Properties

Label 45.2.l.a.23.4
Level $45$
Weight $2$
Character 45.23
Analytic conductor $0.359$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,2,Mod(2,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.2");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 45.l (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.359326809096\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 18 x^{14} - 36 x^{13} + 34 x^{12} + 18 x^{11} - 72 x^{10} + 132 x^{9} - 93 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 23.4
Root \(-0.347596 - 1.29724i\) of defining polynomial
Character \(\chi\) \(=\) 45.23
Dual form 45.2.l.a.2.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.347596 - 1.29724i) q^{2} +(-1.18953 - 1.25897i) q^{3} +(0.170031 + 0.0981673i) q^{4} +(-1.59371 + 1.56847i) q^{5} +(-2.04667 + 1.10550i) q^{6} +(1.97869 + 0.530190i) q^{7} +(2.08575 - 2.08575i) q^{8} +(-0.170031 + 2.99518i) q^{9} +O(q^{10})\) \(q+(0.347596 - 1.29724i) q^{2} +(-1.18953 - 1.25897i) q^{3} +(0.170031 + 0.0981673i) q^{4} +(-1.59371 + 1.56847i) q^{5} +(-2.04667 + 1.10550i) q^{6} +(1.97869 + 0.530190i) q^{7} +(2.08575 - 2.08575i) q^{8} +(-0.170031 + 2.99518i) q^{9} +(1.48073 + 2.61262i) q^{10} +(-0.762281 + 0.440103i) q^{11} +(-0.0786668 - 0.330837i) q^{12} +(-5.36743 + 1.43820i) q^{13} +(1.37557 - 2.38256i) q^{14} +(3.87043 + 0.140687i) q^{15} +(-1.78439 - 3.09066i) q^{16} +(-1.13610 - 1.13610i) q^{17} +(3.82638 + 1.26168i) q^{18} -1.52456i q^{19} +(-0.424952 + 0.110239i) q^{20} +(-1.68622 - 3.12180i) q^{21} +(0.305956 + 1.14184i) q^{22} +(0.410850 + 1.53331i) q^{23} +(-5.10696 - 0.144840i) q^{24} +(0.0797919 - 4.99936i) q^{25} +7.46278i q^{26} +(3.97311 - 3.34879i) q^{27} +(0.284392 + 0.284392i) q^{28} +(0.796583 + 1.37972i) q^{29} +(1.52785 - 4.97199i) q^{30} +(3.49518 - 6.05383i) q^{31} +(1.06878 - 0.286379i) q^{32} +(1.46084 + 0.436175i) q^{33} +(-1.86870 + 1.07889i) q^{34} +(-3.98504 + 2.25856i) q^{35} +(-0.322939 + 0.492581i) q^{36} +(-4.25746 + 4.25746i) q^{37} +(-1.97773 - 0.529931i) q^{38} +(8.19538 + 5.04667i) q^{39} +(-0.0526301 + 6.59550i) q^{40} +(3.11546 + 1.79871i) q^{41} +(-4.63586 + 1.10232i) q^{42} +(0.497959 - 1.85841i) q^{43} -0.172815 q^{44} +(-4.42687 - 5.04012i) q^{45} +2.13189 q^{46} +(-2.14344 + 7.99942i) q^{47} +(-1.76847 + 5.92294i) q^{48} +(-2.42805 - 1.40183i) q^{49} +(-6.45766 - 1.84127i) q^{50} +(-0.0788937 + 2.78174i) q^{51} +(-1.05381 - 0.282368i) q^{52} +(4.65601 - 4.65601i) q^{53} +(-2.96317 - 6.31812i) q^{54} +(0.524562 - 1.89701i) q^{55} +(5.23290 - 3.02121i) q^{56} +(-1.91938 + 1.81351i) q^{57} +(2.06672 - 0.553777i) q^{58} +(3.81780 - 6.61262i) q^{59} +(0.644281 + 0.403871i) q^{60} +(6.64002 + 11.5008i) q^{61} +(-6.63838 - 6.63838i) q^{62} +(-1.92445 + 5.83639i) q^{63} -8.62358i q^{64} +(6.29833 - 10.7107i) q^{65} +(1.07361 - 1.74345i) q^{66} +(-0.859733 - 3.20857i) q^{67} +(-0.0816439 - 0.304699i) q^{68} +(1.44168 - 2.34117i) q^{69} +(1.54472 + 5.95464i) q^{70} -5.89798i q^{71} +(5.89254 + 6.60182i) q^{72} +(1.58900 + 1.58900i) q^{73} +(4.04309 + 7.00284i) q^{74} +(-6.38898 + 5.84644i) q^{75} +(0.149662 - 0.259222i) q^{76} +(-1.74166 + 0.466676i) q^{77} +(9.39544 - 8.87721i) q^{78} +(-6.69401 + 3.86479i) q^{79} +(7.69140 + 2.12683i) q^{80} +(-8.94218 - 1.01854i) q^{81} +(3.41628 - 3.41628i) q^{82} +(-9.59770 - 2.57170i) q^{83} +(0.0197489 - 0.696335i) q^{84} +(3.59254 + 0.0286674i) q^{85} +(-2.23772 - 1.29195i) q^{86} +(0.789474 - 2.64410i) q^{87} +(-0.671981 + 2.50787i) q^{88} -4.62765 q^{89} +(-8.07703 + 3.99081i) q^{90} -11.3830 q^{91} +(-0.0806641 + 0.301043i) q^{92} +(-11.7792 + 2.80088i) q^{93} +(9.63215 + 5.56112i) q^{94} +(2.39123 + 2.42970i) q^{95} +(-1.63189 - 1.00491i) q^{96} +(3.82988 + 1.02621i) q^{97} +(-2.66250 + 2.66250i) q^{98} +(-1.18858 - 2.35800i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} - 6 q^{3} - 6 q^{5} - 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 6 q^{2} - 6 q^{3} - 6 q^{5} - 2 q^{7} - 8 q^{10} - 6 q^{12} - 2 q^{13} - 6 q^{15} - 8 q^{16} + 36 q^{18} + 18 q^{20} - 12 q^{21} - 10 q^{22} + 18 q^{23} + 4 q^{25} + 18 q^{27} - 16 q^{28} + 30 q^{30} - 4 q^{31} + 30 q^{32} - 12 q^{33} - 48 q^{36} + 4 q^{37} - 30 q^{38} + 6 q^{40} - 24 q^{41} + 6 q^{42} - 2 q^{43} - 36 q^{45} + 32 q^{46} - 12 q^{47} - 30 q^{48} - 54 q^{50} + 36 q^{51} - 14 q^{52} - 16 q^{55} + 36 q^{56} - 6 q^{57} - 6 q^{58} + 18 q^{60} + 8 q^{61} + 36 q^{63} + 66 q^{65} + 36 q^{66} + 4 q^{67} + 42 q^{68} + 18 q^{70} + 18 q^{72} - 8 q^{73} + 42 q^{75} + 24 q^{76} - 6 q^{77} - 42 q^{78} - 48 q^{81} + 32 q^{82} - 66 q^{83} + 22 q^{85} - 48 q^{86} - 18 q^{87} + 18 q^{88} - 66 q^{90} - 40 q^{91} - 60 q^{92} - 18 q^{93} - 36 q^{95} - 24 q^{96} + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.347596 1.29724i 0.245787 0.917290i −0.727199 0.686427i \(-0.759178\pi\)
0.972986 0.230863i \(-0.0741551\pi\)
\(3\) −1.18953 1.25897i −0.686776 0.726869i
\(4\) 0.170031 + 0.0981673i 0.0850154 + 0.0490837i
\(5\) −1.59371 + 1.56847i −0.712727 + 0.701442i
\(6\) −2.04667 + 1.10550i −0.835551 + 0.451318i
\(7\) 1.97869 + 0.530190i 0.747876 + 0.200393i 0.612576 0.790412i \(-0.290133\pi\)
0.135300 + 0.990805i \(0.456800\pi\)
\(8\) 2.08575 2.08575i 0.737423 0.737423i
\(9\) −0.170031 + 2.99518i −0.0566769 + 0.998393i
\(10\) 1.48073 + 2.61262i 0.468247 + 0.826183i
\(11\) −0.762281 + 0.440103i −0.229836 + 0.132696i −0.610497 0.792019i \(-0.709030\pi\)
0.380660 + 0.924715i \(0.375697\pi\)
\(12\) −0.0786668 0.330837i −0.0227092 0.0955045i
\(13\) −5.36743 + 1.43820i −1.48866 + 0.398885i −0.909283 0.416177i \(-0.863370\pi\)
−0.579374 + 0.815062i \(0.696703\pi\)
\(14\) 1.37557 2.38256i 0.367637 0.636766i
\(15\) 3.87043 + 0.140687i 0.999340 + 0.0363252i
\(16\) −1.78439 3.09066i −0.446098 0.772664i
\(17\) −1.13610 1.13610i −0.275544 0.275544i 0.555783 0.831327i \(-0.312418\pi\)
−0.831327 + 0.555783i \(0.812418\pi\)
\(18\) 3.82638 + 1.26168i 0.901885 + 0.297381i
\(19\) 1.52456i 0.349758i −0.984590 0.174879i \(-0.944047\pi\)
0.984590 0.174879i \(-0.0559535\pi\)
\(20\) −0.424952 + 0.110239i −0.0950221 + 0.0246501i
\(21\) −1.68622 3.12180i −0.367964 0.681233i
\(22\) 0.305956 + 1.14184i 0.0652300 + 0.243442i
\(23\) 0.410850 + 1.53331i 0.0856682 + 0.319718i 0.995440 0.0953909i \(-0.0304101\pi\)
−0.909772 + 0.415109i \(0.863743\pi\)
\(24\) −5.10696 0.144840i −1.04245 0.0295653i
\(25\) 0.0797919 4.99936i 0.0159584 0.999873i
\(26\) 7.46278i 1.46357i
\(27\) 3.97311 3.34879i 0.764625 0.644476i
\(28\) 0.284392 + 0.284392i 0.0537450 + 0.0537450i
\(29\) 0.796583 + 1.37972i 0.147922 + 0.256208i 0.930459 0.366396i \(-0.119408\pi\)
−0.782537 + 0.622603i \(0.786075\pi\)
\(30\) 1.52785 4.97199i 0.278946 0.907757i
\(31\) 3.49518 6.05383i 0.627752 1.08730i −0.360249 0.932856i \(-0.617308\pi\)
0.988002 0.154443i \(-0.0493583\pi\)
\(32\) 1.06878 0.286379i 0.188936 0.0506251i
\(33\) 1.46084 + 0.436175i 0.254299 + 0.0759284i
\(34\) −1.86870 + 1.07889i −0.320479 + 0.185029i
\(35\) −3.98504 + 2.25856i −0.673595 + 0.381767i
\(36\) −0.322939 + 0.492581i −0.0538232 + 0.0820968i
\(37\) −4.25746 + 4.25746i −0.699922 + 0.699922i −0.964393 0.264472i \(-0.914802\pi\)
0.264472 + 0.964393i \(0.414802\pi\)
\(38\) −1.97773 0.529931i −0.320830 0.0859661i
\(39\) 8.19538 + 5.04667i 1.31231 + 0.808114i
\(40\) −0.0526301 + 6.59550i −0.00832155 + 1.04284i
\(41\) 3.11546 + 1.79871i 0.486552 + 0.280911i 0.723143 0.690698i \(-0.242697\pi\)
−0.236591 + 0.971609i \(0.576030\pi\)
\(42\) −4.63586 + 1.10232i −0.715329 + 0.170092i
\(43\) 0.497959 1.85841i 0.0759380 0.283404i −0.917506 0.397721i \(-0.869801\pi\)
0.993444 + 0.114317i \(0.0364679\pi\)
\(44\) −0.172815 −0.0260528
\(45\) −4.42687 5.04012i −0.659919 0.751337i
\(46\) 2.13189 0.314330
\(47\) −2.14344 + 7.99942i −0.312652 + 1.16683i 0.613503 + 0.789693i \(0.289760\pi\)
−0.926155 + 0.377142i \(0.876907\pi\)
\(48\) −1.76847 + 5.92294i −0.255256 + 0.854902i
\(49\) −2.42805 1.40183i −0.346864 0.200262i
\(50\) −6.45766 1.84127i −0.913251 0.260394i
\(51\) −0.0788937 + 2.78174i −0.0110473 + 0.389522i
\(52\) −1.05381 0.282368i −0.146137 0.0391574i
\(53\) 4.65601 4.65601i 0.639552 0.639552i −0.310893 0.950445i \(-0.600628\pi\)
0.950445 + 0.310893i \(0.100628\pi\)
\(54\) −2.96317 6.31812i −0.403236 0.859787i
\(55\) 0.524562 1.89701i 0.0707319 0.255793i
\(56\) 5.23290 3.02121i 0.699275 0.403727i
\(57\) −1.91938 + 1.81351i −0.254229 + 0.240206i
\(58\) 2.06672 0.553777i 0.271374 0.0727145i
\(59\) 3.81780 6.61262i 0.497035 0.860890i −0.502959 0.864310i \(-0.667755\pi\)
0.999994 + 0.00342048i \(0.00108877\pi\)
\(60\) 0.644281 + 0.403871i 0.0831763 + 0.0521395i
\(61\) 6.64002 + 11.5008i 0.850167 + 1.47253i 0.881057 + 0.473010i \(0.156833\pi\)
−0.0308900 + 0.999523i \(0.509834\pi\)
\(62\) −6.63838 6.63838i −0.843075 0.843075i
\(63\) −1.92445 + 5.83639i −0.242458 + 0.735317i
\(64\) 8.62358i 1.07795i
\(65\) 6.29833 10.7107i 0.781211 1.32850i
\(66\) 1.07361 1.74345i 0.132152 0.214604i
\(67\) −0.859733 3.20857i −0.105033 0.391989i 0.893316 0.449429i \(-0.148373\pi\)
−0.998349 + 0.0574406i \(0.981706\pi\)
\(68\) −0.0816439 0.304699i −0.00990078 0.0369502i
\(69\) 1.44168 2.34117i 0.173558 0.281844i
\(70\) 1.54472 + 5.95464i 0.184630 + 0.711716i
\(71\) 5.89798i 0.699961i −0.936757 0.349980i \(-0.886188\pi\)
0.936757 0.349980i \(-0.113812\pi\)
\(72\) 5.89254 + 6.60182i 0.694442 + 0.778032i
\(73\) 1.58900 + 1.58900i 0.185979 + 0.185979i 0.793955 0.607976i \(-0.208018\pi\)
−0.607976 + 0.793955i \(0.708018\pi\)
\(74\) 4.04309 + 7.00284i 0.470000 + 0.814063i
\(75\) −6.38898 + 5.84644i −0.737736 + 0.675089i
\(76\) 0.149662 0.259222i 0.0171674 0.0297348i
\(77\) −1.74166 + 0.466676i −0.198480 + 0.0531827i
\(78\) 9.39544 8.87721i 1.06382 1.00515i
\(79\) −6.69401 + 3.86479i −0.753135 + 0.434823i −0.826826 0.562458i \(-0.809856\pi\)
0.0736905 + 0.997281i \(0.476522\pi\)
\(80\) 7.69140 + 2.12683i 0.859925 + 0.237787i
\(81\) −8.94218 1.01854i −0.993575 0.113172i
\(82\) 3.41628 3.41628i 0.377265 0.377265i
\(83\) −9.59770 2.57170i −1.05348 0.282280i −0.309794 0.950804i \(-0.600260\pi\)
−0.743691 + 0.668523i \(0.766927\pi\)
\(84\) 0.0197489 0.696335i 0.00215478 0.0759763i
\(85\) 3.59254 + 0.0286674i 0.389666 + 0.00310942i
\(86\) −2.23772 1.29195i −0.241299 0.139314i
\(87\) 0.789474 2.64410i 0.0846405 0.283477i
\(88\) −0.671981 + 2.50787i −0.0716334 + 0.267340i
\(89\) −4.62765 −0.490530 −0.245265 0.969456i \(-0.578875\pi\)
−0.245265 + 0.969456i \(0.578875\pi\)
\(90\) −8.07703 + 3.99081i −0.851393 + 0.420669i
\(91\) −11.3830 −1.19327
\(92\) −0.0806641 + 0.301043i −0.00840982 + 0.0313859i
\(93\) −11.7792 + 2.80088i −1.22145 + 0.290437i
\(94\) 9.63215 + 5.56112i 0.993480 + 0.573586i
\(95\) 2.39123 + 2.42970i 0.245335 + 0.249282i
\(96\) −1.63189 1.00491i −0.166554 0.102563i
\(97\) 3.82988 + 1.02621i 0.388865 + 0.104196i 0.447954 0.894057i \(-0.352153\pi\)
−0.0590888 + 0.998253i \(0.518820\pi\)
\(98\) −2.66250 + 2.66250i −0.268953 + 0.268953i
\(99\) −1.18858 2.35800i −0.119456 0.236988i
\(100\) 0.504341 0.842213i 0.0504341 0.0842213i
\(101\) −2.23195 + 1.28862i −0.222087 + 0.128222i −0.606916 0.794766i \(-0.707594\pi\)
0.384829 + 0.922988i \(0.374260\pi\)
\(102\) 3.58117 + 1.06927i 0.354589 + 0.105873i
\(103\) 12.6183 3.38106i 1.24332 0.333146i 0.423566 0.905865i \(-0.360778\pi\)
0.819752 + 0.572719i \(0.194111\pi\)
\(104\) −8.19538 + 14.1948i −0.803623 + 1.39192i
\(105\) 7.58380 + 2.33044i 0.740103 + 0.227427i
\(106\) −4.42157 7.65839i −0.429461 0.743848i
\(107\) 9.23034 + 9.23034i 0.892331 + 0.892331i 0.994742 0.102411i \(-0.0326557\pi\)
−0.102411 + 0.994742i \(0.532656\pi\)
\(108\) 1.00429 0.179369i 0.0966381 0.0172598i
\(109\) 8.05480i 0.771510i 0.922601 + 0.385755i \(0.126059\pi\)
−0.922601 + 0.385755i \(0.873941\pi\)
\(110\) −2.27855 1.33988i −0.217251 0.127752i
\(111\) 10.4244 + 0.295649i 0.989441 + 0.0280618i
\(112\) −1.89213 7.06153i −0.178790 0.667252i
\(113\) 3.10662 + 11.5941i 0.292246 + 1.09068i 0.943380 + 0.331714i \(0.107627\pi\)
−0.651134 + 0.758963i \(0.725706\pi\)
\(114\) 1.68540 + 3.12028i 0.157852 + 0.292241i
\(115\) −3.05973 1.79924i −0.285322 0.167780i
\(116\) 0.312794i 0.0290422i
\(117\) −3.39503 16.3209i −0.313871 1.50887i
\(118\) −7.25113 7.25113i −0.667521 0.667521i
\(119\) −1.64564 2.85034i −0.150856 0.261290i
\(120\) 8.36617 7.77929i 0.763723 0.710149i
\(121\) −5.11262 + 8.85532i −0.464784 + 0.805029i
\(122\) 17.2274 4.61608i 1.55970 0.417920i
\(123\) −1.44140 6.06190i −0.129967 0.546583i
\(124\) 1.18858 0.686224i 0.106737 0.0616248i
\(125\) 7.71420 + 8.09266i 0.689979 + 0.723830i
\(126\) 6.90230 + 4.52519i 0.614906 + 0.403136i
\(127\) 1.90230 1.90230i 0.168802 0.168802i −0.617651 0.786452i \(-0.711915\pi\)
0.786452 + 0.617651i \(0.211915\pi\)
\(128\) −9.04933 2.42476i −0.799855 0.214321i
\(129\) −2.93202 + 1.58372i −0.258150 + 0.139438i
\(130\) −11.7052 11.8935i −1.02661 1.04313i
\(131\) −18.5109 10.6873i −1.61731 0.933754i −0.987613 0.156912i \(-0.949846\pi\)
−0.629696 0.776841i \(-0.716821\pi\)
\(132\) 0.205569 + 0.217569i 0.0178925 + 0.0189370i
\(133\) 0.808307 3.01664i 0.0700891 0.261576i
\(134\) −4.46113 −0.385383
\(135\) −1.07947 + 11.5687i −0.0929063 + 0.995675i
\(136\) −4.73922 −0.406385
\(137\) 1.77541 6.62594i 0.151684 0.566092i −0.847683 0.530504i \(-0.822003\pi\)
0.999367 0.0355883i \(-0.0113305\pi\)
\(138\) −2.53595 2.68400i −0.215875 0.228477i
\(139\) −1.24863 0.720896i −0.105907 0.0611456i 0.446111 0.894978i \(-0.352809\pi\)
−0.552018 + 0.833832i \(0.686142\pi\)
\(140\) −0.899297 0.00717612i −0.0760045 0.000606493i
\(141\) 12.6207 6.81703i 1.06286 0.574097i
\(142\) −7.65111 2.05011i −0.642067 0.172041i
\(143\) 3.45853 3.45853i 0.289217 0.289217i
\(144\) 9.56047 4.81906i 0.796706 0.401589i
\(145\) −3.43357 0.949452i −0.285143 0.0788477i
\(146\) 2.61366 1.50900i 0.216308 0.124885i
\(147\) 1.12337 + 4.72437i 0.0926536 + 0.389659i
\(148\) −1.14184 + 0.305956i −0.0938589 + 0.0251494i
\(149\) 8.28457 14.3493i 0.678699 1.17554i −0.296674 0.954979i \(-0.595878\pi\)
0.975373 0.220562i \(-0.0707891\pi\)
\(150\) 5.36348 + 10.3203i 0.437927 + 0.842646i
\(151\) 0.00283730 + 0.00491435i 0.000230896 + 0.000399924i 0.866141 0.499800i \(-0.166593\pi\)
−0.865910 + 0.500200i \(0.833260\pi\)
\(152\) −3.17985 3.17985i −0.257920 0.257920i
\(153\) 3.59599 3.20964i 0.290718 0.259484i
\(154\) 2.42157i 0.195136i
\(155\) 3.92497 + 15.1301i 0.315261 + 1.21528i
\(156\) 0.898049 + 1.66261i 0.0719014 + 0.133115i
\(157\) 2.18944 + 8.17112i 0.174737 + 0.652126i 0.996596 + 0.0824362i \(0.0262701\pi\)
−0.821860 + 0.569690i \(0.807063\pi\)
\(158\) 2.68677 + 10.0272i 0.213748 + 0.797717i
\(159\) −11.4003 0.323326i −0.904099 0.0256414i
\(160\) −1.25414 + 2.13276i −0.0991488 + 0.168609i
\(161\) 3.25179i 0.256277i
\(162\) −4.42956 + 11.2461i −0.348019 + 0.883581i
\(163\) 4.19302 + 4.19302i 0.328422 + 0.328422i 0.851986 0.523564i \(-0.175398\pi\)
−0.523564 + 0.851986i \(0.675398\pi\)
\(164\) 0.353149 + 0.611672i 0.0275763 + 0.0477635i
\(165\) −3.01227 + 1.59614i −0.234505 + 0.124260i
\(166\) −6.67224 + 11.5567i −0.517866 + 0.896970i
\(167\) −5.76334 + 1.54428i −0.445980 + 0.119500i −0.474818 0.880084i \(-0.657486\pi\)
0.0288375 + 0.999584i \(0.490819\pi\)
\(168\) −10.0283 2.99425i −0.773702 0.231012i
\(169\) 15.4826 8.93886i 1.19097 0.687605i
\(170\) 1.28594 4.65044i 0.0986271 0.356672i
\(171\) 4.56633 + 0.259222i 0.349196 + 0.0198232i
\(172\) 0.267103 0.267103i 0.0203664 0.0203664i
\(173\) 13.1994 + 3.53677i 1.00353 + 0.268896i 0.722925 0.690927i \(-0.242797\pi\)
0.280608 + 0.959822i \(0.409464\pi\)
\(174\) −3.15562 1.94322i −0.239227 0.147315i
\(175\) 2.80849 9.84991i 0.212302 0.744583i
\(176\) 2.72042 + 1.57063i 0.205059 + 0.118391i
\(177\) −12.8665 + 3.05941i −0.967106 + 0.229959i
\(178\) −1.60855 + 6.00319i −0.120566 + 0.449958i
\(179\) −17.2370 −1.28836 −0.644178 0.764875i \(-0.722801\pi\)
−0.644178 + 0.764875i \(0.722801\pi\)
\(180\) −0.257930 1.29155i −0.0192250 0.0962664i
\(181\) 14.7708 1.09790 0.548952 0.835854i \(-0.315027\pi\)
0.548952 + 0.835854i \(0.315027\pi\)
\(182\) −3.95669 + 14.7666i −0.293289 + 1.09457i
\(183\) 6.58076 22.0402i 0.486464 1.62926i
\(184\) 4.05503 + 2.34117i 0.298941 + 0.172594i
\(185\) 0.107429 13.4628i 0.00789837 0.989807i
\(186\) −0.460987 + 16.2541i −0.0338012 + 1.19181i
\(187\) 1.36603 + 0.366025i 0.0998937 + 0.0267664i
\(188\) −1.14973 + 1.14973i −0.0838528 + 0.0838528i
\(189\) 9.63706 4.51974i 0.700993 0.328763i
\(190\) 3.98310 2.25746i 0.288964 0.163773i
\(191\) 4.56792 2.63729i 0.330523 0.190827i −0.325550 0.945525i \(-0.605550\pi\)
0.656073 + 0.754697i \(0.272216\pi\)
\(192\) −10.8569 + 10.2580i −0.783527 + 0.740309i
\(193\) −8.98952 + 2.40873i −0.647080 + 0.173384i −0.567408 0.823437i \(-0.692054\pi\)
−0.0796715 + 0.996821i \(0.525387\pi\)
\(194\) 2.66250 4.61158i 0.191156 0.331092i
\(195\) −20.9766 + 4.81132i −1.50216 + 0.344545i
\(196\) −0.275228 0.476709i −0.0196592 0.0340507i
\(197\) −9.49539 9.49539i −0.676519 0.676519i 0.282692 0.959211i \(-0.408773\pi\)
−0.959211 + 0.282692i \(0.908773\pi\)
\(198\) −3.47204 + 0.722243i −0.246747 + 0.0513276i
\(199\) 17.6342i 1.25005i 0.780604 + 0.625026i \(0.214912\pi\)
−0.780604 + 0.625026i \(0.785088\pi\)
\(200\) −10.2610 10.5938i −0.725561 0.749097i
\(201\) −3.01682 + 4.89907i −0.212790 + 0.345554i
\(202\) 0.895835 + 3.34330i 0.0630307 + 0.235234i
\(203\) 0.844680 + 3.15239i 0.0592849 + 0.221254i
\(204\) −0.286490 + 0.465237i −0.0200583 + 0.0325731i
\(205\) −7.78634 + 2.01989i −0.543822 + 0.141075i
\(206\) 17.5443i 1.22237i
\(207\) −4.66240 + 0.969859i −0.324060 + 0.0674098i
\(208\) 14.0226 + 14.0226i 0.972291 + 0.972291i
\(209\) 0.670964 + 1.16214i 0.0464116 + 0.0803872i
\(210\) 5.65924 9.02800i 0.390525 0.622991i
\(211\) 0.0616050 0.106703i 0.00424106 0.00734574i −0.863897 0.503668i \(-0.831983\pi\)
0.868138 + 0.496323i \(0.165317\pi\)
\(212\) 1.24873 0.334597i 0.0857633 0.0229802i
\(213\) −7.42540 + 7.01583i −0.508780 + 0.480716i
\(214\) 15.1824 8.76558i 1.03785 0.599203i
\(215\) 2.12126 + 3.74279i 0.144669 + 0.255256i
\(216\) 1.30216 15.2716i 0.0886009 1.03910i
\(217\) 10.1256 10.1256i 0.687368 0.687368i
\(218\) 10.4490 + 2.79981i 0.707698 + 0.189627i
\(219\) 0.110345 3.89068i 0.00745640 0.262908i
\(220\) 0.275416 0.271055i 0.0185685 0.0182745i
\(221\) 7.73186 + 4.46399i 0.520101 + 0.300281i
\(222\) 4.00701 13.4202i 0.268933 0.900707i
\(223\) 0.648014 2.41842i 0.0433942 0.161949i −0.940829 0.338883i \(-0.889951\pi\)
0.984223 + 0.176933i \(0.0566177\pi\)
\(224\) 2.26663 0.151445
\(225\) 14.9604 + 1.08904i 0.997361 + 0.0726024i
\(226\) 16.1202 1.07230
\(227\) 3.94671 14.7293i 0.261952 0.977619i −0.702137 0.712042i \(-0.747771\pi\)
0.964090 0.265577i \(-0.0855626\pi\)
\(228\) −0.504382 + 0.119932i −0.0334035 + 0.00794272i
\(229\) −19.1083 11.0322i −1.26271 0.729029i −0.289116 0.957294i \(-0.593361\pi\)
−0.973599 + 0.228265i \(0.926695\pi\)
\(230\) −3.39761 + 3.34381i −0.224032 + 0.220485i
\(231\) 2.65929 + 1.63758i 0.174969 + 0.107745i
\(232\) 4.53922 + 1.21628i 0.298014 + 0.0798527i
\(233\) −4.22173 + 4.22173i −0.276575 + 0.276575i −0.831740 0.555165i \(-0.812655\pi\)
0.555165 + 0.831740i \(0.312655\pi\)
\(234\) −22.3524 1.26890i −1.46122 0.0829507i
\(235\) −9.13085 16.1106i −0.595631 1.05094i
\(236\) 1.29829 0.749566i 0.0845112 0.0487926i
\(237\) 12.8284 + 3.83030i 0.833294 + 0.248805i
\(238\) −4.26960 + 1.14404i −0.276757 + 0.0741569i
\(239\) −6.79199 + 11.7641i −0.439338 + 0.760955i −0.997639 0.0686835i \(-0.978120\pi\)
0.558301 + 0.829639i \(0.311453\pi\)
\(240\) −6.47154 12.2132i −0.417736 0.788359i
\(241\) −2.56728 4.44666i −0.165373 0.286434i 0.771415 0.636333i \(-0.219549\pi\)
−0.936788 + 0.349898i \(0.886216\pi\)
\(242\) 9.71038 + 9.71038i 0.624207 + 0.624207i
\(243\) 9.35468 + 12.4696i 0.600103 + 0.799923i
\(244\) 2.60733i 0.166917i
\(245\) 6.06832 1.57421i 0.387691 0.100573i
\(246\) −8.36479 0.237236i −0.533319 0.0151256i
\(247\) 2.19262 + 8.18298i 0.139513 + 0.520670i
\(248\) −5.33669 19.9168i −0.338880 1.26472i
\(249\) 8.17907 + 15.1424i 0.518327 + 0.959609i
\(250\) 13.1796 7.19422i 0.833550 0.455003i
\(251\) 2.60221i 0.164250i 0.996622 + 0.0821251i \(0.0261707\pi\)
−0.996622 + 0.0821251i \(0.973829\pi\)
\(252\) −0.900159 + 0.803448i −0.0567047 + 0.0506125i
\(253\) −0.987999 0.987999i −0.0621150 0.0621150i
\(254\) −1.80652 3.12898i −0.113351 0.196329i
\(255\) −4.23735 4.55702i −0.265353 0.285371i
\(256\) 2.33257 4.04013i 0.145786 0.252508i
\(257\) −10.1958 + 2.73197i −0.635999 + 0.170415i −0.562390 0.826872i \(-0.690118\pi\)
−0.0736085 + 0.997287i \(0.523452\pi\)
\(258\) 1.03531 + 4.35404i 0.0644555 + 0.271071i
\(259\) −10.6815 + 6.16695i −0.663714 + 0.383196i
\(260\) 2.12235 1.20286i 0.131623 0.0745984i
\(261\) −4.26796 + 2.15131i −0.264180 + 0.133163i
\(262\) −20.2984 + 20.2984i −1.25404 + 1.25404i
\(263\) −8.12541 2.17720i −0.501034 0.134252i −0.000554412 1.00000i \(-0.500176\pi\)
−0.500480 + 0.865748i \(0.666843\pi\)
\(264\) 3.95668 2.13718i 0.243517 0.131534i
\(265\) −0.117486 + 14.7231i −0.00721711 + 0.904434i
\(266\) −3.63236 2.09714i −0.222714 0.128584i
\(267\) 5.50473 + 5.82609i 0.336884 + 0.356551i
\(268\) 0.168795 0.629953i 0.0103108 0.0384805i
\(269\) 26.7708 1.63225 0.816123 0.577878i \(-0.196119\pi\)
0.816123 + 0.577878i \(0.196119\pi\)
\(270\) 14.6322 + 5.42157i 0.890488 + 0.329946i
\(271\) −18.5850 −1.12896 −0.564480 0.825447i \(-0.690923\pi\)
−0.564480 + 0.825447i \(0.690923\pi\)
\(272\) −1.48405 + 5.53853i −0.0899834 + 0.335823i
\(273\) 13.5405 + 14.3309i 0.819506 + 0.867347i
\(274\) −7.97833 4.60629i −0.481989 0.278276i
\(275\) 2.13941 + 3.84604i 0.129011 + 0.231925i
\(276\) 0.474957 0.256546i 0.0285891 0.0154422i
\(277\) −26.3206 7.05259i −1.58145 0.423749i −0.642078 0.766640i \(-0.721927\pi\)
−0.939375 + 0.342891i \(0.888594\pi\)
\(278\) −1.36920 + 1.36920i −0.0821189 + 0.0821189i
\(279\) 17.5380 + 11.4980i 1.04997 + 0.688368i
\(280\) −3.60100 + 13.0226i −0.215201 + 0.778248i
\(281\) −22.7050 + 13.1087i −1.35447 + 0.782002i −0.988872 0.148772i \(-0.952468\pi\)
−0.365595 + 0.930774i \(0.619135\pi\)
\(282\) −4.45643 18.7418i −0.265377 1.11606i
\(283\) 3.44050 0.921880i 0.204517 0.0548001i −0.155106 0.987898i \(-0.549572\pi\)
0.359623 + 0.933098i \(0.382905\pi\)
\(284\) 0.578988 1.00284i 0.0343566 0.0595074i
\(285\) 0.214486 5.90070i 0.0127050 0.349528i
\(286\) −3.28439 5.68873i −0.194210 0.336382i
\(287\) 5.21088 + 5.21088i 0.307589 + 0.307589i
\(288\) 0.676030 + 3.24988i 0.0398355 + 0.191501i
\(289\) 14.4186i 0.848151i
\(290\) −2.42517 + 4.12416i −0.142411 + 0.242179i
\(291\) −3.26378 6.04243i −0.191326 0.354213i
\(292\) 0.114191 + 0.426168i 0.00668254 + 0.0249396i
\(293\) 0.771199 + 2.87816i 0.0450539 + 0.168144i 0.984787 0.173765i \(-0.0555933\pi\)
−0.939733 + 0.341909i \(0.888927\pi\)
\(294\) 6.51914 + 0.184891i 0.380204 + 0.0107831i
\(295\) 4.28726 + 16.5267i 0.249614 + 0.962220i
\(296\) 17.7600i 1.03228i
\(297\) −1.55481 + 4.30130i −0.0902192 + 0.249587i
\(298\) −15.7349 15.7349i −0.911496 0.911496i
\(299\) −4.41042 7.63907i −0.255061 0.441779i
\(300\) −1.66025 + 0.366886i −0.0958548 + 0.0211822i
\(301\) 1.97062 3.41321i 0.113584 0.196734i
\(302\) 0.00736135 0.00197247i 0.000423598 0.000113503i
\(303\) 4.27731 + 1.27712i 0.245725 + 0.0733684i
\(304\) −4.71190 + 2.72042i −0.270246 + 0.156027i
\(305\) −28.6210 7.91428i −1.63883 0.453170i
\(306\) −2.91374 5.78053i −0.166568 0.330451i
\(307\) 21.8017 21.8017i 1.24429 1.24429i 0.286081 0.958205i \(-0.407647\pi\)
0.958205 0.286081i \(-0.0923528\pi\)
\(308\) −0.341948 0.0916247i −0.0194843 0.00522080i
\(309\) −19.2665 11.8642i −1.09603 0.674933i
\(310\) 20.9917 + 0.167508i 1.19225 + 0.00951380i
\(311\) 29.3878 + 16.9671i 1.66643 + 0.962114i 0.969539 + 0.244939i \(0.0787679\pi\)
0.696892 + 0.717176i \(0.254565\pi\)
\(312\) 27.6196 6.56741i 1.56365 0.371806i
\(313\) 6.00279 22.4027i 0.339298 1.26628i −0.559836 0.828603i \(-0.689136\pi\)
0.899134 0.437673i \(-0.144197\pi\)
\(314\) 11.3610 0.641137
\(315\) −6.08721 12.3199i −0.342976 0.694150i
\(316\) −1.51758 −0.0853708
\(317\) −1.03536 + 3.86401i −0.0581515 + 0.217024i −0.988887 0.148669i \(-0.952501\pi\)
0.930736 + 0.365693i \(0.119168\pi\)
\(318\) −4.38211 + 14.6765i −0.245737 + 0.823019i
\(319\) −1.21444 0.701157i −0.0679956 0.0392573i
\(320\) 13.5258 + 13.7434i 0.756118 + 0.768282i
\(321\) 0.640980 22.6005i 0.0357760 1.26144i
\(322\) 4.21836 + 1.13031i 0.235080 + 0.0629896i
\(323\) −1.73205 + 1.73205i −0.0963739 + 0.0963739i
\(324\) −1.42046 1.05101i −0.0789143 0.0583896i
\(325\) 6.76180 + 26.9485i 0.375077 + 1.49483i
\(326\) 6.89684 3.98189i 0.381981 0.220537i
\(327\) 10.1408 9.58143i 0.560786 0.529854i
\(328\) 10.2497 2.74640i 0.565945 0.151645i
\(329\) −8.48242 + 14.6920i −0.467651 + 0.809995i
\(330\) 1.02354 + 4.46246i 0.0563439 + 0.245650i
\(331\) −2.98175 5.16454i −0.163892 0.283869i 0.772369 0.635174i \(-0.219071\pi\)
−0.936261 + 0.351305i \(0.885738\pi\)
\(332\) −1.37945 1.37945i −0.0757071 0.0757071i
\(333\) −12.0279 13.4757i −0.659127 0.738466i
\(334\) 8.01324i 0.438465i
\(335\) 6.40271 + 3.76504i 0.349817 + 0.205706i
\(336\) −6.63954 + 10.7821i −0.362216 + 0.588210i
\(337\) −2.56397 9.56887i −0.139668 0.521250i −0.999935 0.0114051i \(-0.996370\pi\)
0.860267 0.509845i \(-0.170297\pi\)
\(338\) −6.21422 23.1918i −0.338009 1.26147i
\(339\) 10.9012 17.7026i 0.592072 0.961476i
\(340\) 0.608028 + 0.357545i 0.0329750 + 0.0193906i
\(341\) 6.15295i 0.333201i
\(342\) 1.92351 5.83354i 0.104012 0.315442i
\(343\) −14.2007 14.2007i −0.766764 0.766764i
\(344\) −2.83755 4.91478i −0.152990 0.264987i
\(345\) 1.37445 + 5.99238i 0.0739978 + 0.322619i
\(346\) 9.17611 15.8935i 0.493311 0.854440i
\(347\) −10.2471 + 2.74569i −0.550091 + 0.147396i −0.523150 0.852241i \(-0.675243\pi\)
−0.0269407 + 0.999637i \(0.508577\pi\)
\(348\) 0.393799 0.372078i 0.0211098 0.0199455i
\(349\) −8.08831 + 4.66979i −0.432957 + 0.249968i −0.700606 0.713549i \(-0.747087\pi\)
0.267648 + 0.963517i \(0.413753\pi\)
\(350\) −11.8015 7.06709i −0.630818 0.377752i
\(351\) −16.5091 + 23.6885i −0.881193 + 1.26440i
\(352\) −0.688675 + 0.688675i −0.0367065 + 0.0367065i
\(353\) −18.5470 4.96965i −0.987156 0.264508i −0.271100 0.962551i \(-0.587388\pi\)
−0.716055 + 0.698043i \(0.754054\pi\)
\(354\) −0.503538 + 17.7544i −0.0267627 + 0.943638i
\(355\) 9.25081 + 9.39963i 0.490982 + 0.498881i
\(356\) −0.786842 0.454284i −0.0417026 0.0240770i
\(357\) −1.63096 + 5.46239i −0.0863194 + 0.289100i
\(358\) −5.99152 + 22.3606i −0.316662 + 1.18180i
\(359\) 12.5944 0.664705 0.332352 0.943155i \(-0.392158\pi\)
0.332352 + 0.943155i \(0.392158\pi\)
\(360\) −19.7457 1.27907i −1.04069 0.0674131i
\(361\) 16.6757 0.877669
\(362\) 5.13426 19.1613i 0.269851 1.00710i
\(363\) 17.2302 4.09702i 0.904353 0.215038i
\(364\) −1.93546 1.11744i −0.101446 0.0585698i
\(365\) −5.02471 0.0400957i −0.263005 0.00209870i
\(366\) −26.3041 16.1979i −1.37494 0.846680i
\(367\) 27.3263 + 7.32206i 1.42642 + 0.382209i 0.887757 0.460312i \(-0.152262\pi\)
0.538665 + 0.842520i \(0.318929\pi\)
\(368\) 4.00583 4.00583i 0.208818 0.208818i
\(369\) −5.91718 + 9.02551i −0.308036 + 0.469849i
\(370\) −17.4272 4.81898i −0.905999 0.250527i
\(371\) 11.6814 6.74425i 0.606467 0.350144i
\(372\) −2.27779 0.680100i −0.118098 0.0352616i
\(373\) −2.25734 + 0.604851i −0.116880 + 0.0313180i −0.316785 0.948497i \(-0.602603\pi\)
0.199905 + 0.979815i \(0.435937\pi\)
\(374\) 0.949649 1.64484i 0.0491052 0.0850526i
\(375\) 1.01217 19.3384i 0.0522684 0.998633i
\(376\) 12.2141 + 21.1554i 0.629894 + 1.09101i
\(377\) −6.25992 6.25992i −0.322402 0.322402i
\(378\) −2.51341 14.0727i −0.129276 0.723820i
\(379\) 18.4618i 0.948320i −0.880439 0.474160i \(-0.842752\pi\)
0.880439 0.474160i \(-0.157248\pi\)
\(380\) 0.168066 + 0.647865i 0.00862159 + 0.0332348i
\(381\) −4.65779 0.132101i −0.238626 0.00676772i
\(382\) −1.83342 6.84241i −0.0938059 0.350088i
\(383\) −6.26481 23.3806i −0.320117 1.19469i −0.919131 0.393953i \(-0.871107\pi\)
0.599014 0.800739i \(-0.295559\pi\)
\(384\) 7.71175 + 14.2772i 0.393539 + 0.728580i
\(385\) 2.04372 3.47549i 0.104158 0.177127i
\(386\) 12.4989i 0.636176i
\(387\) 5.48159 + 1.80746i 0.278645 + 0.0918784i
\(388\) 0.550457 + 0.550457i 0.0279452 + 0.0279452i
\(389\) 13.5444 + 23.4596i 0.686729 + 1.18945i 0.972890 + 0.231268i \(0.0742876\pi\)
−0.286161 + 0.958182i \(0.592379\pi\)
\(390\) −1.04992 + 28.8841i −0.0531645 + 1.46261i
\(391\) 1.27523 2.20876i 0.0644911 0.111702i
\(392\) −7.98815 + 2.14042i −0.403463 + 0.108108i
\(393\) 8.56432 + 36.0177i 0.432013 + 1.81685i
\(394\) −15.6184 + 9.01729i −0.786844 + 0.454284i
\(395\) 4.60647 16.6587i 0.231776 0.838190i
\(396\) 0.0293839 0.517611i 0.00147659 0.0260110i
\(397\) −18.2252 + 18.2252i −0.914698 + 0.914698i −0.996637 0.0819389i \(-0.973889\pi\)
0.0819389 + 0.996637i \(0.473889\pi\)
\(398\) 22.8758 + 6.12955i 1.14666 + 0.307247i
\(399\) −4.75938 + 2.57075i −0.238267 + 0.128699i
\(400\) −15.5937 + 8.67421i −0.779685 + 0.433711i
\(401\) −11.1294 6.42558i −0.555777 0.320878i 0.195672 0.980669i \(-0.437311\pi\)
−0.751449 + 0.659791i \(0.770645\pi\)
\(402\) 5.30666 + 5.61645i 0.264672 + 0.280123i
\(403\) −10.0535 + 37.5202i −0.500801 + 1.86902i
\(404\) −0.506000 −0.0251745
\(405\) 15.8488 12.4023i 0.787531 0.616275i
\(406\) 4.38302 0.217526
\(407\) 1.37166 5.11910i 0.0679906 0.253744i
\(408\) 5.63745 + 5.96656i 0.279096 + 0.295389i
\(409\) 22.2450 + 12.8431i 1.09994 + 0.635053i 0.936206 0.351451i \(-0.114312\pi\)
0.163737 + 0.986504i \(0.447645\pi\)
\(410\) −0.0862038 + 10.8029i −0.00425730 + 0.533517i
\(411\) −10.4538 + 5.64656i −0.515648 + 0.278524i
\(412\) 2.47741 + 0.663820i 0.122053 + 0.0327041i
\(413\) 11.0602 11.0602i 0.544237 0.544237i
\(414\) −0.362487 + 6.38540i −0.0178153 + 0.313825i
\(415\) 19.3295 10.9552i 0.948850 0.537770i
\(416\) −5.32474 + 3.07424i −0.261067 + 0.150727i
\(417\) 0.577694 + 2.42952i 0.0282898 + 0.118974i
\(418\) 1.74081 0.466448i 0.0851457 0.0228147i
\(419\) 6.13243 10.6217i 0.299589 0.518903i −0.676453 0.736486i \(-0.736484\pi\)
0.976042 + 0.217583i \(0.0698172\pi\)
\(420\) 1.06071 + 1.14073i 0.0517572 + 0.0556618i
\(421\) −7.24056 12.5410i −0.352883 0.611212i 0.633870 0.773439i \(-0.281465\pi\)
−0.986753 + 0.162228i \(0.948132\pi\)
\(422\) −0.117006 0.117006i −0.00569577 0.00569577i
\(423\) −23.5952 7.78012i −1.14724 0.378283i
\(424\) 19.4225i 0.943240i
\(425\) −5.77042 + 5.58911i −0.279906 + 0.271112i
\(426\) 6.52020 + 12.0712i 0.315905 + 0.584853i
\(427\) 7.04094 + 26.2771i 0.340735 + 1.27164i
\(428\) 0.663324 + 2.47556i 0.0320630 + 0.119661i
\(429\) −8.46824 0.240170i −0.408850 0.0115955i
\(430\) 5.59265 1.45082i 0.269701 0.0699646i
\(431\) 35.9660i 1.73242i −0.499678 0.866211i \(-0.666548\pi\)
0.499678 0.866211i \(-0.333452\pi\)
\(432\) −17.4396 6.30395i −0.839061 0.303299i
\(433\) −0.331545 0.331545i −0.0159331 0.0159331i 0.699095 0.715028i \(-0.253586\pi\)
−0.715028 + 0.699095i \(0.753586\pi\)
\(434\) −9.61573 16.6549i −0.461570 0.799462i
\(435\) 2.88901 + 5.45218i 0.138517 + 0.261412i
\(436\) −0.790718 + 1.36956i −0.0378685 + 0.0655902i
\(437\) 2.33763 0.626366i 0.111824 0.0299632i
\(438\) −5.00881 1.49553i −0.239330 0.0714591i
\(439\) −1.28953 + 0.744511i −0.0615459 + 0.0355336i −0.530457 0.847712i \(-0.677980\pi\)
0.468911 + 0.883245i \(0.344646\pi\)
\(440\) −2.86258 5.05078i −0.136468 0.240787i
\(441\) 4.61158 7.03407i 0.219599 0.334956i
\(442\) 8.47845 8.47845i 0.403279 0.403279i
\(443\) 30.9468 + 8.29218i 1.47033 + 0.393973i 0.903044 0.429548i \(-0.141327\pi\)
0.567285 + 0.823522i \(0.307994\pi\)
\(444\) 1.74345 + 1.07361i 0.0827403 + 0.0509511i
\(445\) 7.37510 7.25833i 0.349613 0.344078i
\(446\) −2.91203 1.68126i −0.137889 0.0796101i
\(447\) −27.9202 + 6.63888i −1.32058 + 0.314008i
\(448\) 4.57213 17.0634i 0.216013 0.806172i
\(449\) −21.8283 −1.03014 −0.515071 0.857147i \(-0.672234\pi\)
−0.515071 + 0.857147i \(0.672234\pi\)
\(450\) 6.61292 19.0288i 0.311736 0.897025i
\(451\) −3.16647 −0.149103
\(452\) −0.609937 + 2.27631i −0.0286890 + 0.107069i
\(453\) 0.00281198 0.00941786i 0.000132118 0.000442490i
\(454\) −17.7357 10.2397i −0.832376 0.480572i
\(455\) 18.1412 17.8540i 0.850472 0.837006i
\(456\) −0.220817 + 7.78588i −0.0103407 + 0.364607i
\(457\) 0.880339 + 0.235886i 0.0411805 + 0.0110343i 0.279351 0.960189i \(-0.409881\pi\)
−0.238170 + 0.971223i \(0.576548\pi\)
\(458\) −20.9534 + 20.9534i −0.979090 + 0.979090i
\(459\) −8.31839 0.709282i −0.388269 0.0331065i
\(460\) −0.343622 0.606293i −0.0160215 0.0282685i
\(461\) −18.7320 + 10.8149i −0.872434 + 0.503700i −0.868156 0.496291i \(-0.834695\pi\)
−0.00427761 + 0.999991i \(0.501362\pi\)
\(462\) 3.04870 2.88054i 0.141838 0.134015i
\(463\) −18.1245 + 4.85644i −0.842316 + 0.225698i −0.654079 0.756426i \(-0.726944\pi\)
−0.188236 + 0.982124i \(0.560277\pi\)
\(464\) 2.84283 4.92393i 0.131975 0.228588i
\(465\) 14.3795 22.9392i 0.666834 1.06378i
\(466\) 4.00916 + 6.94407i 0.185721 + 0.321678i
\(467\) 16.8295 + 16.8295i 0.778777 + 0.778777i 0.979623 0.200846i \(-0.0643691\pi\)
−0.200846 + 0.979623i \(0.564369\pi\)
\(468\) 1.02492 3.10834i 0.0473771 0.143683i
\(469\) 6.80460i 0.314207i
\(470\) −24.0733 + 6.24496i −1.11042 + 0.288059i
\(471\) 7.68281 12.4763i 0.354005 0.574875i
\(472\) −5.82929 21.7552i −0.268315 1.00136i
\(473\) 0.438306 + 1.63578i 0.0201533 + 0.0752133i
\(474\) 9.42793 15.3102i 0.433039 0.703220i
\(475\) −7.62184 0.121648i −0.349714 0.00558158i
\(476\) 0.646194i 0.0296182i
\(477\) 13.1539 + 14.7372i 0.602276 + 0.674772i
\(478\) 12.9000 + 12.9000i 0.590033 + 0.590033i
\(479\) −8.91724 15.4451i −0.407439 0.705705i 0.587163 0.809469i \(-0.300245\pi\)
−0.994602 + 0.103764i \(0.966911\pi\)
\(480\) 4.17693 0.958046i 0.190650 0.0437286i
\(481\) 16.7285 28.9747i 0.762756 1.32113i
\(482\) −6.66078 + 1.78475i −0.303390 + 0.0812931i
\(483\) 4.09392 3.86810i 0.186280 0.176005i
\(484\) −1.73861 + 1.00378i −0.0790275 + 0.0456265i
\(485\) −7.71328 + 4.37158i −0.350242 + 0.198503i
\(486\) 19.4277 7.80094i 0.881259 0.353858i
\(487\) −21.8232 + 21.8232i −0.988904 + 0.988904i −0.999939 0.0110354i \(-0.996487\pi\)
0.0110354 + 0.999939i \(0.496487\pi\)
\(488\) 37.8372 + 10.1385i 1.71281 + 0.458946i
\(489\) 0.291174 10.2666i 0.0131674 0.464273i
\(490\) 0.0671834 8.41929i 0.00303504 0.380345i
\(491\) 35.1670 + 20.3037i 1.58707 + 0.916292i 0.993787 + 0.111295i \(0.0354997\pi\)
0.593278 + 0.804998i \(0.297834\pi\)
\(492\) 0.349997 1.17221i 0.0157791 0.0528472i
\(493\) 0.662503 2.47249i 0.0298376 0.111356i
\(494\) 11.3775 0.511896
\(495\) 5.59269 + 1.89371i 0.251373 + 0.0851157i
\(496\) −24.9471 −1.12016
\(497\) 3.12705 11.6703i 0.140267 0.523484i
\(498\) 22.4864 5.34683i 1.00764 0.239597i
\(499\) 37.3397 + 21.5581i 1.67156 + 0.965073i 0.966768 + 0.255655i \(0.0822910\pi\)
0.704788 + 0.709418i \(0.251042\pi\)
\(500\) 0.517216 + 2.13328i 0.0231306 + 0.0954033i
\(501\) 8.79988 + 5.41892i 0.393150 + 0.242100i
\(502\) 3.37571 + 0.904518i 0.150665 + 0.0403706i
\(503\) −28.0936 + 28.0936i −1.25263 + 1.25263i −0.298093 + 0.954537i \(0.596351\pi\)
−0.954537 + 0.298093i \(0.903649\pi\)
\(504\) 8.15932 + 16.1872i 0.363445 + 0.721033i
\(505\) 1.53591 5.55443i 0.0683471 0.247169i
\(506\) −1.62510 + 0.938252i −0.0722445 + 0.0417104i
\(507\) −29.6708 8.85909i −1.31773 0.393446i
\(508\) 0.510193 0.136706i 0.0226361 0.00606534i
\(509\) 7.39188 12.8031i 0.327639 0.567488i −0.654404 0.756145i \(-0.727080\pi\)
0.982043 + 0.188658i \(0.0604136\pi\)
\(510\) −7.38445 + 3.91288i −0.326989 + 0.173265i
\(511\) 2.30168 + 3.98663i 0.101820 + 0.176358i
\(512\) −17.6794 17.6794i −0.781325 0.781325i
\(513\) −5.10544 6.05725i −0.225411 0.267434i
\(514\) 14.1761i 0.625282i
\(515\) −14.8067 + 25.1799i −0.652463 + 1.10956i
\(516\) −0.654003 0.0185484i −0.0287909 0.000816546i
\(517\) −1.88667 7.04114i −0.0829755 0.309669i
\(518\) 4.28721 + 16.0001i 0.188369 + 0.703003i
\(519\) −11.2484 20.8248i −0.493750 0.914108i
\(520\) −9.20315 35.4766i −0.403585 1.55575i
\(521\) 28.4812i 1.24778i 0.781511 + 0.623892i \(0.214449\pi\)
−0.781511 + 0.623892i \(0.785551\pi\)
\(522\) 1.30725 + 6.28437i 0.0572170 + 0.275059i
\(523\) 15.4076 + 15.4076i 0.673726 + 0.673726i 0.958573 0.284847i \(-0.0919428\pi\)
−0.284847 + 0.958573i \(0.591943\pi\)
\(524\) −2.09829 3.63434i −0.0916641 0.158767i
\(525\) −15.7416 + 8.18095i −0.687019 + 0.357046i
\(526\) −5.64872 + 9.78386i −0.246296 + 0.426597i
\(527\) −10.8486 + 2.90687i −0.472572 + 0.126625i
\(528\) −1.25863 5.29325i −0.0547750 0.230359i
\(529\) 17.7363 10.2401i 0.771145 0.445221i
\(530\) 19.0586 + 5.27010i 0.827855 + 0.228918i
\(531\) 19.1568 + 12.5593i 0.831335 + 0.545028i
\(532\) 0.433573 0.433573i 0.0187978 0.0187978i
\(533\) −19.3089 5.17380i −0.836361 0.224102i
\(534\) 9.47128 5.11586i 0.409862 0.221385i
\(535\) −29.1880 0.232911i −1.26191 0.0100696i
\(536\) −8.48544 4.89907i −0.366515 0.211608i
\(537\) 20.5040 + 21.7010i 0.884813 + 0.936466i
\(538\) 9.30542 34.7283i 0.401185 1.49724i
\(539\) 2.46780 0.106296
\(540\) −1.31921 + 1.86107i −0.0567698 + 0.0800875i
\(541\) −1.11754 −0.0480466 −0.0240233 0.999711i \(-0.507648\pi\)
−0.0240233 + 0.999711i \(0.507648\pi\)
\(542\) −6.46008 + 24.1093i −0.277484 + 1.03558i
\(543\) −17.5703 18.5960i −0.754015 0.798033i
\(544\) −1.53959 0.888885i −0.0660096 0.0381106i
\(545\) −12.6337 12.8370i −0.541169 0.549875i
\(546\) 23.2973 12.5839i 0.997033 0.538542i
\(547\) −31.1213 8.33894i −1.33065 0.356547i −0.477694 0.878526i \(-0.658527\pi\)
−0.852958 + 0.521979i \(0.825194\pi\)
\(548\) 0.952326 0.952326i 0.0406813 0.0406813i
\(549\) −35.5761 + 17.9325i −1.51835 + 0.765342i
\(550\) 5.73290 1.43847i 0.244452 0.0613367i
\(551\) 2.10347 1.21444i 0.0896109 0.0517369i
\(552\) −1.87611 7.89008i −0.0798526 0.335824i
\(553\) −15.2945 + 4.09814i −0.650387 + 0.174271i
\(554\) −18.2979 + 31.6928i −0.777402 + 1.34650i
\(555\) −17.0772 + 15.8792i −0.724885 + 0.674035i
\(556\) −0.141537 0.245149i −0.00600250 0.0103966i
\(557\) 30.4033 + 30.4033i 1.28823 + 1.28823i 0.935862 + 0.352366i \(0.114623\pi\)
0.352366 + 0.935862i \(0.385377\pi\)
\(558\) 21.0119 18.7544i 0.889503 0.793937i
\(559\) 10.6910i 0.452182i
\(560\) 14.0913 + 8.28625i 0.595467 + 0.350158i
\(561\) −1.16411 2.15519i −0.0491489 0.0909922i
\(562\) 9.11308 + 34.0105i 0.384412 + 1.43465i
\(563\) 0.300692 + 1.12220i 0.0126727 + 0.0472950i 0.971973 0.235094i \(-0.0755398\pi\)
−0.959300 + 0.282389i \(0.908873\pi\)
\(564\) 2.81512 + 0.0798405i 0.118538 + 0.00336189i
\(565\) −23.1360 13.6049i −0.973338 0.572361i
\(566\) 4.78361i 0.201070i
\(567\) −17.1538 6.75644i −0.720393 0.283744i
\(568\) −12.3017 12.3017i −0.516167 0.516167i
\(569\) −0.145367 0.251784i −0.00609412 0.0105553i 0.862962 0.505268i \(-0.168606\pi\)
−0.869056 + 0.494713i \(0.835273\pi\)
\(570\) −7.58010 2.32930i −0.317495 0.0975636i
\(571\) −13.0283 + 22.5656i −0.545215 + 0.944341i 0.453378 + 0.891318i \(0.350219\pi\)
−0.998593 + 0.0530223i \(0.983115\pi\)
\(572\) 0.927572 0.248542i 0.0387837 0.0103921i
\(573\) −8.75395 2.61375i −0.365702 0.109191i
\(574\) 8.57106 4.94851i 0.357749 0.206547i
\(575\) 7.69838 1.93164i 0.321044 0.0805551i
\(576\) 25.8292 + 1.46627i 1.07621 + 0.0610948i
\(577\) −2.52834 + 2.52834i −0.105256 + 0.105256i −0.757774 0.652517i \(-0.773713\pi\)
0.652517 + 0.757774i \(0.273713\pi\)
\(578\) −18.7044 5.01183i −0.778000 0.208465i
\(579\) 13.7258 + 8.45230i 0.570427 + 0.351266i
\(580\) −0.490608 0.498501i −0.0203714 0.0206991i
\(581\) −17.6274 10.1772i −0.731309 0.422222i
\(582\) −8.97298 + 2.13360i −0.371942 + 0.0884408i
\(583\) −1.50006 + 5.59831i −0.0621262 + 0.231858i
\(584\) 6.62852 0.274290
\(585\) 31.0096 + 20.6858i 1.28209 + 0.855251i
\(586\) 4.00174 0.165310
\(587\) 10.7212 40.0121i 0.442511 1.65147i −0.279914 0.960025i \(-0.590306\pi\)
0.722425 0.691449i \(-0.243027\pi\)
\(588\) −0.272772 + 0.913566i −0.0112489 + 0.0376748i
\(589\) −9.22943 5.32861i −0.380292 0.219562i
\(590\) 22.9294 + 0.182969i 0.943987 + 0.00753273i
\(591\) −0.659386 + 23.2495i −0.0271235 + 0.956358i
\(592\) 20.7553 + 5.56137i 0.853038 + 0.228571i
\(593\) 26.6583 26.6583i 1.09473 1.09473i 0.0997087 0.995017i \(-0.468209\pi\)
0.995017 0.0997087i \(-0.0317911\pi\)
\(594\) 5.03939 + 3.51208i 0.206769 + 0.144102i
\(595\) 7.09335 + 1.96145i 0.290799 + 0.0804117i
\(596\) 2.81726 1.62655i 0.115400 0.0666260i
\(597\) 22.2009 20.9764i 0.908624 0.858506i
\(598\) −11.4428 + 3.06608i −0.467930 + 0.125382i
\(599\) −13.2427 + 22.9370i −0.541080 + 0.937178i 0.457762 + 0.889075i \(0.348651\pi\)
−0.998842 + 0.0481037i \(0.984682\pi\)
\(600\) −1.13160 + 25.5200i −0.0461974 + 1.04185i
\(601\) 4.26710 + 7.39084i 0.174059 + 0.301479i 0.939835 0.341628i \(-0.110978\pi\)
−0.765776 + 0.643107i \(0.777645\pi\)
\(602\) −3.74279 3.74279i −0.152545 0.152545i
\(603\) 9.75641 2.02950i 0.397312 0.0826475i
\(604\) 0.00111412i 4.53329e-5i
\(605\) −5.74131 22.1318i −0.233417 0.899784i
\(606\) 3.14351 5.10480i 0.127696 0.207368i
\(607\) −11.9000 44.4113i −0.483005 1.80260i −0.588881 0.808220i \(-0.700431\pi\)
0.105876 0.994379i \(-0.466235\pi\)
\(608\) −0.436602 1.62942i −0.0177066 0.0660818i
\(609\) 2.96400 4.81329i 0.120107 0.195045i
\(610\) −20.2153 + 34.3774i −0.818493 + 1.39190i
\(611\) 46.0190i 1.86173i
\(612\) 0.926510 0.192730i 0.0374520 0.00779064i
\(613\) 17.3219 + 17.3219i 0.699625 + 0.699625i 0.964330 0.264705i \(-0.0852744\pi\)
−0.264705 + 0.964330i \(0.585274\pi\)
\(614\) −20.7039 35.8602i −0.835542 1.44720i
\(615\) 11.8051 + 7.40008i 0.476027 + 0.298400i
\(616\) −2.65929 + 4.60603i −0.107146 + 0.185582i
\(617\) 36.3708 9.74553i 1.46423 0.392340i 0.563284 0.826263i \(-0.309538\pi\)
0.900950 + 0.433923i \(0.142871\pi\)
\(618\) −22.0878 + 20.8694i −0.888500 + 0.839492i
\(619\) 8.57434 4.95040i 0.344632 0.198973i −0.317687 0.948196i \(-0.602906\pi\)
0.662318 + 0.749223i \(0.269573\pi\)
\(620\) −0.817915 + 2.95789i −0.0328483 + 0.118792i
\(621\) 6.76710 + 4.71617i 0.271554 + 0.189253i
\(622\) 32.2255 32.2255i 1.29213 1.29213i
\(623\) −9.15670 2.45353i −0.366855 0.0982986i
\(624\) 0.973765 34.3344i 0.0389818 1.37447i
\(625\) −24.9873 0.797817i −0.999491 0.0319127i
\(626\) −26.9753 15.5742i −1.07815 0.622469i
\(627\) 0.664976 2.22713i 0.0265566 0.0889431i
\(628\) −0.429864 + 1.60427i −0.0171534 + 0.0640175i
\(629\) 9.67378 0.385719
\(630\) −18.0979 + 3.61425i −0.721036 + 0.143995i
\(631\) −22.0279 −0.876918 −0.438459 0.898751i \(-0.644476\pi\)
−0.438459 + 0.898751i \(0.644476\pi\)
\(632\) −5.90104 + 22.0230i −0.234731 + 0.876027i
\(633\) −0.207617 + 0.0493675i −0.00825205 + 0.00196218i
\(634\) 4.65268 + 2.68622i 0.184781 + 0.106684i
\(635\) −0.0480011 + 6.01540i −0.00190487 + 0.238714i
\(636\) −1.90665 1.17411i −0.0756038 0.0465564i
\(637\) 15.0485 + 4.03223i 0.596242 + 0.159763i
\(638\) −1.33171 + 1.33171i −0.0527227 + 0.0527227i
\(639\) 17.6655 + 1.00284i 0.698836 + 0.0396716i
\(640\) 18.2251 10.3293i 0.720412 0.408300i
\(641\) 21.8054 12.5894i 0.861263 0.497251i −0.00317173 0.999995i \(-0.501010\pi\)
0.864435 + 0.502744i \(0.167676\pi\)
\(642\) −29.0956 8.68736i −1.14831 0.342863i
\(643\) 30.0492 8.05166i 1.18502 0.317526i 0.388107 0.921614i \(-0.373129\pi\)
0.796918 + 0.604088i \(0.206462\pi\)
\(644\) −0.319219 + 0.552904i −0.0125790 + 0.0217875i
\(645\) 2.18877 7.12277i 0.0861826 0.280459i
\(646\) 1.64484 + 2.84895i 0.0647154 + 0.112090i
\(647\) −7.86580 7.86580i −0.309237 0.309237i 0.535377 0.844613i \(-0.320170\pi\)
−0.844613 + 0.535377i \(0.820170\pi\)
\(648\) −20.7755 + 16.5267i −0.816140 + 0.649230i
\(649\) 6.72090i 0.263818i
\(650\) 37.3091 + 0.595469i 1.46339 + 0.0233562i
\(651\) −24.7925 0.703147i −0.971695 0.0275585i
\(652\) 0.301325 + 1.12456i 0.0118008 + 0.0440411i
\(653\) 0.0749391 + 0.279676i 0.00293259 + 0.0109446i 0.967377 0.253343i \(-0.0815300\pi\)
−0.964444 + 0.264287i \(0.914863\pi\)
\(654\) −8.90457 16.4855i −0.348196 0.644635i
\(655\) 46.2637 12.0015i 1.80767 0.468937i
\(656\) 12.8384i 0.501256i
\(657\) −5.02953 + 4.48917i −0.196221 + 0.175139i
\(658\) 16.1106 + 16.1106i 0.628058 + 0.628058i
\(659\) 13.4009 + 23.2111i 0.522026 + 0.904175i 0.999672 + 0.0256228i \(0.00815688\pi\)
−0.477646 + 0.878552i \(0.658510\pi\)
\(660\) −0.668868 0.0243128i −0.0260356 0.000946374i
\(661\) −12.6438 + 21.8997i −0.491787 + 0.851800i −0.999955 0.00945786i \(-0.996989\pi\)
0.508168 + 0.861258i \(0.330323\pi\)
\(662\) −7.73611 + 2.07289i −0.300673 + 0.0805650i
\(663\) −3.57724 15.0443i −0.138928 0.584271i
\(664\) −25.3823 + 14.6545i −0.985024 + 0.568704i
\(665\) 3.44332 + 6.07544i 0.133526 + 0.235596i
\(666\) −21.6622 + 10.9191i −0.839393 + 0.423106i
\(667\) −1.78827 + 1.78827i −0.0692421 + 0.0692421i
\(668\) −1.13154 0.303196i −0.0437807 0.0117310i
\(669\) −3.81556 + 2.06095i −0.147518 + 0.0796811i
\(670\) 7.10973 6.99716i 0.274673 0.270324i
\(671\) −10.1231 5.84458i −0.390799 0.225628i
\(672\) −2.69622 2.85362i −0.104009 0.110081i
\(673\) 6.30290 23.5227i 0.242959 0.906735i −0.731439 0.681906i \(-0.761151\pi\)
0.974398 0.224829i \(-0.0721822\pi\)
\(674\) −13.3044 −0.512466
\(675\) −16.4248 20.1302i −0.632191 0.774812i
\(676\) 3.51002 0.135001
\(677\) −0.240265 + 0.896681i −0.00923414 + 0.0344623i −0.970389 0.241547i \(-0.922345\pi\)
0.961155 + 0.276009i \(0.0890120\pi\)
\(678\) −19.1754 20.2949i −0.736429 0.779420i
\(679\) 7.03407 + 4.06112i 0.269943 + 0.155852i
\(680\) 7.55292 7.43334i 0.289641 0.285056i
\(681\) −23.2386 + 12.5522i −0.890503 + 0.481000i
\(682\) 7.98188 + 2.13874i 0.305642 + 0.0818966i
\(683\) −22.2024 + 22.2024i −0.849550 + 0.849550i −0.990077 0.140526i \(-0.955120\pi\)
0.140526 + 0.990077i \(0.455120\pi\)
\(684\) 0.750970 + 0.492340i 0.0287141 + 0.0188251i
\(685\) 7.56311 + 13.3445i 0.288972 + 0.509866i
\(686\) −23.3578 + 13.4856i −0.891805 + 0.514884i
\(687\) 8.84071 + 37.1801i 0.337294 + 1.41851i
\(688\) −6.63225 + 1.77711i −0.252852 + 0.0677515i
\(689\) −18.2945 + 31.6871i −0.696966 + 1.20718i
\(690\) 8.25133 + 0.299929i 0.314123 + 0.0114181i
\(691\) −4.05877 7.02999i −0.154403 0.267433i 0.778439 0.627721i \(-0.216012\pi\)
−0.932841 + 0.360287i \(0.882679\pi\)
\(692\) 1.89711 + 1.89711i 0.0721173 + 0.0721173i
\(693\) −1.10164 5.29593i −0.0418479 0.201176i
\(694\) 14.2473i 0.540821i
\(695\) 3.12065 0.809543i 0.118373 0.0307077i
\(696\) −3.86828 7.16156i −0.146627 0.271458i
\(697\) −1.49595 5.58297i −0.0566633 0.211470i
\(698\) 3.24640 + 12.1157i 0.122878 + 0.458586i
\(699\) 10.3369 + 0.293168i 0.390979 + 0.0110887i
\(700\) 1.44447 1.39909i 0.0545958 0.0528805i
\(701\) 19.6359i 0.741637i −0.928705 0.370819i \(-0.879077\pi\)
0.928705 0.370819i \(-0.120923\pi\)
\(702\) 24.9913 + 29.6504i 0.943236 + 1.11908i
\(703\) 6.49076 + 6.49076i 0.244804 + 0.244804i
\(704\) 3.79526 + 6.57359i 0.143039 + 0.247752i
\(705\) −9.42143 + 30.6596i −0.354832 + 1.15471i
\(706\) −12.8937 + 22.3325i −0.485260 + 0.840496i
\(707\) −5.09956 + 1.36642i −0.191789 + 0.0513896i
\(708\) −2.48804 0.742876i −0.0935061 0.0279190i
\(709\) −2.68383 + 1.54951i −0.100793 + 0.0581931i −0.549549 0.835461i \(-0.685201\pi\)
0.448756 + 0.893654i \(0.351867\pi\)
\(710\) 15.4092 8.73329i 0.578295 0.327754i
\(711\) −10.4375 20.7069i −0.391438 0.776569i
\(712\) −9.65210 + 9.65210i −0.361728 + 0.361728i
\(713\) 10.7184 + 2.87199i 0.401408 + 0.107557i
\(714\) 6.51914 + 4.01445i 0.243973 + 0.150237i
\(715\) −0.0872699 + 10.9365i −0.00326371 + 0.409002i
\(716\) −2.93083 1.69211i −0.109530 0.0632373i
\(717\) 22.8900 5.44280i 0.854841 0.203265i
\(718\) 4.37774 16.3380i 0.163376 0.609727i
\(719\) −20.3126 −0.757533 −0.378767 0.925492i \(-0.623652\pi\)
−0.378767 + 0.925492i \(0.623652\pi\)
\(720\) −7.67800 + 22.6755i −0.286142 + 0.845066i
\(721\) 26.7604 0.996608
\(722\) 5.79640 21.6325i 0.215720 0.805077i
\(723\) −2.54437 + 8.52158i −0.0946261 + 0.316921i
\(724\) 2.51149 + 1.45001i 0.0933388 + 0.0538892i
\(725\) 6.96129 3.87232i 0.258536 0.143814i
\(726\) 0.674315 23.7759i 0.0250262 0.882407i
\(727\) −17.0647 4.57247i −0.632895 0.169584i −0.0719119 0.997411i \(-0.522910\pi\)
−0.560983 + 0.827827i \(0.689577\pi\)
\(728\) −23.7421 + 23.7421i −0.879941 + 0.879941i
\(729\) 4.57117 26.6102i 0.169303 0.985564i
\(730\) −1.79858 + 6.50434i −0.0665685 + 0.240736i
\(731\) −2.67706 + 1.54560i −0.0990147 + 0.0571662i
\(732\) 3.28256 3.10150i 0.121327 0.114635i
\(733\) 25.4785 6.82693i 0.941068 0.252158i 0.244500 0.969649i \(-0.421376\pi\)
0.696568 + 0.717491i \(0.254709\pi\)
\(734\) 18.9970 32.9038i 0.701192 1.21450i
\(735\) −9.20035 5.76729i −0.339360 0.212730i
\(736\) 0.878218 + 1.52112i 0.0323715 + 0.0560692i
\(737\) 2.06746 + 2.06746i 0.0761558 + 0.0761558i
\(738\) 9.65150 + 10.8133i 0.355277 + 0.398041i
\(739\) 6.41459i 0.235965i −0.993016 0.117982i \(-0.962357\pi\)
0.993016 0.117982i \(-0.0376426\pi\)
\(740\) 1.33988 2.27855i 0.0492549 0.0837612i
\(741\) 7.69396 12.4944i 0.282645 0.458992i
\(742\) −4.68854 17.4979i −0.172122 0.642368i
\(743\) −4.95625 18.4970i −0.181827 0.678588i −0.995288 0.0969677i \(-0.969086\pi\)
0.813460 0.581620i \(-0.197581\pi\)
\(744\) −18.7266 + 30.4104i −0.686549 + 1.11490i
\(745\) 9.30331 + 35.8627i 0.340847 + 1.31391i
\(746\) 3.13856i 0.114911i
\(747\) 9.33459 28.3096i 0.341535 1.03579i
\(748\) 0.196335 + 0.196335i 0.00717870 + 0.00717870i
\(749\) 13.3702 + 23.1579i 0.488536 + 0.846170i
\(750\) −24.7349 8.03499i −0.903189 0.293397i
\(751\) −1.96958 + 3.41141i −0.0718709 + 0.124484i −0.899721 0.436465i \(-0.856230\pi\)
0.827850 + 0.560949i \(0.189564\pi\)
\(752\) 28.5482 7.64946i 1.04105 0.278947i
\(753\) 3.27612 3.09541i 0.119388 0.112803i
\(754\) −10.2966 + 5.94472i −0.374979 + 0.216494i
\(755\) −0.0122298 0.00338180i −0.000445090 0.000123076i
\(756\) 2.08229 + 0.177550i 0.0757321 + 0.00645743i
\(757\) 17.3710 17.3710i 0.631361 0.631361i −0.317049 0.948409i \(-0.602692\pi\)
0.948409 + 0.317049i \(0.102692\pi\)
\(758\) −23.9495 6.41725i −0.869885 0.233085i
\(759\) −0.0686093 + 2.41912i −0.00249036 + 0.0878085i
\(760\) 10.0552 + 0.0802378i 0.364742 + 0.00291053i
\(761\) 7.11860 + 4.10993i 0.258049 + 0.148985i 0.623444 0.781868i \(-0.285733\pi\)
−0.365395 + 0.930853i \(0.619066\pi\)
\(762\) −1.79039 + 5.99637i −0.0648591 + 0.217226i
\(763\) −4.27057 + 15.9380i −0.154605 + 0.576994i