Properties

Label 45.2.l.a.23.1
Level $45$
Weight $2$
Character 45.23
Analytic conductor $0.359$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,2,Mod(2,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.2");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 45.l (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.359326809096\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 18 x^{14} - 36 x^{13} + 34 x^{12} + 18 x^{11} - 72 x^{10} + 132 x^{9} - 93 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 23.1
Root \(0.601150 + 2.24352i\) of defining polynomial
Character \(\chi\) \(=\) 45.23
Dual form 45.2.l.a.2.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.601150 + 2.24352i) q^{2} +(-1.72336 + 0.173261i) q^{3} +(-2.93996 - 1.69739i) q^{4} +(1.70912 + 1.44185i) q^{5} +(0.647285 - 3.97056i) q^{6} +(0.751454 + 0.201351i) q^{7} +(2.29074 - 2.29074i) q^{8} +(2.93996 - 0.597183i) q^{9} +O(q^{10})\) \(q+(-0.601150 + 2.24352i) q^{2} +(-1.72336 + 0.173261i) q^{3} +(-2.93996 - 1.69739i) q^{4} +(1.70912 + 1.44185i) q^{5} +(0.647285 - 3.97056i) q^{6} +(0.751454 + 0.201351i) q^{7} +(2.29074 - 2.29074i) q^{8} +(2.93996 - 0.597183i) q^{9} +(-4.26225 + 2.96768i) q^{10} +(-0.220188 + 0.127126i) q^{11} +(5.36071 + 2.41583i) q^{12} +(3.70486 - 0.992714i) q^{13} +(-0.903473 + 1.56486i) q^{14} +(-3.19525 - 2.18870i) q^{15} +(0.367473 + 0.636483i) q^{16} +(-3.93311 - 3.93311i) q^{17} +(-0.427565 + 6.95487i) q^{18} -0.440377i q^{19} +(-2.57737 - 7.14000i) q^{20} +(-1.32991 - 0.216804i) q^{21} +(-0.152843 - 0.570419i) q^{22} +(-0.917076 - 3.42258i) q^{23} +(-3.55088 + 4.34467i) q^{24} +(0.842164 + 4.92857i) q^{25} +8.90871i q^{26} +(-4.96315 + 1.53854i) q^{27} +(-1.86747 - 1.86747i) q^{28} +(2.76265 + 4.78505i) q^{29} +(6.83122 - 5.85287i) q^{30} +(-0.0971829 + 0.168326i) q^{31} +(4.60955 - 1.23512i) q^{32} +(0.357439 - 0.257234i) q^{33} +(11.1884 - 6.45964i) q^{34} +(0.994005 + 1.42761i) q^{35} +(-9.65702 - 3.23456i) q^{36} +(-0.123005 + 0.123005i) q^{37} +(0.987995 + 0.264732i) q^{38} +(-6.21282 + 2.35271i) q^{39} +(7.21804 - 0.612251i) q^{40} +(-3.88223 - 2.24141i) q^{41} +(1.28588 - 2.85336i) q^{42} +(-0.357680 + 1.33488i) q^{43} +0.863127 q^{44} +(5.88578 + 3.21831i) q^{45} +8.22993 q^{46} +(1.11828 - 4.17348i) q^{47} +(-0.743568 - 1.03322i) q^{48} +(-5.53804 - 3.19739i) q^{49} +(-11.5636 - 1.07339i) q^{50} +(7.45964 + 6.09673i) q^{51} +(-12.5772 - 3.37004i) q^{52} +(-0.938022 + 0.938022i) q^{53} +(-0.468157 - 12.0598i) q^{54} +(-0.559623 - 0.100205i) q^{55} +(2.18263 - 1.26014i) q^{56} +(0.0763000 + 0.758929i) q^{57} +(-12.3961 + 3.32153i) q^{58} +(4.02279 - 6.96768i) q^{59} +(5.67883 + 11.8583i) q^{60} +(-1.44186 - 2.49737i) q^{61} +(-0.319221 - 0.319221i) q^{62} +(2.32949 + 0.143210i) q^{63} +12.5540i q^{64} +(7.76338 + 3.64517i) q^{65} +(0.362236 + 0.956558i) q^{66} +(3.47438 + 12.9666i) q^{67} +(4.88718 + 18.2392i) q^{68} +(2.17345 + 5.73945i) q^{69} +(-3.80043 + 1.37186i) q^{70} -2.15986i q^{71} +(5.36670 - 8.10268i) q^{72} +(-9.18432 - 9.18432i) q^{73} +(-0.202021 - 0.349910i) q^{74} +(-2.30528 - 8.34779i) q^{75} +(-0.747490 + 1.29469i) q^{76} +(-0.191058 + 0.0511939i) q^{77} +(-1.54353 - 15.3529i) q^{78} +(-11.9729 + 6.91256i) q^{79} +(-0.289654 + 1.61766i) q^{80} +(8.28675 - 3.51139i) q^{81} +(7.36245 - 7.36245i) q^{82} +(-5.20187 - 1.39384i) q^{83} +(3.54190 + 2.89477i) q^{84} +(-1.05121 - 12.3931i) q^{85} +(-2.77981 - 1.60493i) q^{86} +(-5.59011 - 7.76772i) q^{87} +(-0.213182 + 0.795606i) q^{88} -0.285526 q^{89} +(-10.7586 + 11.2702i) q^{90} +2.98392 q^{91} +(-3.11327 + 11.6189i) q^{92} +(0.138317 - 0.306924i) q^{93} +(8.69105 + 5.01778i) q^{94} +(0.634955 - 0.752655i) q^{95} +(-7.72993 + 2.92722i) q^{96} +(8.73543 + 2.34065i) q^{97} +(10.5026 - 10.5026i) q^{98} +(-0.571428 + 0.505238i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} - 6 q^{3} - 6 q^{5} - 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 6 q^{2} - 6 q^{3} - 6 q^{5} - 2 q^{7} - 8 q^{10} - 6 q^{12} - 2 q^{13} - 6 q^{15} - 8 q^{16} + 36 q^{18} + 18 q^{20} - 12 q^{21} - 10 q^{22} + 18 q^{23} + 4 q^{25} + 18 q^{27} - 16 q^{28} + 30 q^{30} - 4 q^{31} + 30 q^{32} - 12 q^{33} - 48 q^{36} + 4 q^{37} - 30 q^{38} + 6 q^{40} - 24 q^{41} + 6 q^{42} - 2 q^{43} - 36 q^{45} + 32 q^{46} - 12 q^{47} - 30 q^{48} - 54 q^{50} + 36 q^{51} - 14 q^{52} - 16 q^{55} + 36 q^{56} - 6 q^{57} - 6 q^{58} + 18 q^{60} + 8 q^{61} + 36 q^{63} + 66 q^{65} + 36 q^{66} + 4 q^{67} + 42 q^{68} + 18 q^{70} + 18 q^{72} - 8 q^{73} + 42 q^{75} + 24 q^{76} - 6 q^{77} - 42 q^{78} - 48 q^{81} + 32 q^{82} - 66 q^{83} + 22 q^{85} - 48 q^{86} - 18 q^{87} + 18 q^{88} - 66 q^{90} - 40 q^{91} - 60 q^{92} - 18 q^{93} - 36 q^{95} - 24 q^{96} + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.601150 + 2.24352i −0.425077 + 1.58641i 0.338677 + 0.940903i \(0.390021\pi\)
−0.763754 + 0.645507i \(0.776646\pi\)
\(3\) −1.72336 + 0.173261i −0.994984 + 0.100032i
\(4\) −2.93996 1.69739i −1.46998 0.848694i
\(5\) 1.70912 + 1.44185i 0.764341 + 0.644813i
\(6\) 0.647285 3.97056i 0.264253 1.62097i
\(7\) 0.751454 + 0.201351i 0.284023 + 0.0761037i 0.398018 0.917378i \(-0.369698\pi\)
−0.113995 + 0.993481i \(0.536365\pi\)
\(8\) 2.29074 2.29074i 0.809899 0.809899i
\(9\) 2.93996 0.597183i 0.979987 0.199061i
\(10\) −4.26225 + 2.96768i −1.34784 + 0.938462i
\(11\) −0.220188 + 0.127126i −0.0663893 + 0.0383299i −0.532827 0.846224i \(-0.678870\pi\)
0.466438 + 0.884554i \(0.345537\pi\)
\(12\) 5.36071 + 2.41583i 1.54750 + 0.697391i
\(13\) 3.70486 0.992714i 1.02754 0.275329i 0.294601 0.955620i \(-0.404813\pi\)
0.732942 + 0.680291i \(0.238147\pi\)
\(14\) −0.903473 + 1.56486i −0.241463 + 0.418227i
\(15\) −3.19525 2.18870i −0.825009 0.565120i
\(16\) 0.367473 + 0.636483i 0.0918684 + 0.159121i
\(17\) −3.93311 3.93311i −0.953920 0.953920i 0.0450642 0.998984i \(-0.485651\pi\)
−0.998984 + 0.0450642i \(0.985651\pi\)
\(18\) −0.427565 + 6.95487i −0.100778 + 1.63928i
\(19\) 0.440377i 0.101029i −0.998723 0.0505147i \(-0.983914\pi\)
0.998723 0.0505147i \(-0.0160862\pi\)
\(20\) −2.57737 7.14000i −0.576317 1.59655i
\(21\) −1.32991 0.216804i −0.290211 0.0473105i
\(22\) −0.152843 0.570419i −0.0325863 0.121614i
\(23\) −0.917076 3.42258i −0.191224 0.713656i −0.993212 0.116317i \(-0.962891\pi\)
0.801989 0.597339i \(-0.203775\pi\)
\(24\) −3.55088 + 4.34467i −0.724821 + 0.886853i
\(25\) 0.842164 + 4.92857i 0.168433 + 0.985713i
\(26\) 8.90871i 1.74714i
\(27\) −4.96315 + 1.53854i −0.955159 + 0.296093i
\(28\) −1.86747 1.86747i −0.352919 0.352919i
\(29\) 2.76265 + 4.78505i 0.513011 + 0.888561i 0.999886 + 0.0150897i \(0.00480338\pi\)
−0.486875 + 0.873472i \(0.661863\pi\)
\(30\) 6.83122 5.85287i 1.24720 1.06858i
\(31\) −0.0971829 + 0.168326i −0.0174546 + 0.0302322i −0.874621 0.484808i \(-0.838890\pi\)
0.857166 + 0.515040i \(0.172223\pi\)
\(32\) 4.60955 1.23512i 0.814861 0.218341i
\(33\) 0.357439 0.257234i 0.0622221 0.0447787i
\(34\) 11.1884 6.45964i 1.91880 1.10782i
\(35\) 0.994005 + 1.42761i 0.168018 + 0.241311i
\(36\) −9.65702 3.23456i −1.60950 0.539093i
\(37\) −0.123005 + 0.123005i −0.0202220 + 0.0202220i −0.717145 0.696924i \(-0.754552\pi\)
0.696924 + 0.717145i \(0.254552\pi\)
\(38\) 0.987995 + 0.264732i 0.160274 + 0.0429453i
\(39\) −6.21282 + 2.35271i −0.994848 + 0.376736i
\(40\) 7.21804 0.612251i 1.14127 0.0968054i
\(41\) −3.88223 2.24141i −0.606303 0.350049i 0.165214 0.986258i \(-0.447168\pi\)
−0.771517 + 0.636209i \(0.780502\pi\)
\(42\) 1.28588 2.85336i 0.198416 0.440283i
\(43\) −0.357680 + 1.33488i −0.0545456 + 0.203567i −0.987821 0.155595i \(-0.950271\pi\)
0.933275 + 0.359162i \(0.116937\pi\)
\(44\) 0.863127 0.130121
\(45\) 5.88578 + 3.21831i 0.877401 + 0.479758i
\(46\) 8.22993 1.21344
\(47\) 1.11828 4.17348i 0.163118 0.608765i −0.835155 0.550015i \(-0.814622\pi\)
0.998273 0.0587499i \(-0.0187115\pi\)
\(48\) −0.743568 1.03322i −0.107325 0.149133i
\(49\) −5.53804 3.19739i −0.791148 0.456770i
\(50\) −11.5636 1.07339i −1.63534 0.151801i
\(51\) 7.45964 + 6.09673i 1.04456 + 0.853713i
\(52\) −12.5772 3.37004i −1.74414 0.467341i
\(53\) −0.938022 + 0.938022i −0.128847 + 0.128847i −0.768589 0.639742i \(-0.779041\pi\)
0.639742 + 0.768589i \(0.279041\pi\)
\(54\) −0.468157 12.0598i −0.0637081 1.64114i
\(55\) −0.559623 0.100205i −0.0754596 0.0135116i
\(56\) 2.18263 1.26014i 0.291666 0.168393i
\(57\) 0.0763000 + 0.758929i 0.0101062 + 0.100523i
\(58\) −12.3961 + 3.32153i −1.62769 + 0.436139i
\(59\) 4.02279 6.96768i 0.523723 0.907114i −0.475896 0.879502i \(-0.657876\pi\)
0.999619 0.0276128i \(-0.00879055\pi\)
\(60\) 5.67883 + 11.8583i 0.733133 + 1.53090i
\(61\) −1.44186 2.49737i −0.184611 0.319755i 0.758835 0.651283i \(-0.225769\pi\)
−0.943445 + 0.331528i \(0.892436\pi\)
\(62\) −0.319221 0.319221i −0.0405411 0.0405411i
\(63\) 2.32949 + 0.143210i 0.293488 + 0.0180428i
\(64\) 12.5540i 1.56925i
\(65\) 7.76338 + 3.64517i 0.962929 + 0.452128i
\(66\) 0.362236 + 0.956558i 0.0445882 + 0.117744i
\(67\) 3.47438 + 12.9666i 0.424463 + 1.58412i 0.765093 + 0.643919i \(0.222693\pi\)
−0.340631 + 0.940197i \(0.610641\pi\)
\(68\) 4.88718 + 18.2392i 0.592658 + 2.21183i
\(69\) 2.17345 + 5.73945i 0.261653 + 0.690948i
\(70\) −3.80043 + 1.37186i −0.454238 + 0.163969i
\(71\) 2.15986i 0.256328i −0.991753 0.128164i \(-0.959092\pi\)
0.991753 0.128164i \(-0.0409085\pi\)
\(72\) 5.36670 8.10268i 0.632471 0.954910i
\(73\) −9.18432 9.18432i −1.07494 1.07494i −0.996954 0.0779897i \(-0.975150\pi\)
−0.0779897 0.996954i \(-0.524850\pi\)
\(74\) −0.202021 0.349910i −0.0234844 0.0406762i
\(75\) −2.30528 8.34779i −0.266191 0.963920i
\(76\) −0.747490 + 1.29469i −0.0857430 + 0.148511i
\(77\) −0.191058 + 0.0511939i −0.0217731 + 0.00583409i
\(78\) −1.54353 15.3529i −0.174770 1.73838i
\(79\) −11.9729 + 6.91256i −1.34706 + 0.777723i −0.987832 0.155528i \(-0.950292\pi\)
−0.359225 + 0.933251i \(0.616959\pi\)
\(80\) −0.289654 + 1.61766i −0.0323843 + 0.180860i
\(81\) 8.28675 3.51139i 0.920749 0.390154i
\(82\) 7.36245 7.36245i 0.813047 0.813047i
\(83\) −5.20187 1.39384i −0.570979 0.152993i −0.0382335 0.999269i \(-0.512173\pi\)
−0.532746 + 0.846275i \(0.678840\pi\)
\(84\) 3.54190 + 2.89477i 0.386452 + 0.315846i
\(85\) −1.05121 12.3931i −0.114020 1.34422i
\(86\) −2.77981 1.60493i −0.299755 0.173064i
\(87\) −5.59011 7.76772i −0.599323 0.832787i
\(88\) −0.213182 + 0.795606i −0.0227253 + 0.0848119i
\(89\) −0.285526 −0.0302657 −0.0151328 0.999885i \(-0.504817\pi\)
−0.0151328 + 0.999885i \(0.504817\pi\)
\(90\) −10.7586 + 11.2702i −1.13406 + 1.18798i
\(91\) 2.98392 0.312799
\(92\) −3.11327 + 11.6189i −0.324581 + 1.21135i
\(93\) 0.138317 0.306924i 0.0143428 0.0318266i
\(94\) 8.69105 + 5.01778i 0.896413 + 0.517545i
\(95\) 0.634955 0.752655i 0.0651450 0.0772208i
\(96\) −7.72993 + 2.92722i −0.788932 + 0.298758i
\(97\) 8.73543 + 2.34065i 0.886948 + 0.237657i 0.673402 0.739276i \(-0.264832\pi\)
0.213546 + 0.976933i \(0.431499\pi\)
\(98\) 10.5026 10.5026i 1.06092 1.06092i
\(99\) −0.571428 + 0.505238i −0.0574307 + 0.0507783i
\(100\) 5.88975 15.9193i 0.588975 1.59193i
\(101\) −11.3943 + 6.57848i −1.13377 + 0.654583i −0.944881 0.327415i \(-0.893822\pi\)
−0.188890 + 0.981998i \(0.560489\pi\)
\(102\) −18.1625 + 13.0708i −1.79836 + 1.29420i
\(103\) 15.8082 4.23579i 1.55763 0.417364i 0.625714 0.780052i \(-0.284808\pi\)
0.931911 + 0.362688i \(0.118141\pi\)
\(104\) 6.21282 10.7609i 0.609217 1.05520i
\(105\) −1.96038 2.28807i −0.191314 0.223293i
\(106\) −1.54058 2.66836i −0.149634 0.259175i
\(107\) 5.81401 + 5.81401i 0.562062 + 0.562062i 0.929893 0.367831i \(-0.119899\pi\)
−0.367831 + 0.929893i \(0.619899\pi\)
\(108\) 17.2030 + 3.90114i 1.65536 + 0.375387i
\(109\) 8.81907i 0.844713i −0.906430 0.422357i \(-0.861203\pi\)
0.906430 0.422357i \(-0.138797\pi\)
\(110\) 0.561229 1.19529i 0.0535111 0.113966i
\(111\) 0.190671 0.233295i 0.0180977 0.0221434i
\(112\) 0.147983 + 0.552279i 0.0139830 + 0.0521854i
\(113\) 3.48580 + 13.0092i 0.327916 + 1.22380i 0.911347 + 0.411638i \(0.135043\pi\)
−0.583431 + 0.812163i \(0.698290\pi\)
\(114\) −1.74854 0.285049i −0.163766 0.0266973i
\(115\) 3.36743 7.17187i 0.314015 0.668780i
\(116\) 18.7571i 1.74156i
\(117\) 10.2993 5.13102i 0.952172 0.474363i
\(118\) 13.2138 + 13.2138i 1.21643 + 1.21643i
\(119\) −2.16361 3.74749i −0.198338 0.343532i
\(120\) −12.3332 + 2.30573i −1.12586 + 0.210484i
\(121\) −5.46768 + 9.47030i −0.497062 + 0.860936i
\(122\) 6.46967 1.73354i 0.585736 0.156948i
\(123\) 7.07884 + 3.19012i 0.638278 + 0.287643i
\(124\) 0.571428 0.329914i 0.0513157 0.0296272i
\(125\) −5.66687 + 9.63777i −0.506860 + 0.862028i
\(126\) −1.72167 + 5.14017i −0.153378 + 0.457923i
\(127\) −6.72167 + 6.72167i −0.596452 + 0.596452i −0.939366 0.342915i \(-0.888586\pi\)
0.342915 + 0.939366i \(0.388586\pi\)
\(128\) −18.9461 5.07660i −1.67462 0.448712i
\(129\) 0.385130 2.36245i 0.0339088 0.208002i
\(130\) −12.8450 + 15.2260i −1.12658 + 1.33541i
\(131\) 11.6482 + 6.72508i 1.01771 + 0.587573i 0.913439 0.406977i \(-0.133417\pi\)
0.104267 + 0.994549i \(0.466750\pi\)
\(132\) −1.48748 + 0.149546i −0.129469 + 0.0130163i
\(133\) 0.0886705 0.330923i 0.00768870 0.0286946i
\(134\) −31.1794 −2.69349
\(135\) −10.7010 4.52655i −0.920991 0.389583i
\(136\) −18.0195 −1.54516
\(137\) 2.53378 9.45618i 0.216475 0.807896i −0.769167 0.639048i \(-0.779329\pi\)
0.985642 0.168848i \(-0.0540048\pi\)
\(138\) −14.1832 + 1.42592i −1.20735 + 0.121383i
\(139\) 6.84922 + 3.95440i 0.580943 + 0.335408i 0.761508 0.648155i \(-0.224459\pi\)
−0.180565 + 0.983563i \(0.557793\pi\)
\(140\) −0.499124 5.88434i −0.0421836 0.497317i
\(141\) −1.20410 + 7.38618i −0.101404 + 0.622029i
\(142\) 4.84570 + 1.29840i 0.406642 + 0.108959i
\(143\) −0.689567 + 0.689567i −0.0576645 + 0.0576645i
\(144\) 1.46045 + 1.65179i 0.121705 + 0.137649i
\(145\) −2.17761 + 12.1615i −0.180841 + 1.00996i
\(146\) 26.1264 15.0841i 2.16224 1.24837i
\(147\) 10.0980 + 4.55073i 0.832872 + 0.375338i
\(148\) 0.570419 0.152843i 0.0468882 0.0125636i
\(149\) −4.56755 + 7.91123i −0.374188 + 0.648113i −0.990205 0.139620i \(-0.955412\pi\)
0.616017 + 0.787733i \(0.288745\pi\)
\(150\) 20.1143 0.153677i 1.64232 0.0125477i
\(151\) −7.34991 12.7304i −0.598127 1.03599i −0.993097 0.117293i \(-0.962578\pi\)
0.394970 0.918694i \(-0.370755\pi\)
\(152\) −1.00879 1.00879i −0.0818235 0.0818235i
\(153\) −13.9120 9.21441i −1.12472 0.744941i
\(154\) 0.459419i 0.0370210i
\(155\) −0.408797 + 0.147566i −0.0328353 + 0.0118528i
\(156\) 22.2589 + 3.62867i 1.78214 + 0.290527i
\(157\) −4.38274 16.3566i −0.349781 1.30540i −0.886926 0.461911i \(-0.847164\pi\)
0.537146 0.843490i \(-0.319503\pi\)
\(158\) −8.31097 31.0169i −0.661185 2.46758i
\(159\) 1.45403 1.77907i 0.115312 0.141090i
\(160\) 9.65912 + 4.53528i 0.763620 + 0.358546i
\(161\) 2.75656i 0.217248i
\(162\) 2.89630 + 20.7024i 0.227555 + 1.62653i
\(163\) 9.74771 + 9.74771i 0.763499 + 0.763499i 0.976953 0.213454i \(-0.0684713\pi\)
−0.213454 + 0.976953i \(0.568471\pi\)
\(164\) 7.60907 + 13.1793i 0.594169 + 1.02913i
\(165\) 0.981796 + 0.0757281i 0.0764327 + 0.00589542i
\(166\) 6.25421 10.8326i 0.485421 0.840773i
\(167\) −19.0563 + 5.10613i −1.47462 + 0.395124i −0.904514 0.426444i \(-0.859766\pi\)
−0.570110 + 0.821568i \(0.693100\pi\)
\(168\) −3.54313 + 2.54985i −0.273358 + 0.196725i
\(169\) 1.48218 0.855737i 0.114014 0.0658259i
\(170\) 28.4361 + 5.09169i 2.18095 + 0.390515i
\(171\) −0.262985 1.29469i −0.0201110 0.0990074i
\(172\) 3.31737 3.31737i 0.252947 0.252947i
\(173\) −10.0263 2.68653i −0.762284 0.204253i −0.143324 0.989676i \(-0.545779\pi\)
−0.618960 + 0.785422i \(0.712446\pi\)
\(174\) 20.7875 7.87197i 1.57590 0.596773i
\(175\) −0.359526 + 3.87316i −0.0271776 + 0.292783i
\(176\) −0.161827 0.0934307i −0.0121981 0.00704260i
\(177\) −5.72550 + 12.7048i −0.430355 + 0.954954i
\(178\) 0.171644 0.640584i 0.0128653 0.0480138i
\(179\) 15.1015 1.12874 0.564370 0.825522i \(-0.309119\pi\)
0.564370 + 0.825522i \(0.309119\pi\)
\(180\) −11.8413 19.4522i −0.882595 1.44988i
\(181\) −7.82954 −0.581965 −0.290983 0.956728i \(-0.593982\pi\)
−0.290983 + 0.956728i \(0.593982\pi\)
\(182\) −1.79378 + 6.69448i −0.132964 + 0.496228i
\(183\) 2.91754 + 4.05405i 0.215671 + 0.299684i
\(184\) −9.94101 5.73945i −0.732861 0.423118i
\(185\) −0.387586 + 0.0328759i −0.0284959 + 0.00241709i
\(186\) 0.605442 + 0.494825i 0.0443932 + 0.0362823i
\(187\) 1.36603 + 0.366025i 0.0998937 + 0.0267664i
\(188\) −10.3717 + 10.3717i −0.756436 + 0.756436i
\(189\) −4.03937 + 0.156806i −0.293821 + 0.0114060i
\(190\) 1.30690 + 1.87699i 0.0948122 + 0.136171i
\(191\) 9.93557 5.73631i 0.718913 0.415065i −0.0954396 0.995435i \(-0.530426\pi\)
0.814352 + 0.580371i \(0.197092\pi\)
\(192\) −2.17512 21.6351i −0.156976 1.56138i
\(193\) −5.33034 + 1.42826i −0.383686 + 0.102808i −0.445506 0.895279i \(-0.646976\pi\)
0.0618198 + 0.998087i \(0.480310\pi\)
\(194\) −10.5026 + 18.1910i −0.754043 + 1.30604i
\(195\) −14.0107 4.93686i −1.00333 0.353536i
\(196\) 10.8544 + 18.8004i 0.775315 + 1.34289i
\(197\) 2.32295 + 2.32295i 0.165504 + 0.165504i 0.785000 0.619496i \(-0.212663\pi\)
−0.619496 + 0.785000i \(0.712663\pi\)
\(198\) −0.789998 1.58573i −0.0561427 0.112693i
\(199\) 17.1978i 1.21912i −0.792741 0.609558i \(-0.791347\pi\)
0.792741 0.609558i \(-0.208653\pi\)
\(200\) 13.2192 + 9.36088i 0.934742 + 0.661914i
\(201\) −8.23421 21.7441i −0.580796 1.53371i
\(202\) −7.90930 29.5179i −0.556497 2.07687i
\(203\) 1.11253 + 4.15201i 0.0780841 + 0.291414i
\(204\) −11.5825 30.5860i −0.810940 2.14145i
\(205\) −3.40343 9.42841i −0.237706 0.658509i
\(206\) 38.0123i 2.64844i
\(207\) −4.74007 9.51458i −0.329458 0.661309i
\(208\) 1.99328 + 1.99328i 0.138209 + 0.138209i
\(209\) 0.0559832 + 0.0969658i 0.00387244 + 0.00670726i
\(210\) 6.31183 3.02268i 0.435558 0.208585i
\(211\) −2.27479 + 3.94005i −0.156603 + 0.271245i −0.933642 0.358209i \(-0.883388\pi\)
0.777039 + 0.629453i \(0.216721\pi\)
\(212\) 4.34993 1.16556i 0.298755 0.0800511i
\(213\) 0.374220 + 3.72223i 0.0256411 + 0.255043i
\(214\) −16.5390 + 9.54878i −1.13058 + 0.652741i
\(215\) −2.53601 + 1.76575i −0.172954 + 0.120423i
\(216\) −7.84489 + 14.8937i −0.533777 + 1.01339i
\(217\) −0.106921 + 0.106921i −0.00725827 + 0.00725827i
\(218\) 19.7858 + 5.30158i 1.34006 + 0.359068i
\(219\) 17.4192 + 14.2366i 1.17708 + 0.962023i
\(220\) 1.47519 + 1.24450i 0.0994570 + 0.0839039i
\(221\) −18.4761 10.6672i −1.24284 0.717552i
\(222\) 0.408781 + 0.568020i 0.0274356 + 0.0381230i
\(223\) −4.74061 + 17.6922i −0.317455 + 1.18476i 0.604227 + 0.796812i \(0.293482\pi\)
−0.921682 + 0.387946i \(0.873185\pi\)
\(224\) 3.71256 0.248056
\(225\) 5.41919 + 13.9869i 0.361279 + 0.932458i
\(226\) −31.2819 −2.08084
\(227\) −2.91961 + 10.8961i −0.193781 + 0.723202i 0.798798 + 0.601600i \(0.205470\pi\)
−0.992579 + 0.121602i \(0.961197\pi\)
\(228\) 1.06388 2.36073i 0.0704570 0.156343i
\(229\) 4.22418 + 2.43883i 0.279142 + 0.161163i 0.633035 0.774123i \(-0.281809\pi\)
−0.353893 + 0.935286i \(0.615142\pi\)
\(230\) 14.0659 + 11.8663i 0.927479 + 0.782439i
\(231\) 0.320393 0.121329i 0.0210803 0.00798284i
\(232\) 17.2898 + 4.63279i 1.13513 + 0.304158i
\(233\) 7.90742 7.90742i 0.518033 0.518033i −0.398943 0.916976i \(-0.630623\pi\)
0.916976 + 0.398943i \(0.130623\pi\)
\(234\) 5.32013 + 26.1913i 0.347788 + 1.71218i
\(235\) 7.92879 5.52058i 0.517217 0.360123i
\(236\) −23.6537 + 13.6565i −1.53972 + 0.888960i
\(237\) 19.4360 13.9873i 1.26250 0.908571i
\(238\) 9.70823 2.60131i 0.629291 0.168618i
\(239\) 11.1362 19.2884i 0.720340 1.24767i −0.240523 0.970643i \(-0.577319\pi\)
0.960864 0.277022i \(-0.0893476\pi\)
\(240\) 0.218902 2.83801i 0.0141300 0.183193i
\(241\) 14.4746 + 25.0708i 0.932392 + 1.61495i 0.779220 + 0.626750i \(0.215615\pi\)
0.153171 + 0.988200i \(0.451051\pi\)
\(242\) −17.9599 17.9599i −1.15451 1.15451i
\(243\) −13.6727 + 7.48717i −0.877103 + 0.480302i
\(244\) 9.78955i 0.626712i
\(245\) −4.85502 13.4497i −0.310176 0.859270i
\(246\) −11.4126 + 13.9638i −0.727638 + 0.890300i
\(247\) −0.437168 1.63153i −0.0278163 0.103812i
\(248\) 0.162970 + 0.608211i 0.0103486 + 0.0386214i
\(249\) 9.20620 + 1.50081i 0.583420 + 0.0951097i
\(250\) −18.2159 18.5075i −1.15208 1.17052i
\(251\) 20.4218i 1.28901i −0.764599 0.644507i \(-0.777063\pi\)
0.764599 0.644507i \(-0.222937\pi\)
\(252\) −6.60552 4.37508i −0.416109 0.275604i
\(253\) 0.637027 + 0.637027i 0.0400496 + 0.0400496i
\(254\) −11.0395 19.1209i −0.692679 1.19975i
\(255\) 3.95886 + 21.1757i 0.247913 + 1.32607i
\(256\) 10.2249 17.7101i 0.639057 1.10688i
\(257\) 7.09249 1.90043i 0.442417 0.118545i −0.0307319 0.999528i \(-0.509784\pi\)
0.473149 + 0.880982i \(0.343117\pi\)
\(258\) 5.06870 + 2.28424i 0.315563 + 0.142210i
\(259\) −0.117200 + 0.0676656i −0.00728247 + 0.00420453i
\(260\) −16.6368 23.8941i −1.03177 1.48185i
\(261\) 10.9796 + 12.4181i 0.679622 + 0.768658i
\(262\) −22.0902 + 22.0902i −1.36473 + 1.36473i
\(263\) 14.1097 + 3.78069i 0.870044 + 0.233127i 0.666107 0.745857i \(-0.267960\pi\)
0.203937 + 0.978984i \(0.434626\pi\)
\(264\) 0.229543 1.40805i 0.0141274 0.0866598i
\(265\) −2.95567 + 0.250707i −0.181565 + 0.0154008i
\(266\) 0.689128 + 0.397868i 0.0422532 + 0.0243949i
\(267\) 0.492065 0.0494705i 0.0301139 0.00302754i
\(268\) 11.7947 44.0185i 0.720478 2.68886i
\(269\) 3.76010 0.229257 0.114629 0.993408i \(-0.463432\pi\)
0.114629 + 0.993408i \(0.463432\pi\)
\(270\) 16.5883 21.2867i 1.00953 1.29547i
\(271\) 14.0785 0.855209 0.427604 0.903966i \(-0.359358\pi\)
0.427604 + 0.903966i \(0.359358\pi\)
\(272\) 1.05804 3.94867i 0.0641533 0.239423i
\(273\) −5.14237 + 0.516996i −0.311230 + 0.0312900i
\(274\) 19.6920 + 11.3692i 1.18964 + 0.686837i
\(275\) −0.811983 0.978152i −0.0489644 0.0589848i
\(276\) 3.35219 20.5629i 0.201778 1.23774i
\(277\) −2.02071 0.541447i −0.121413 0.0325324i 0.197601 0.980283i \(-0.436685\pi\)
−0.319014 + 0.947750i \(0.603352\pi\)
\(278\) −12.9892 + 12.9892i −0.779040 + 0.779040i
\(279\) −0.185193 + 0.552907i −0.0110872 + 0.0331017i
\(280\) 5.54730 + 0.993284i 0.331514 + 0.0593600i
\(281\) 8.02672 4.63423i 0.478834 0.276455i −0.241097 0.970501i \(-0.577507\pi\)
0.719930 + 0.694046i \(0.244174\pi\)
\(282\) −15.8472 7.14164i −0.943688 0.425278i
\(283\) −31.1104 + 8.33602i −1.84932 + 0.495525i −0.999502 0.0315464i \(-0.989957\pi\)
−0.849821 + 0.527071i \(0.823290\pi\)
\(284\) −3.66612 + 6.34991i −0.217544 + 0.376798i
\(285\) −0.963852 + 1.40711i −0.0570937 + 0.0833501i
\(286\) −1.13253 1.96159i −0.0669677 0.115991i
\(287\) −2.46601 2.46601i −0.145564 0.145564i
\(288\) 12.8143 6.38396i 0.755090 0.376179i
\(289\) 13.9387i 0.819926i
\(290\) −25.9756 12.1964i −1.52534 0.716198i
\(291\) −15.4599 2.52028i −0.906273 0.147742i
\(292\) 11.4122 + 42.5909i 0.667849 + 2.49244i
\(293\) 1.70948 + 6.37987i 0.0998690 + 0.372716i 0.997713 0.0675984i \(-0.0215336\pi\)
−0.897844 + 0.440314i \(0.854867\pi\)
\(294\) −16.2801 + 19.9195i −0.949475 + 1.16173i
\(295\) 16.9217 6.10834i 0.985222 0.355641i
\(296\) 0.563547i 0.0327555i
\(297\) 0.897240 0.969714i 0.0520631 0.0562685i
\(298\) −15.0032 15.0032i −0.869114 0.869114i
\(299\) −6.79528 11.7698i −0.392981 0.680663i
\(300\) −7.39200 + 28.4552i −0.426777 + 1.64286i
\(301\) −0.537559 + 0.931080i −0.0309844 + 0.0536666i
\(302\) 32.9794 8.83680i 1.89775 0.508501i
\(303\) 18.4966 13.3113i 1.06260 0.764713i
\(304\) 0.280292 0.161827i 0.0160759 0.00928140i
\(305\) 1.13652 6.34723i 0.0650767 0.363441i
\(306\) 29.0359 25.6726i 1.65987 1.46761i
\(307\) 5.82120 5.82120i 0.332233 0.332233i −0.521201 0.853434i \(-0.674516\pi\)
0.853434 + 0.521201i \(0.174516\pi\)
\(308\) 0.648600 + 0.173792i 0.0369574 + 0.00990271i
\(309\) −26.5093 + 10.0387i −1.50806 + 0.571084i
\(310\) −0.0853189 1.00585i −0.00484579 0.0571286i
\(311\) 9.98678 + 5.76587i 0.566299 + 0.326953i 0.755670 0.654953i \(-0.227312\pi\)
−0.189371 + 0.981906i \(0.560645\pi\)
\(312\) −8.84250 + 19.6214i −0.500608 + 1.11084i
\(313\) 1.72368 6.43287i 0.0974283 0.363607i −0.899948 0.435997i \(-0.856396\pi\)
0.997376 + 0.0723896i \(0.0230625\pi\)
\(314\) 39.3311 2.21958
\(315\) 3.77488 + 3.60352i 0.212691 + 0.203036i
\(316\) 46.9331 2.64020
\(317\) 0.519254 1.93788i 0.0291642 0.108842i −0.949809 0.312829i \(-0.898723\pi\)
0.978974 + 0.203987i \(0.0653900\pi\)
\(318\) 3.11730 + 4.33164i 0.174810 + 0.242906i
\(319\) −1.21661 0.702408i −0.0681169 0.0393273i
\(320\) −18.1009 + 21.4563i −1.01187 + 1.19944i
\(321\) −11.0270 9.01232i −0.615467 0.503018i
\(322\) 6.18441 + 1.65711i 0.344644 + 0.0923470i
\(323\) −1.73205 + 1.73205i −0.0963739 + 0.0963739i
\(324\) −30.3229 3.74247i −1.68461 0.207915i
\(325\) 8.01276 + 17.4236i 0.444468 + 0.966488i
\(326\) −27.7290 + 16.0094i −1.53577 + 0.886677i
\(327\) 1.52800 + 15.1985i 0.0844986 + 0.840477i
\(328\) −14.0277 + 3.75870i −0.774548 + 0.207540i
\(329\) 1.68067 2.91101i 0.0926585 0.160489i
\(330\) −0.760104 + 2.15716i −0.0418424 + 0.118748i
\(331\) −11.7700 20.3862i −0.646937 1.12053i −0.983850 0.178992i \(-0.942716\pi\)
0.336913 0.941536i \(-0.390617\pi\)
\(332\) 12.9274 + 12.9274i 0.709484 + 0.709484i
\(333\) −0.288174 + 0.435088i −0.0157919 + 0.0238427i
\(334\) 45.8229i 2.50732i
\(335\) −12.7576 + 27.1709i −0.697025 + 1.48450i
\(336\) −0.350716 0.926137i −0.0191331 0.0505249i
\(337\) −2.94873 11.0048i −0.160627 0.599470i −0.998558 0.0536923i \(-0.982901\pi\)
0.837930 0.545778i \(-0.183766\pi\)
\(338\) 1.02885 + 3.83973i 0.0559622 + 0.208854i
\(339\) −8.26128 21.8156i −0.448691 1.18486i
\(340\) −17.9454 + 38.2195i −0.973224 + 2.07274i
\(341\) 0.0494178i 0.00267612i
\(342\) 3.06276 + 0.188289i 0.165615 + 0.0101815i
\(343\) −7.36850 7.36850i −0.397861 0.397861i
\(344\) 2.23851 + 3.87721i 0.120692 + 0.209045i
\(345\) −4.56071 + 12.9432i −0.245540 + 0.696837i
\(346\) 12.0546 20.8792i 0.648059 1.12247i
\(347\) −13.8028 + 3.69845i −0.740974 + 0.198543i −0.609511 0.792778i \(-0.708634\pi\)
−0.131463 + 0.991321i \(0.541967\pi\)
\(348\) 3.24988 + 32.3254i 0.174212 + 1.73282i
\(349\) 15.2113 8.78224i 0.814242 0.470103i −0.0341849 0.999416i \(-0.510884\pi\)
0.848427 + 0.529313i \(0.177550\pi\)
\(350\) −8.47339 3.13496i −0.452922 0.167570i
\(351\) −16.8605 + 10.6271i −0.899944 + 0.567232i
\(352\) −0.857952 + 0.857952i −0.0457290 + 0.0457290i
\(353\) 16.8366 + 4.51136i 0.896124 + 0.240116i 0.677351 0.735660i \(-0.263128\pi\)
0.218773 + 0.975776i \(0.429795\pi\)
\(354\) −25.0617 20.4828i −1.33201 1.08865i
\(355\) 3.11419 3.69146i 0.165284 0.195922i
\(356\) 0.839435 + 0.484648i 0.0444900 + 0.0256863i
\(357\) 4.37799 + 6.08342i 0.231708 + 0.321969i
\(358\) −9.07828 + 33.8806i −0.479802 + 1.79064i
\(359\) −34.0577 −1.79750 −0.898748 0.438465i \(-0.855522\pi\)
−0.898748 + 0.438465i \(0.855522\pi\)
\(360\) 20.8551 6.11048i 1.09916 0.322051i
\(361\) 18.8061 0.989793
\(362\) 4.70673 17.5658i 0.247380 0.923236i
\(363\) 7.78196 17.2681i 0.408447 0.906340i
\(364\) −8.77260 5.06486i −0.459809 0.265471i
\(365\) −2.45471 28.9395i −0.128486 1.51476i
\(366\) −10.8492 + 4.10847i −0.567099 + 0.214753i
\(367\) −13.6337 3.65315i −0.711675 0.190693i −0.115221 0.993340i \(-0.536758\pi\)
−0.596454 + 0.802647i \(0.703424\pi\)
\(368\) 1.84141 1.84141i 0.0959901 0.0959901i
\(369\) −12.7521 4.27125i −0.663850 0.222352i
\(370\) 0.159239 0.889320i 0.00827845 0.0462336i
\(371\) −0.893752 + 0.516008i −0.0464013 + 0.0267898i
\(372\) −0.927616 + 0.667568i −0.0480947 + 0.0346118i
\(373\) 20.7962 5.57233i 1.07679 0.288524i 0.323508 0.946225i \(-0.395138\pi\)
0.753279 + 0.657701i \(0.228471\pi\)
\(374\) −1.64237 + 2.84467i −0.0849251 + 0.147095i
\(375\) 8.09623 17.5912i 0.418087 0.908407i
\(376\) −6.99867 12.1221i −0.360929 0.625147i
\(377\) 14.9854 + 14.9854i 0.771788 + 0.771788i
\(378\) 2.07647 9.15668i 0.106802 0.470969i
\(379\) 9.52893i 0.489468i 0.969590 + 0.244734i \(0.0787007\pi\)
−0.969590 + 0.244734i \(0.921299\pi\)
\(380\) −3.14429 + 1.13501i −0.161299 + 0.0582249i
\(381\) 10.4193 12.7485i 0.533795 0.653124i
\(382\) 6.89676 + 25.7391i 0.352869 + 1.31693i
\(383\) −2.57714 9.61802i −0.131686 0.491458i 0.868304 0.496033i \(-0.165210\pi\)
−0.999990 + 0.00457478i \(0.998544\pi\)
\(384\) 33.5306 + 5.46620i 1.71110 + 0.278946i
\(385\) −0.400355 0.187980i −0.0204040 0.00958035i
\(386\) 12.8173i 0.652385i
\(387\) −0.254398 + 4.13809i −0.0129318 + 0.210351i
\(388\) −21.7088 21.7088i −1.10210 1.10210i
\(389\) 14.5672 + 25.2312i 0.738587 + 1.27927i 0.953131 + 0.302557i \(0.0978401\pi\)
−0.214544 + 0.976714i \(0.568827\pi\)
\(390\) 19.4985 28.4655i 0.987344 1.44141i
\(391\) −9.85441 + 17.0683i −0.498359 + 0.863183i
\(392\) −20.0106 + 5.36182i −1.01069 + 0.270813i
\(393\) −21.2392 9.57158i −1.07138 0.482822i
\(394\) −6.60804 + 3.81516i −0.332908 + 0.192205i
\(395\) −30.4299 5.44870i −1.53110 0.274154i
\(396\) 2.53756 0.515445i 0.127517 0.0259021i
\(397\) −18.9354 + 18.9354i −0.950338 + 0.950338i −0.998824 0.0484856i \(-0.984561\pi\)
0.0484856 + 0.998824i \(0.484561\pi\)
\(398\) 38.5836 + 10.3384i 1.93402 + 0.518219i
\(399\) −0.0954754 + 0.585663i −0.00477975 + 0.0293198i
\(400\) −2.82747 + 2.34714i −0.141374 + 0.117357i
\(401\) 21.2096 + 12.2453i 1.05916 + 0.611503i 0.925198 0.379484i \(-0.123898\pi\)
0.133957 + 0.990987i \(0.457232\pi\)
\(402\) 53.7334 5.40217i 2.67998 0.269436i
\(403\) −0.192950 + 0.720098i −0.00961151 + 0.0358706i
\(404\) 44.6649 2.22216
\(405\) 19.2259 + 5.94683i 0.955343 + 0.295500i
\(406\) −9.98392 −0.495493
\(407\) 0.0114472 0.0427215i 0.000567417 0.00211763i
\(408\) 31.0541 3.12207i 1.53741 0.154566i
\(409\) 12.2649 + 7.08116i 0.606462 + 0.350141i 0.771579 0.636133i \(-0.219467\pi\)
−0.165118 + 0.986274i \(0.552800\pi\)
\(410\) 23.1988 1.96778i 1.14571 0.0971817i
\(411\) −2.72823 + 16.7354i −0.134574 + 0.825498i
\(412\) −53.6652 14.3795i −2.64389 0.708429i
\(413\) 4.42589 4.42589i 0.217784 0.217784i
\(414\) 24.1957 4.91477i 1.18915 0.241548i
\(415\) −6.88091 9.88252i −0.337770 0.485114i
\(416\) 15.8516 9.15193i 0.777189 0.448710i
\(417\) −12.4888 5.62816i −0.611581 0.275612i
\(418\) −0.251199 + 0.0673086i −0.0122866 + 0.00329217i
\(419\) −13.8808 + 24.0422i −0.678120 + 1.17454i 0.297426 + 0.954745i \(0.403872\pi\)
−0.975546 + 0.219794i \(0.929461\pi\)
\(420\) 1.87970 + 10.0544i 0.0917198 + 0.490603i
\(421\) −0.429901 0.744611i −0.0209521 0.0362901i 0.855359 0.518035i \(-0.173336\pi\)
−0.876311 + 0.481745i \(0.840003\pi\)
\(422\) −7.47211 7.47211i −0.363737 0.363737i
\(423\) 0.795372 12.9377i 0.0386723 0.629053i
\(424\) 4.29753i 0.208706i
\(425\) 16.0723 22.6969i 0.779620 1.10096i
\(426\) −8.57586 1.39805i −0.415502 0.0677356i
\(427\) −0.580639 2.16698i −0.0280991 0.104867i
\(428\) −7.22434 26.9616i −0.349202 1.30324i
\(429\) 1.06890 1.30785i 0.0516070 0.0631436i
\(430\) −2.43697 6.75106i −0.117521 0.325565i
\(431\) 25.5770i 1.23200i 0.787746 + 0.616000i \(0.211248\pi\)
−0.787746 + 0.616000i \(0.788752\pi\)
\(432\) −2.80308 2.59359i −0.134863 0.124784i
\(433\) 6.30733 + 6.30733i 0.303111 + 0.303111i 0.842230 0.539119i \(-0.181243\pi\)
−0.539119 + 0.842230i \(0.681243\pi\)
\(434\) −0.175604 0.304155i −0.00842927 0.0145999i
\(435\) 1.64569 21.3360i 0.0789050 1.02298i
\(436\) −14.9694 + 25.9277i −0.716903 + 1.24171i
\(437\) −1.50722 + 0.403859i −0.0721002 + 0.0193192i
\(438\) −42.4118 + 30.5220i −2.02651 + 1.45840i
\(439\) −12.4666 + 7.19760i −0.594999 + 0.343523i −0.767072 0.641561i \(-0.778287\pi\)
0.172073 + 0.985084i \(0.444954\pi\)
\(440\) −1.51149 + 1.05241i −0.0720577 + 0.0501716i
\(441\) −18.1910 6.09297i −0.866240 0.290142i
\(442\) 35.0390 35.0390i 1.66663 1.66663i
\(443\) −21.1741 5.67359i −1.00601 0.269560i −0.282050 0.959400i \(-0.591014\pi\)
−0.723962 + 0.689839i \(0.757681\pi\)
\(444\) −0.956558 + 0.362236i −0.0453962 + 0.0171910i
\(445\) −0.487997 0.411684i −0.0231333 0.0195157i
\(446\) −36.8430 21.2713i −1.74457 1.00723i
\(447\) 6.50084 14.4253i 0.307479 0.682293i
\(448\) −2.52777 + 9.43376i −0.119426 + 0.445703i
\(449\) −23.6447 −1.11586 −0.557931 0.829888i \(-0.688404\pi\)
−0.557931 + 0.829888i \(0.688404\pi\)
\(450\) −34.6376 + 3.74986i −1.63283 + 0.176770i
\(451\) 1.13976 0.0536693
\(452\) 11.8335 44.1632i 0.556601 2.07726i
\(453\) 14.8722 + 20.6657i 0.698759 + 0.970958i
\(454\) −22.6906 13.1004i −1.06492 0.614833i
\(455\) 5.09986 + 4.30234i 0.239085 + 0.201697i
\(456\) 1.91329 + 1.56373i 0.0895981 + 0.0732281i
\(457\) 5.50956 + 1.47628i 0.257726 + 0.0690575i 0.385369 0.922763i \(-0.374074\pi\)
−0.127642 + 0.991820i \(0.540741\pi\)
\(458\) −8.01095 + 8.01095i −0.374327 + 0.374327i
\(459\) 25.5719 + 13.4694i 1.19359 + 0.628697i
\(460\) −22.0736 + 15.3692i −1.02919 + 0.716591i
\(461\) −27.8943 + 16.1048i −1.29916 + 0.750073i −0.980260 0.197713i \(-0.936648\pi\)
−0.318905 + 0.947787i \(0.603315\pi\)
\(462\) 0.0795993 + 0.791745i 0.00370329 + 0.0368353i
\(463\) 6.17544 1.65471i 0.286997 0.0769007i −0.112448 0.993658i \(-0.535869\pi\)
0.399446 + 0.916757i \(0.369203\pi\)
\(464\) −2.03040 + 3.51676i −0.0942590 + 0.163261i
\(465\) 0.678938 0.325138i 0.0314850 0.0150779i
\(466\) 12.9869 + 22.4940i 0.601608 + 1.04202i
\(467\) 12.7982 + 12.7982i 0.592230 + 0.592230i 0.938233 0.346003i \(-0.112461\pi\)
−0.346003 + 0.938233i \(0.612461\pi\)
\(468\) −38.9889 2.39692i −1.80226 0.110798i
\(469\) 10.4433i 0.482228i
\(470\) 7.61916 + 21.1071i 0.351446 + 0.973599i
\(471\) 10.3870 + 27.4290i 0.478609 + 1.26386i
\(472\) −6.74597 25.1763i −0.310508 1.15883i
\(473\) −0.0909406 0.339395i −0.00418145 0.0156054i
\(474\) 19.6968 + 52.0135i 0.904706 + 2.38906i
\(475\) 2.17043 0.370870i 0.0995859 0.0170167i
\(476\) 14.6900i 0.673314i
\(477\) −2.19758 + 3.31792i −0.100620 + 0.151917i
\(478\) 36.5795 + 36.5795i 1.67311 + 1.67311i
\(479\) 1.76166 + 3.05128i 0.0804921 + 0.139416i 0.903461 0.428669i \(-0.141017\pi\)
−0.822969 + 0.568086i \(0.807684\pi\)
\(480\) −17.4320 6.14239i −0.795656 0.280360i
\(481\) −0.333609 + 0.577827i −0.0152112 + 0.0263467i
\(482\) −64.9482 + 17.4028i −2.95831 + 0.792677i
\(483\) 0.477604 + 4.75056i 0.0217318 + 0.216158i
\(484\) 32.1495 18.5615i 1.46134 0.843706i
\(485\) 11.5550 + 16.5956i 0.524686 + 0.753566i
\(486\) −8.57829 35.1759i −0.389119 1.59561i
\(487\) 29.3442 29.3442i 1.32971 1.32971i 0.424098 0.905616i \(-0.360591\pi\)
0.905616 0.424098i \(-0.139409\pi\)
\(488\) −9.02373 2.41790i −0.408485 0.109453i
\(489\) −18.4877 15.1099i −0.836044 0.683295i
\(490\) 33.0933 2.80705i 1.49500 0.126810i
\(491\) 17.9001 + 10.3346i 0.807819 + 0.466395i 0.846198 0.532869i \(-0.178886\pi\)
−0.0383788 + 0.999263i \(0.512219\pi\)
\(492\) −15.3967 21.3944i −0.694135 0.964533i
\(493\) 7.95433 29.6859i 0.358245 1.33699i
\(494\) 3.92319 0.176513
\(495\) −1.70511 + 0.0395999i −0.0766391 + 0.00177988i
\(496\) −0.142849 −0.00641409
\(497\) 0.434891 1.62304i 0.0195075 0.0728031i
\(498\) −8.90140 + 19.7521i −0.398881 + 0.885114i
\(499\) −22.6691 13.0880i −1.01481 0.585901i −0.102214 0.994762i \(-0.532593\pi\)
−0.912596 + 0.408862i \(0.865926\pi\)
\(500\) 33.0194 18.7158i 1.47667 0.836996i
\(501\) 31.9563 12.1014i 1.42770 0.540652i
\(502\) 45.8168 + 12.2766i 2.04490 + 0.547930i
\(503\) 6.72022 6.72022i 0.299640 0.299640i −0.541233 0.840873i \(-0.682042\pi\)
0.840873 + 0.541233i \(0.182042\pi\)
\(504\) 5.66431 5.00820i 0.252308 0.223083i
\(505\) −28.9593 5.18536i −1.28867 0.230746i
\(506\) −1.81213 + 1.04624i −0.0805592 + 0.0465109i
\(507\) −2.40607 + 1.73155i −0.106857 + 0.0769008i
\(508\) 31.1707 8.35217i 1.38298 0.370568i
\(509\) 11.9676 20.7285i 0.530454 0.918773i −0.468915 0.883243i \(-0.655355\pi\)
0.999369 0.0355293i \(-0.0113117\pi\)
\(510\) −49.8879 3.84797i −2.20908 0.170391i
\(511\) −5.05232 8.75087i −0.223501 0.387116i
\(512\) 5.84717 + 5.84717i 0.258411 + 0.258411i
\(513\) 0.677538 + 2.18566i 0.0299141 + 0.0964991i
\(514\) 17.0546i 0.752246i
\(515\) 33.1254 + 15.5535i 1.45968 + 0.685368i
\(516\) −5.14226 + 6.29181i −0.226376 + 0.276981i
\(517\) 0.284325 + 1.06111i 0.0125046 + 0.0466678i
\(518\) −0.0813543 0.303618i −0.00357450 0.0133402i
\(519\) 17.7444 + 2.89271i 0.778893 + 0.126976i
\(520\) 26.1340 9.43375i 1.14605 0.413697i
\(521\) 3.23141i 0.141571i −0.997492 0.0707853i \(-0.977449\pi\)
0.997492 0.0707853i \(-0.0225505\pi\)
\(522\) −34.4606 + 17.1679i −1.50830 + 0.751420i
\(523\) −8.67002 8.67002i −0.379114 0.379114i 0.491669 0.870782i \(-0.336387\pi\)
−0.870782 + 0.491669i \(0.836387\pi\)
\(524\) −22.8301 39.5429i −0.997339 1.72744i
\(525\) −0.0514732 6.73715i −0.00224648 0.294033i
\(526\) −16.9641 + 29.3827i −0.739672 + 1.28115i
\(527\) 1.04427 0.279813i 0.0454893 0.0121888i
\(528\) 0.295074 + 0.132977i 0.0128415 + 0.00578707i
\(529\) 9.04559 5.22247i 0.393286 0.227064i
\(530\) 1.21434 6.78183i 0.0527474 0.294584i
\(531\) 7.66587 22.8870i 0.332670 0.993213i
\(532\) −0.822392 + 0.822392i −0.0356552 + 0.0356552i
\(533\) −16.6082 4.45016i −0.719381 0.192758i
\(534\) −0.184817 + 1.13370i −0.00799780 + 0.0490599i
\(535\) 1.55392 + 18.3197i 0.0671820 + 0.792031i
\(536\) 37.6619 + 21.7441i 1.62675 + 0.939202i
\(537\) −26.0254 + 2.61650i −1.12308 + 0.112910i
\(538\) −2.26038 + 8.43586i −0.0974520 + 0.363696i
\(539\) 1.62588 0.0700317
\(540\) 23.7771 + 31.4715i 1.02320 + 1.35432i
\(541\) −11.1502 −0.479386 −0.239693 0.970849i \(-0.577047\pi\)
−0.239693 + 0.970849i \(0.577047\pi\)
\(542\) −8.46330 + 31.5855i −0.363530 + 1.35671i
\(543\) 13.4931 1.35655i 0.579046 0.0582153i
\(544\) −22.9878 13.2720i −0.985592 0.569032i
\(545\) 12.7157 15.0728i 0.544682 0.645649i
\(546\) 1.93144 11.8478i 0.0826582 0.507040i
\(547\) −13.2305 3.54511i −0.565697 0.151578i −0.0353748 0.999374i \(-0.511263\pi\)
−0.530323 + 0.847796i \(0.677929\pi\)
\(548\) −23.5000 + 23.5000i −1.00387 + 1.00387i
\(549\) −5.73038 6.48111i −0.244567 0.276607i
\(550\) 2.68263 1.23369i 0.114388 0.0526045i
\(551\) 2.10722 1.21661i 0.0897708 0.0518292i
\(552\) 18.1264 + 8.16876i 0.771511 + 0.347686i
\(553\) −10.3889 + 2.78371i −0.441782 + 0.118375i
\(554\) 2.42950 4.20802i 0.103220 0.178781i
\(555\) 0.662255 0.123811i 0.0281111 0.00525547i
\(556\) −13.4243 23.2516i −0.569317 0.986086i
\(557\) −11.8934 11.8934i −0.503938 0.503938i 0.408721 0.912659i \(-0.365975\pi\)
−0.912659 + 0.408721i \(0.865975\pi\)
\(558\) −1.12913 0.747864i −0.0477999 0.0316596i
\(559\) 5.30061i 0.224192i
\(560\) −0.543381 + 1.15728i −0.0229620 + 0.0489039i
\(561\) −2.41758 0.394116i −0.102070 0.0166396i
\(562\) 5.57173 + 20.7940i 0.235029 + 0.877141i
\(563\) −6.37683 23.7986i −0.268751 1.00299i −0.959914 0.280294i \(-0.909568\pi\)
0.691163 0.722699i \(-0.257099\pi\)
\(564\) 16.0772 19.6713i 0.676974 0.828310i
\(565\) −12.7996 + 27.2602i −0.538483 + 1.14685i
\(566\) 74.8082i 3.14442i
\(567\) 6.93413 0.970098i 0.291206 0.0407403i
\(568\) −4.94768 4.94768i −0.207600 0.207600i
\(569\) −6.24856 10.8228i −0.261953 0.453716i 0.704808 0.709399i \(-0.251033\pi\)
−0.966761 + 0.255682i \(0.917700\pi\)
\(570\) −2.57747 3.00831i −0.107958 0.126004i
\(571\) 13.7065 23.7404i 0.573601 0.993506i −0.422591 0.906320i \(-0.638879\pi\)
0.996192 0.0871853i \(-0.0277872\pi\)
\(572\) 3.19776 0.856838i 0.133705 0.0358262i
\(573\) −16.1287 + 11.6072i −0.673787 + 0.484897i
\(574\) 7.01498 4.05010i 0.292800 0.169048i
\(575\) 16.0961 7.40224i 0.671252 0.308695i
\(576\) 7.49704 + 36.9083i 0.312377 + 1.53785i
\(577\) −11.1638 + 11.1638i −0.464755 + 0.464755i −0.900210 0.435455i \(-0.856587\pi\)
0.435455 + 0.900210i \(0.356587\pi\)
\(578\) −31.2719 8.37928i −1.30074 0.348532i
\(579\) 8.93865 3.38495i 0.371478 0.140674i
\(580\) 27.0449 32.0582i 1.12298 1.33114i
\(581\) −3.62831 2.09481i −0.150528 0.0869072i
\(582\) 14.9480 33.1695i 0.619615 1.37492i
\(583\) 0.0872947 0.325788i 0.00361538 0.0134928i
\(584\) −42.0778 −1.74119
\(585\) 25.0009 + 6.08050i 1.03366 + 0.251398i
\(586\) −15.3410 −0.633733
\(587\) 4.76574 17.7860i 0.196703 0.734106i −0.795116 0.606457i \(-0.792590\pi\)
0.991819 0.127649i \(-0.0407431\pi\)
\(588\) −21.9635 30.5193i −0.905758 1.25859i
\(589\) 0.0741267 + 0.0427971i 0.00305434 + 0.00176342i
\(590\) 3.53169 + 41.6363i 0.145397 + 1.71414i
\(591\) −4.40577 3.60082i −0.181229 0.148118i
\(592\) −0.123492 0.0330896i −0.00507549 0.00135997i
\(593\) 14.5424 14.5424i 0.597186 0.597186i −0.342377 0.939563i \(-0.611232\pi\)
0.939563 + 0.342377i \(0.111232\pi\)
\(594\) 1.63620 + 2.59592i 0.0671341 + 0.106512i
\(595\) 1.70543 9.52450i 0.0699158 0.390466i
\(596\) 26.8568 15.5058i 1.10010 0.635143i
\(597\) 2.97970 + 29.6380i 0.121951 + 1.21300i
\(598\) 30.4907 8.16997i 1.24686 0.334095i
\(599\) −17.6972 + 30.6525i −0.723089 + 1.25243i 0.236666 + 0.971591i \(0.423945\pi\)
−0.959756 + 0.280836i \(0.909388\pi\)
\(600\) −24.4034 13.8418i −0.996266 0.565090i
\(601\) 7.31737 + 12.6741i 0.298482 + 0.516986i 0.975789 0.218715i \(-0.0701864\pi\)
−0.677307 + 0.735700i \(0.736853\pi\)
\(602\) −1.76575 1.76575i −0.0719664 0.0719664i
\(603\) 17.9579 + 36.0463i 0.731304 + 1.46792i
\(604\) 49.9026i 2.03051i
\(605\) −22.9996 + 8.30230i −0.935067 + 0.337537i
\(606\) 18.7449 + 49.4997i 0.761460 + 2.01079i
\(607\) 2.02270 + 7.54883i 0.0820989 + 0.306397i 0.994749 0.102344i \(-0.0326344\pi\)
−0.912650 + 0.408742i \(0.865968\pi\)
\(608\) −0.543920 2.02994i −0.0220589 0.0823248i
\(609\) −2.63667 6.96266i −0.106843 0.282141i
\(610\) 13.5569 + 6.36544i 0.548904 + 0.257729i
\(611\) 16.5723i 0.670444i
\(612\) 25.2603 + 50.7040i 1.02109 + 2.04959i
\(613\) 3.49830 + 3.49830i 0.141295 + 0.141295i 0.774216 0.632921i \(-0.218144\pi\)
−0.632921 + 0.774216i \(0.718144\pi\)
\(614\) 9.56058 + 16.5594i 0.385833 + 0.668283i
\(615\) 7.49892 + 15.6589i 0.302385 + 0.631427i
\(616\) −0.320393 + 0.554937i −0.0129090 + 0.0223590i
\(617\) 23.9061 6.40561i 0.962421 0.257880i 0.256796 0.966466i \(-0.417333\pi\)
0.705625 + 0.708585i \(0.250666\pi\)
\(618\) −6.58605 65.5090i −0.264930 2.63516i
\(619\) 15.4357 8.91182i 0.620414 0.358196i −0.156616 0.987660i \(-0.550059\pi\)
0.777030 + 0.629463i \(0.216725\pi\)
\(620\) 1.45232 + 0.260049i 0.0583267 + 0.0104438i
\(621\) 9.81737 + 15.5758i 0.393958 + 0.625035i
\(622\) −18.9394 + 18.9394i −0.759402 + 0.759402i
\(623\) −0.214559 0.0574910i −0.00859614 0.00230333i
\(624\) −3.78051 3.08979i −0.151342 0.123691i
\(625\) −23.5815 + 8.30133i −0.943261 + 0.332053i
\(626\) 13.3961 + 7.73424i 0.535416 + 0.309122i
\(627\) −0.113280 0.157408i −0.00452396 0.00628625i
\(628\) −14.8784 + 55.5270i −0.593714 + 2.21577i
\(629\) 0.967588 0.0385803
\(630\) −10.3539 + 6.30277i −0.412508 + 0.251109i
\(631\) −29.9153 −1.19091 −0.595454 0.803389i \(-0.703028\pi\)
−0.595454 + 0.803389i \(0.703028\pi\)
\(632\) −11.5919 + 43.2617i −0.461102 + 1.72086i
\(633\) 3.23763 7.18428i 0.128684 0.285549i
\(634\) 4.03553 + 2.32991i 0.160271 + 0.0925327i
\(635\) −21.1797 + 1.79651i −0.840492 + 0.0712925i
\(636\) −7.29457 + 2.76236i −0.289249 + 0.109535i
\(637\) −23.6917 6.34819i −0.938701 0.251524i
\(638\) 2.30723 2.30723i 0.0913441 0.0913441i
\(639\) −1.28983 6.34991i −0.0510250 0.251199i
\(640\) −25.0615 35.9939i −0.990642 1.42278i
\(641\) −13.7403 + 7.93299i −0.542711 + 0.313334i −0.746177 0.665748i \(-0.768113\pi\)
0.203466 + 0.979082i \(0.434779\pi\)
\(642\) 26.8482 19.3216i 1.05961 0.762561i
\(643\) −22.4568 + 6.01727i −0.885608 + 0.237298i −0.672825 0.739801i \(-0.734919\pi\)
−0.212783 + 0.977099i \(0.568253\pi\)
\(644\) −4.67895 + 8.10419i −0.184377 + 0.319350i
\(645\) 4.06452 3.48241i 0.160040 0.137120i
\(646\) −2.84467 4.92712i −0.111922 0.193855i
\(647\) 8.90965 + 8.90965i 0.350274 + 0.350274i 0.860212 0.509937i \(-0.170331\pi\)
−0.509937 + 0.860212i \(0.670331\pi\)
\(648\) 10.9391 27.0265i 0.429728 1.06170i
\(649\) 2.04560i 0.0802969i
\(650\) −43.9072 + 7.50260i −1.72218 + 0.294276i
\(651\) 0.165739 0.202789i 0.00649581 0.00794793i
\(652\) −12.1122 45.2035i −0.474352 1.77031i
\(653\) 3.76260 + 14.0422i 0.147242 + 0.549515i 0.999645 + 0.0266300i \(0.00847759\pi\)
−0.852403 + 0.522885i \(0.824856\pi\)
\(654\) −35.0166 5.70845i −1.36926 0.223218i
\(655\) 10.2116 + 28.2888i 0.398999 + 1.10534i
\(656\) 3.29463i 0.128634i
\(657\) −32.4863 21.5168i −1.26741 0.839452i
\(658\) 5.52058 + 5.52058i 0.215215 + 0.215215i
\(659\) 4.50735 + 7.80696i 0.175582 + 0.304116i 0.940362 0.340174i \(-0.110486\pi\)
−0.764781 + 0.644291i \(0.777153\pi\)
\(660\) −2.75790 1.88913i −0.107351 0.0735341i
\(661\) 15.0034 25.9866i 0.583564 1.01076i −0.411488 0.911415i \(-0.634991\pi\)
0.995053 0.0993481i \(-0.0316757\pi\)
\(662\) 52.8125 14.1511i 2.05261 0.549996i
\(663\) 33.6892 + 15.1822i 1.30838 + 0.589629i
\(664\) −15.1090 + 8.72321i −0.586345 + 0.338526i
\(665\) 0.628687 0.437737i 0.0243795 0.0169747i
\(666\) −0.802894 0.908079i −0.0311115 0.0351874i
\(667\) 13.8436 13.8436i 0.536028 0.536028i
\(668\) 64.6920 + 17.3342i 2.50301 + 0.670679i
\(669\) 5.10443 31.3115i 0.197349 1.21057i
\(670\) −53.2892 44.9558i −2.05874 1.73680i
\(671\) 0.634959 + 0.366594i 0.0245123 + 0.0141522i
\(672\) −6.39808 + 0.643241i −0.246811 + 0.0248136i
\(673\) −7.04218 + 26.2818i −0.271456 + 1.01309i 0.686723 + 0.726919i \(0.259049\pi\)
−0.958179 + 0.286169i \(0.907618\pi\)
\(674\) 26.4622 1.01928
\(675\) −11.7626 23.1655i −0.452743 0.891641i
\(676\) −5.81007 −0.223464
\(677\) 4.49141 16.7622i 0.172619 0.644223i −0.824326 0.566116i \(-0.808446\pi\)
0.996945 0.0781075i \(-0.0248877\pi\)
\(678\) 53.9100 5.41993i 2.07040 0.208151i
\(679\) 6.09297 + 3.51778i 0.233827 + 0.135000i
\(680\) −30.7974 25.9813i −1.18103 0.996337i
\(681\) 3.14367 19.2838i 0.120466 0.738959i
\(682\) 0.110870 + 0.0297075i 0.00424543 + 0.00113756i
\(683\) −27.4945 + 27.4945i −1.05205 + 1.05205i −0.0534806 + 0.998569i \(0.517032\pi\)
−0.998569 + 0.0534806i \(0.982968\pi\)
\(684\) −1.42442 + 4.25273i −0.0544642 + 0.162607i
\(685\) 17.9649 12.5084i 0.686403 0.477922i
\(686\) 20.9610 12.1018i 0.800293 0.462049i
\(687\) −7.70236 3.47111i −0.293863 0.132431i
\(688\) −0.981065 + 0.262876i −0.0374028 + 0.0100220i
\(689\) −2.54405 + 4.40643i −0.0969207 + 0.167872i
\(690\) −26.2966 18.0128i −1.00110 0.685737i
\(691\) −9.07512 15.7186i −0.345234 0.597962i 0.640162 0.768240i \(-0.278867\pi\)
−0.985396 + 0.170277i \(0.945534\pi\)
\(692\) 24.9168 + 24.9168i 0.947195 + 0.947195i
\(693\) −0.531132 + 0.264605i −0.0201760 + 0.0100515i
\(694\) 33.1902i 1.25988i
\(695\) 6.00449 + 16.6340i 0.227763 + 0.630965i
\(696\) −30.5993 4.98833i −1.15986 0.189082i
\(697\) 6.45355 + 24.0850i 0.244446 + 0.912283i
\(698\) 10.5589 + 39.4063i 0.399660 + 1.49155i
\(699\) −12.2573 + 14.9974i −0.463614 + 0.567254i
\(700\) 7.63125 10.7767i 0.288434 0.407320i
\(701\) 5.23510i 0.197727i 0.995101 + 0.0988635i \(0.0315207\pi\)
−0.995101 + 0.0988635i \(0.968479\pi\)
\(702\) −13.7064 44.2153i −0.517316 1.66880i
\(703\) 0.0541687 + 0.0541687i 0.00204301 + 0.00204301i
\(704\) −1.59594 2.76425i −0.0601492 0.104181i
\(705\) −12.7077 + 10.8877i −0.478599 + 0.410055i
\(706\) −20.2427 + 35.0614i −0.761844 + 1.31955i
\(707\) −9.88684 + 2.64917i −0.371833 + 0.0996323i
\(708\) 38.3978 27.6333i 1.44308 1.03852i
\(709\) 14.7176 8.49720i 0.552730 0.319119i −0.197492 0.980304i \(-0.563280\pi\)
0.750222 + 0.661186i \(0.229946\pi\)
\(710\) 6.40977 + 9.20587i 0.240555 + 0.345490i
\(711\) −31.0718 + 27.4727i −1.16528 + 1.03031i
\(712\) −0.654066 + 0.654066i −0.0245121 + 0.0245121i
\(713\) 0.665231 + 0.178248i 0.0249131 + 0.00667545i
\(714\) −16.2801 + 6.16507i −0.609268 + 0.230722i
\(715\) −2.17280 + 0.184302i −0.0812582 + 0.00689251i
\(716\) −44.3979 25.6331i −1.65923 0.957955i
\(717\) −15.8498 + 35.1705i −0.591920 + 1.31346i
\(718\) 20.4738 76.4092i 0.764075 2.85157i
\(719\) 49.3502 1.84045 0.920225 0.391389i \(-0.128005\pi\)
0.920225 + 0.391389i \(0.128005\pi\)
\(720\) 0.114469 + 4.92885i 0.00426599 + 0.183687i
\(721\) 12.7320 0.474164
\(722\) −11.3053 + 42.1918i −0.420739 + 1.57022i
\(723\) −29.2888 40.6981i −1.08926 1.51358i
\(724\) 23.0186 + 13.2898i 0.855478 + 0.493910i
\(725\) −21.2568 + 17.6457i −0.789459 + 0.655345i
\(726\) 34.0632 + 27.8397i 1.26421 + 1.03323i
\(727\) 37.8991 + 10.1550i 1.40560 + 0.376630i 0.880353 0.474319i \(-0.157306\pi\)
0.525249 + 0.850949i \(0.323972\pi\)
\(728\) 6.83537 6.83537i 0.253336 0.253336i
\(729\) 22.2658 15.2721i 0.824658 0.565632i
\(730\) 66.4020 + 11.8898i 2.45765 + 0.440060i
\(731\) 6.65702 3.84343i 0.246219 0.142155i
\(732\) −1.69615 16.8709i −0.0626914 0.623568i
\(733\) 7.32362 1.96236i 0.270504 0.0724813i −0.121017 0.992650i \(-0.538616\pi\)
0.391521 + 0.920169i \(0.371949\pi\)
\(734\) 16.3918 28.3915i 0.605034 1.04795i
\(735\) 10.6973 + 22.3375i 0.394575 + 0.823933i
\(736\) −8.45462 14.6438i −0.311641 0.539778i
\(737\) −2.41340 2.41340i −0.0888987 0.0888987i
\(738\) 17.2486 26.0421i 0.634930 0.958621i
\(739\) 43.8329i 1.61242i 0.591629 + 0.806210i \(0.298485\pi\)
−0.591629 + 0.806210i \(0.701515\pi\)
\(740\) 1.19529 + 0.561229i 0.0439397 + 0.0206312i
\(741\) 1.03608 + 2.73598i 0.0380614 + 0.100509i
\(742\) −0.620396 2.31535i −0.0227755 0.0849992i
\(743\) −2.41659 9.01884i −0.0886561 0.330869i 0.907325 0.420429i \(-0.138121\pi\)
−0.995981 + 0.0895603i \(0.971454\pi\)
\(744\) −0.386235 1.01993i −0.0141601 0.0373925i
\(745\) −19.2132 + 6.93552i −0.703919 + 0.254098i
\(746\) 50.0066i 1.83087i
\(747\) −16.1257 0.991358i −0.590007 0.0362719i
\(748\) −3.39477 3.39477i −0.124125 0.124125i
\(749\) 3.19830 + 5.53962i 0.116863 + 0.202413i
\(750\) 34.5993 + 28.7390i 1.26339 + 1.04940i
\(751\) 23.6963 41.0432i 0.864689 1.49769i −0.00266566 0.999996i \(-0.500849\pi\)
0.867355 0.497690i \(-0.165818\pi\)
\(752\) 3.06729 0.821878i 0.111853 0.0299708i
\(753\) 3.53830 + 35.1942i 0.128943 + 1.28255i
\(754\) −42.6286 + 24.6116i −1.55244 + 0.896303i
\(755\) 5.79343 32.3552i 0.210845 1.17753i
\(756\) 12.1417 + 6.39537i 0.441591 + 0.232597i
\(757\) 1.37906 1.37906i 0.0501227 0.0501227i −0.681601 0.731724i \(-0.738716\pi\)
0.731724 + 0.681601i \(0.238716\pi\)
\(758\) −21.3784 5.72832i −0.776497 0.208062i
\(759\) −1.20820 0.987457i −0.0438549 0.0358424i
\(760\) −0.269621 3.17865i −0.00978018 0.115302i
\(761\) −41.8540 24.1644i −1.51720 0.875958i −0.999796 0.0202203i \(-0.993563\pi\)
−0.517409 0.855738i \(-0.673103\pi\)
\(762\) 22.3379 + 31.0396i 0.809218 + 1.12445i
\(763\) 1.77573 6.62712i 0.0642858 0.239918i