0.437722 1.63360i 0.0173432 0.0647256i
\(638\) 2.16364 + 2.16364i 0.0856594 + 0.0856594i
\(639\) −8.66619 + 5.95939i −0.342829 + 0.235750i
\(640\) 1.95976 + 13.0158i 0.0774663 + 0.514497i
\(641\) −8.57453 + 4.95051i −0.338673 + 0.195533i −0.659685 0.751542i \(-0.729310\pi\)
0.321012 + 0.947075i \(0.395977\pi\)
\(642\) 4.93592 0.194569i 0.194805 0.00767902i
\(643\) −12.2247 45.6232i −0.482095 1.79920i −0.592801 0.805349i \(-0.701978\pi\)
0.110706 0.993853i \(-0.464689\pi\)
\(644\) −16.9303 + 29.3241i −0.667147 + 1.15553i
\(645\) 18.7544 + 6.52367i 0.738454 + 0.256869i
\(646\) 0.236147 + 0.409018i 0.00929107 + 0.0160926i
\(647\) −9.75824 + 9.75824i −0.383636 + 0.383636i −0.872410 0.488774i \(-0.837444\pi\)
0.488774 + 0.872410i \(0.337444\pi\)
\(648\) 6.28079 2.80026i 0.246733 0.110005i
\(649\) 11.2506i 0.441625i
\(650\) −1.15203 1.06960i −0.0451865 0.0419530i
\(651\) 4.94853 + 15.9296i 0.193948 + 0.624331i
\(652\) 6.51206 1.74490i 0.255032 0.0683356i
\(653\) −2.99335 + 0.802065i −0.117139 + 0.0313872i −0.316912 0.948455i \(-0.602646\pi\)
0.199773 + 0.979842i \(0.435979\pi\)
\(654\) −0.0777914 + 0.0841760i −0.00304189 + 0.00329154i
\(655\) −37.2509 4.20302i −1.45551 0.164226i
\(656\) 28.4613i 1.11123i
\(657\) 28.7373 + 5.31850i 1.12115 + 0.207494i
\(658\) 1.00447 1.00447i 0.0391584 0.0391584i
\(659\) 13.5644 + 23.4942i 0.528393 + 0.915204i 0.999452 + 0.0331023i \(0.0105387\pi\)
−0.471059 + 0.882102i \(0.656128\pi\)
\(660\) −18.7691 1.37176i −0.730585 0.0533956i
\(661\) −9.54526 + 16.5329i −0.371268 + 0.643055i −0.989761 0.142736i \(-0.954410\pi\)
0.618493 + 0.785790i \(0.287743\pi\)
\(662\) 1.71638 + 6.40560i 0.0667088 + 0.248961i
\(663\) −0.861129 1.36442i −0.0334435 0.0529896i
\(664\) 7.30683 4.21860i 0.283560 0.163713i
\(665\) −23.1514 + 3.48584i −0.897772 + 0.135175i
\(666\) 0.0605251 0.126978i 0.00234530 0.00492028i
\(667\) −32.0231 32.0231i −1.23994 1.23994i
\(668\) −4.32979 + 16.1590i −0.167524 + 0.625210i
\(669\) 5.31412 + 4.91105i 0.205456 + 0.189872i
\(670\) −0.677107 + 0.295294i −0.0261589 + 0.0114082i
\(671\) 1.01104 + 0.583723i 0.0390307 + 0.0225344i
\(672\) 8.44739 + 4.44300i 0.325865 + 0.171392i
\(673\) −0.134287 0.0359820i −0.00517638 0.00138701i 0.256230 0.966616i \(-0.417520\pi\)
−0.261406 + 0.965229i \(0.584186\pi\)
\(674\) 6.17391 0.237810
\(675\) 20.9914 + 15.3088i 0.807961 + 0.589236i
\(676\) −20.2978 −0.780684
\(677\) −7.80401 2.09108i −0.299933 0.0803667i 0.105714 0.994397i \(-0.466287\pi\)
−0.405647 + 0.914030i \(0.632954\pi\)
\(678\) 1.58890 + 0.835699i 0.0610213 + 0.0320948i
\(679\) 3.10188 + 1.79087i 0.119039 + 0.0687272i
\(680\) 0.894663 0.390172i 0.0343087 0.0149624i
\(681\) 17.4961 + 16.1690i 0.670450 + 0.619598i
\(682\) 0.487225 1.81835i 0.0186568 0.0696281i
\(683\) −35.0271 35.0271i −1.34027 1.34027i −0.895784 0.444490i \(-0.853385\pi\)
−0.444490 0.895784i \(-0.646615\pi\)
\(684\) 25.1702 1.98745i 0.962406 0.0759921i
\(685\) 14.1405 2.12909i 0.540279 0.0813483i
\(686\) 3.27715 1.89206i 0.125122 0.0722393i
\(687\) −14.1644 22.4428i −0.540404 0.856245i
\(688\) −5.01366 18.7112i −0.191144 0.713359i
\(689\) −7.05680 + 12.2227i −0.268843 + 0.465649i
\(690\) −5.26153 0.384544i −0.200303 0.0146394i
\(691\) −20.5195 35.5408i −0.780597 1.35203i −0.931594 0.363500i \(-0.881582\pi\)
0.150997 0.988534i \(-0.451752\pi\)
\(692\) 24.5313 24.5313i 0.932541 0.932541i
\(693\) −11.7743 + 13.7931i −0.447267 + 0.523956i
\(694\) 3.09646i 0.117540i
\(695\) −23.3334 2.63271i −0.885087 0.0998644i
\(696\) −5.75804 + 6.23062i −0.218258 + 0.236171i
\(697\) −4.15663 + 1.11377i −0.157444 + 0.0421869i
\(698\) −3.26160 + 0.873943i −0.123453 + 0.0330792i
\(699\) −2.16958 6.98402i −0.0820611 0.264160i
\(700\) 0.888649 + 23.9485i 0.0335878 + 0.905168i
\(701\) 37.2173i 1.40568i 0.711348 + 0.702840i \(0.248085\pi\)
−0.711348 + 0.702840i \(0.751915\pi\)
\(702\) 1.62228 0.192645i 0.0612292 0.00727091i
\(703\) 0.737304 0.737304i 0.0278080 0.0278080i
\(704\) 8.81487 + 15.2678i 0.332223 + 0.575427i
\(705\) −11.0366 3.83904i −0.415661 0.144587i
\(706\) 1.84490 3.19546i 0.0694337 0.120263i
\(707\) −11.2067 41.8240i −0.421471 1.57295i
\(708\) 15.4386 0.608573i 0.580218 0.0228716i
\(709\) −13.3449 + 7.70466i −0.501177 + 0.289355i −0.729199 0.684301i \(-0.760107\pi\)
0.228023 + 0.973656i \(0.426774\pi\)
\(710\) −0.225047 1.49466i −0.00844587 0.0560938i
\(711\) −20.3307 9.69081i −0.762459 0.363434i
\(712\) −1.56751 1.56751i −0.0587448 0.0587448i
\(713\) −7.21120 + 26.9125i −0.270061 + 1.00788i
\(714\) 0.102758 0.454396i 0.00384562 0.0170053i
\(715\) −8.40179 3.29896i −0.314209 0.123374i
\(716\) 14.1222 + 8.15345i 0.527771 + 0.304709i
\(717\) 7.60014 4.79670i 0.283833 0.179136i
\(718\) −4.28596 1.14842i −0.159951 0.0428587i
\(719\) −11.9324 −0.445002 −0.222501 0.974932i \(-0.571422\pi\)
−0.222501 + 0.974932i \(0.571422\pi\)
\(720\) 0.850388 25.3315i 0.0316921 0.944048i
\(721\) 25.8823 0.963908
\(722\) 0.114511 + 0.0306831i 0.00426165 + 0.00114191i
\(723\) 0.253613 + 6.43378i 0.00943196 + 0.239275i
\(724\) 8.04760 + 4.64628i 0.299087 + 0.172678i
\(725\) −31.2466 7.14203i −1.16047 0.265248i
\(726\) −1.55369 + 0.482653i −0.0576629 + 0.0179129i
\(727\) 1.12575 4.20134i 0.0417516 0.155819i −0.941903 0.335885i \(-0.890965\pi\)
0.983654 + 0.180066i \(0.0576312\pi\)
\(728\) 2.15130 + 2.15130i 0.0797326 + 0.0797326i
\(729\) −26.2491 + 6.32329i −0.972189 + 0.234196i
\(730\) −2.49462 + 3.37900i −0.0923302 + 0.125062i
\(731\) −2.53649 + 1.46444i −0.0938153 + 0.0541643i
\(732\) −0.746322 + 1.41897i −0.0275848 + 0.0524465i
\(733\) 12.7796 + 47.6943i 0.472027 + 1.76163i 0.632473 + 0.774583i \(0.282040\pi\)
−0.160446 + 0.987045i \(0.551293\pi\)
\(734\) −2.61370 + 4.52707i −0.0964736 + 0.167097i
\(735\) −3.32314 2.25672i −0.122576 0.0832402i
\(736\) 7.97125 + 13.8066i 0.293824 + 0.508918i
\(737\) −2.99918 + 2.99918i −0.110476 + 0.110476i
\(738\) 0.792945 4.28450i 0.0291887 0.157715i
\(739\) 16.1890i 0.595523i −0.954640 0.297761i \(-0.903760\pi\)
0.954640 0.297761i \(-0.0962400\pi\)
\(740\) −0.665333 0.834567i −0.0244581 0.0306793i
\(741\) 11.8117 + 2.67112i 0.433915 + 0.0981262i
\(742\) −3.93635 + 1.05474i −0.144508 + 0.0387208i
\(743\) 19.2021 5.14520i 0.704458 0.188759i 0.111232 0.993795i \(-0.464520\pi\)
0.593227 + 0.805035i \(0.297854\pi\)
\(744\) 5.09091 + 1.15127i 0.186642 + 0.0422075i
\(745\) 2.48990 22.0677i 0.0912230 0.808499i
\(746\) 5.78426i 0.211777i
\(747\) −31.2238 + 11.0660i −1.14242 + 0.404883i
\(748\) 1.96282 1.96282i 0.0717679 0.0717679i
\(749\) −18.0595 31.2799i −0.659878 1.14294i
\(750\) −3.29844 + 1.74975i −0.120442 + 0.0638918i
\(751\) 7.95061 13.7709i 0.290122 0.502506i −0.683716 0.729748i \(-0.739637\pi\)
0.973838 + 0.227242i \(0.0729708\pi\)
\(752\) 2.95043 + 11.0112i 0.107591 + 0.401536i
\(753\) −3.20308 + 6.08995i −0.116727 + 0.221930i
\(754\) −1.74545 + 1.00774i −0.0635655 + 0.0366996i
\(755\) 25.0389 + 18.4856i 0.911259 + 0.672758i
\(756\) −19.5644 15.4111i −0.711550 0.560495i
\(757\) 21.3482 + 21.3482i 0.775914 + 0.775914i 0.979133 0.203219i \(-0.0651404\pi\)
−0.203219 + 0.979133i \(0.565140\pi\)
\(758\) 1.00278 3.74243i 0.0364227 0.135931i
\(759\) −28.9278 + 8.98641i −1.05001 + 0.326186i
\(760\) −2.67750 + 6.81905i −0.0971232 + 0.247353i
\(761\) 4.74778 + 2.74113i 0.172107 + 0.0993659i 0.583579 0.812056i \(-0.301652\pi\)
−0.411472 + 0.911422i \(0.634985\pi\)
\(762\) −0.0668196 1.69511i −0.00242062 0.0614075i
\(763\) 0.809511 + 0.216908i 0.0293063 + 0.007852