Properties

Label 45.2.l.a.2.4
Level $45$
Weight $2$
Character 45.2
Analytic conductor $0.359$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,2,Mod(2,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.2");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 45.l (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.359326809096\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 18 x^{14} - 36 x^{13} + 34 x^{12} + 18 x^{11} - 72 x^{10} + 132 x^{9} - 93 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 2.4
Root \(-0.347596 + 1.29724i\) of defining polynomial
Character \(\chi\) \(=\) 45.2
Dual form 45.2.l.a.23.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.347596 + 1.29724i) q^{2} +(-1.18953 + 1.25897i) q^{3} +(0.170031 - 0.0981673i) q^{4} +(-1.59371 - 1.56847i) q^{5} +(-2.04667 - 1.10550i) q^{6} +(1.97869 - 0.530190i) q^{7} +(2.08575 + 2.08575i) q^{8} +(-0.170031 - 2.99518i) q^{9} +O(q^{10})\) \(q+(0.347596 + 1.29724i) q^{2} +(-1.18953 + 1.25897i) q^{3} +(0.170031 - 0.0981673i) q^{4} +(-1.59371 - 1.56847i) q^{5} +(-2.04667 - 1.10550i) q^{6} +(1.97869 - 0.530190i) q^{7} +(2.08575 + 2.08575i) q^{8} +(-0.170031 - 2.99518i) q^{9} +(1.48073 - 2.61262i) q^{10} +(-0.762281 - 0.440103i) q^{11} +(-0.0786668 + 0.330837i) q^{12} +(-5.36743 - 1.43820i) q^{13} +(1.37557 + 2.38256i) q^{14} +(3.87043 - 0.140687i) q^{15} +(-1.78439 + 3.09066i) q^{16} +(-1.13610 + 1.13610i) q^{17} +(3.82638 - 1.26168i) q^{18} +1.52456i q^{19} +(-0.424952 - 0.110239i) q^{20} +(-1.68622 + 3.12180i) q^{21} +(0.305956 - 1.14184i) q^{22} +(0.410850 - 1.53331i) q^{23} +(-5.10696 + 0.144840i) q^{24} +(0.0797919 + 4.99936i) q^{25} -7.46278i q^{26} +(3.97311 + 3.34879i) q^{27} +(0.284392 - 0.284392i) q^{28} +(0.796583 - 1.37972i) q^{29} +(1.52785 + 4.97199i) q^{30} +(3.49518 + 6.05383i) q^{31} +(1.06878 + 0.286379i) q^{32} +(1.46084 - 0.436175i) q^{33} +(-1.86870 - 1.07889i) q^{34} +(-3.98504 - 2.25856i) q^{35} +(-0.322939 - 0.492581i) q^{36} +(-4.25746 - 4.25746i) q^{37} +(-1.97773 + 0.529931i) q^{38} +(8.19538 - 5.04667i) q^{39} +(-0.0526301 - 6.59550i) q^{40} +(3.11546 - 1.79871i) q^{41} +(-4.63586 - 1.10232i) q^{42} +(0.497959 + 1.85841i) q^{43} -0.172815 q^{44} +(-4.42687 + 5.04012i) q^{45} +2.13189 q^{46} +(-2.14344 - 7.99942i) q^{47} +(-1.76847 - 5.92294i) q^{48} +(-2.42805 + 1.40183i) q^{49} +(-6.45766 + 1.84127i) q^{50} +(-0.0788937 - 2.78174i) q^{51} +(-1.05381 + 0.282368i) q^{52} +(4.65601 + 4.65601i) q^{53} +(-2.96317 + 6.31812i) q^{54} +(0.524562 + 1.89701i) q^{55} +(5.23290 + 3.02121i) q^{56} +(-1.91938 - 1.81351i) q^{57} +(2.06672 + 0.553777i) q^{58} +(3.81780 + 6.61262i) q^{59} +(0.644281 - 0.403871i) q^{60} +(6.64002 - 11.5008i) q^{61} +(-6.63838 + 6.63838i) q^{62} +(-1.92445 - 5.83639i) q^{63} +8.62358i q^{64} +(6.29833 + 10.7107i) q^{65} +(1.07361 + 1.74345i) q^{66} +(-0.859733 + 3.20857i) q^{67} +(-0.0816439 + 0.304699i) q^{68} +(1.44168 + 2.34117i) q^{69} +(1.54472 - 5.95464i) q^{70} +5.89798i q^{71} +(5.89254 - 6.60182i) q^{72} +(1.58900 - 1.58900i) q^{73} +(4.04309 - 7.00284i) q^{74} +(-6.38898 - 5.84644i) q^{75} +(0.149662 + 0.259222i) q^{76} +(-1.74166 - 0.466676i) q^{77} +(9.39544 + 8.87721i) q^{78} +(-6.69401 - 3.86479i) q^{79} +(7.69140 - 2.12683i) q^{80} +(-8.94218 + 1.01854i) q^{81} +(3.41628 + 3.41628i) q^{82} +(-9.59770 + 2.57170i) q^{83} +(0.0197489 + 0.696335i) q^{84} +(3.59254 - 0.0286674i) q^{85} +(-2.23772 + 1.29195i) q^{86} +(0.789474 + 2.64410i) q^{87} +(-0.671981 - 2.50787i) q^{88} -4.62765 q^{89} +(-8.07703 - 3.99081i) q^{90} -11.3830 q^{91} +(-0.0806641 - 0.301043i) q^{92} +(-11.7792 - 2.80088i) q^{93} +(9.63215 - 5.56112i) q^{94} +(2.39123 - 2.42970i) q^{95} +(-1.63189 + 1.00491i) q^{96} +(3.82988 - 1.02621i) q^{97} +(-2.66250 - 2.66250i) q^{98} +(-1.18858 + 2.35800i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} - 6 q^{3} - 6 q^{5} - 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 6 q^{2} - 6 q^{3} - 6 q^{5} - 2 q^{7} - 8 q^{10} - 6 q^{12} - 2 q^{13} - 6 q^{15} - 8 q^{16} + 36 q^{18} + 18 q^{20} - 12 q^{21} - 10 q^{22} + 18 q^{23} + 4 q^{25} + 18 q^{27} - 16 q^{28} + 30 q^{30} - 4 q^{31} + 30 q^{32} - 12 q^{33} - 48 q^{36} + 4 q^{37} - 30 q^{38} + 6 q^{40} - 24 q^{41} + 6 q^{42} - 2 q^{43} - 36 q^{45} + 32 q^{46} - 12 q^{47} - 30 q^{48} - 54 q^{50} + 36 q^{51} - 14 q^{52} - 16 q^{55} + 36 q^{56} - 6 q^{57} - 6 q^{58} + 18 q^{60} + 8 q^{61} + 36 q^{63} + 66 q^{65} + 36 q^{66} + 4 q^{67} + 42 q^{68} + 18 q^{70} + 18 q^{72} - 8 q^{73} + 42 q^{75} + 24 q^{76} - 6 q^{77} - 42 q^{78} - 48 q^{81} + 32 q^{82} - 66 q^{83} + 22 q^{85} - 48 q^{86} - 18 q^{87} + 18 q^{88} - 66 q^{90} - 40 q^{91} - 60 q^{92} - 18 q^{93} - 36 q^{95} - 24 q^{96} + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.347596 + 1.29724i 0.245787 + 0.917290i 0.972986 + 0.230863i \(0.0741551\pi\)
−0.727199 + 0.686427i \(0.759178\pi\)
\(3\) −1.18953 + 1.25897i −0.686776 + 0.726869i
\(4\) 0.170031 0.0981673i 0.0850154 0.0490837i
\(5\) −1.59371 1.56847i −0.712727 0.701442i
\(6\) −2.04667 1.10550i −0.835551 0.451318i
\(7\) 1.97869 0.530190i 0.747876 0.200393i 0.135300 0.990805i \(-0.456800\pi\)
0.612576 + 0.790412i \(0.290133\pi\)
\(8\) 2.08575 + 2.08575i 0.737423 + 0.737423i
\(9\) −0.170031 2.99518i −0.0566769 0.998393i
\(10\) 1.48073 2.61262i 0.468247 0.826183i
\(11\) −0.762281 0.440103i −0.229836 0.132696i 0.380660 0.924715i \(-0.375697\pi\)
−0.610497 + 0.792019i \(0.709030\pi\)
\(12\) −0.0786668 + 0.330837i −0.0227092 + 0.0955045i
\(13\) −5.36743 1.43820i −1.48866 0.398885i −0.579374 0.815062i \(-0.696703\pi\)
−0.909283 + 0.416177i \(0.863370\pi\)
\(14\) 1.37557 + 2.38256i 0.367637 + 0.636766i
\(15\) 3.87043 0.140687i 0.999340 0.0363252i
\(16\) −1.78439 + 3.09066i −0.446098 + 0.772664i
\(17\) −1.13610 + 1.13610i −0.275544 + 0.275544i −0.831327 0.555783i \(-0.812418\pi\)
0.555783 + 0.831327i \(0.312418\pi\)
\(18\) 3.82638 1.26168i 0.901885 0.297381i
\(19\) 1.52456i 0.349758i 0.984590 + 0.174879i \(0.0559535\pi\)
−0.984590 + 0.174879i \(0.944047\pi\)
\(20\) −0.424952 0.110239i −0.0950221 0.0246501i
\(21\) −1.68622 + 3.12180i −0.367964 + 0.681233i
\(22\) 0.305956 1.14184i 0.0652300 0.243442i
\(23\) 0.410850 1.53331i 0.0856682 0.319718i −0.909772 0.415109i \(-0.863743\pi\)
0.995440 + 0.0953909i \(0.0304101\pi\)
\(24\) −5.10696 + 0.144840i −1.04245 + 0.0295653i
\(25\) 0.0797919 + 4.99936i 0.0159584 + 0.999873i
\(26\) 7.46278i 1.46357i
\(27\) 3.97311 + 3.34879i 0.764625 + 0.644476i
\(28\) 0.284392 0.284392i 0.0537450 0.0537450i
\(29\) 0.796583 1.37972i 0.147922 0.256208i −0.782537 0.622603i \(-0.786075\pi\)
0.930459 + 0.366396i \(0.119408\pi\)
\(30\) 1.52785 + 4.97199i 0.278946 + 0.907757i
\(31\) 3.49518 + 6.05383i 0.627752 + 1.08730i 0.988002 + 0.154443i \(0.0493583\pi\)
−0.360249 + 0.932856i \(0.617308\pi\)
\(32\) 1.06878 + 0.286379i 0.188936 + 0.0506251i
\(33\) 1.46084 0.436175i 0.254299 0.0759284i
\(34\) −1.86870 1.07889i −0.320479 0.185029i
\(35\) −3.98504 2.25856i −0.673595 0.381767i
\(36\) −0.322939 0.492581i −0.0538232 0.0820968i
\(37\) −4.25746 4.25746i −0.699922 0.699922i 0.264472 0.964393i \(-0.414802\pi\)
−0.964393 + 0.264472i \(0.914802\pi\)
\(38\) −1.97773 + 0.529931i −0.320830 + 0.0859661i
\(39\) 8.19538 5.04667i 1.31231 0.808114i
\(40\) −0.0526301 6.59550i −0.00832155 1.04284i
\(41\) 3.11546 1.79871i 0.486552 0.280911i −0.236591 0.971609i \(-0.576030\pi\)
0.723143 + 0.690698i \(0.242697\pi\)
\(42\) −4.63586 1.10232i −0.715329 0.170092i
\(43\) 0.497959 + 1.85841i 0.0759380 + 0.283404i 0.993444 0.114317i \(-0.0364679\pi\)
−0.917506 + 0.397721i \(0.869801\pi\)
\(44\) −0.172815 −0.0260528
\(45\) −4.42687 + 5.04012i −0.659919 + 0.751337i
\(46\) 2.13189 0.314330
\(47\) −2.14344 7.99942i −0.312652 1.16683i −0.926155 0.377142i \(-0.876907\pi\)
0.613503 0.789693i \(-0.289760\pi\)
\(48\) −1.76847 5.92294i −0.255256 0.854902i
\(49\) −2.42805 + 1.40183i −0.346864 + 0.200262i
\(50\) −6.45766 + 1.84127i −0.913251 + 0.260394i
\(51\) −0.0788937 2.78174i −0.0110473 0.389522i
\(52\) −1.05381 + 0.282368i −0.146137 + 0.0391574i
\(53\) 4.65601 + 4.65601i 0.639552 + 0.639552i 0.950445 0.310893i \(-0.100628\pi\)
−0.310893 + 0.950445i \(0.600628\pi\)
\(54\) −2.96317 + 6.31812i −0.403236 + 0.859787i
\(55\) 0.524562 + 1.89701i 0.0707319 + 0.255793i
\(56\) 5.23290 + 3.02121i 0.699275 + 0.403727i
\(57\) −1.91938 1.81351i −0.254229 0.240206i
\(58\) 2.06672 + 0.553777i 0.271374 + 0.0727145i
\(59\) 3.81780 + 6.61262i 0.497035 + 0.860890i 0.999994 0.00342048i \(-0.00108877\pi\)
−0.502959 + 0.864310i \(0.667755\pi\)
\(60\) 0.644281 0.403871i 0.0831763 0.0521395i
\(61\) 6.64002 11.5008i 0.850167 1.47253i −0.0308900 0.999523i \(-0.509834\pi\)
0.881057 0.473010i \(-0.156833\pi\)
\(62\) −6.63838 + 6.63838i −0.843075 + 0.843075i
\(63\) −1.92445 5.83639i −0.242458 0.735317i
\(64\) 8.62358i 1.07795i
\(65\) 6.29833 + 10.7107i 0.781211 + 1.32850i
\(66\) 1.07361 + 1.74345i 0.132152 + 0.214604i
\(67\) −0.859733 + 3.20857i −0.105033 + 0.391989i −0.998349 0.0574406i \(-0.981706\pi\)
0.893316 + 0.449429i \(0.148373\pi\)
\(68\) −0.0816439 + 0.304699i −0.00990078 + 0.0369502i
\(69\) 1.44168 + 2.34117i 0.173558 + 0.281844i
\(70\) 1.54472 5.95464i 0.184630 0.711716i
\(71\) 5.89798i 0.699961i 0.936757 + 0.349980i \(0.113812\pi\)
−0.936757 + 0.349980i \(0.886188\pi\)
\(72\) 5.89254 6.60182i 0.694442 0.778032i
\(73\) 1.58900 1.58900i 0.185979 0.185979i −0.607976 0.793955i \(-0.708018\pi\)
0.793955 + 0.607976i \(0.208018\pi\)
\(74\) 4.04309 7.00284i 0.470000 0.814063i
\(75\) −6.38898 5.84644i −0.737736 0.675089i
\(76\) 0.149662 + 0.259222i 0.0171674 + 0.0297348i
\(77\) −1.74166 0.466676i −0.198480 0.0531827i
\(78\) 9.39544 + 8.87721i 1.06382 + 1.00515i
\(79\) −6.69401 3.86479i −0.753135 0.434823i 0.0736905 0.997281i \(-0.476522\pi\)
−0.826826 + 0.562458i \(0.809856\pi\)
\(80\) 7.69140 2.12683i 0.859925 0.237787i
\(81\) −8.94218 + 1.01854i −0.993575 + 0.113172i
\(82\) 3.41628 + 3.41628i 0.377265 + 0.377265i
\(83\) −9.59770 + 2.57170i −1.05348 + 0.282280i −0.743691 0.668523i \(-0.766927\pi\)
−0.309794 + 0.950804i \(0.600260\pi\)
\(84\) 0.0197489 + 0.696335i 0.00215478 + 0.0759763i
\(85\) 3.59254 0.0286674i 0.389666 0.00310942i
\(86\) −2.23772 + 1.29195i −0.241299 + 0.139314i
\(87\) 0.789474 + 2.64410i 0.0846405 + 0.283477i
\(88\) −0.671981 2.50787i −0.0716334 0.267340i
\(89\) −4.62765 −0.490530 −0.245265 0.969456i \(-0.578875\pi\)
−0.245265 + 0.969456i \(0.578875\pi\)
\(90\) −8.07703 3.99081i −0.851393 0.420669i
\(91\) −11.3830 −1.19327
\(92\) −0.0806641 0.301043i −0.00840982 0.0313859i
\(93\) −11.7792 2.80088i −1.22145 0.290437i
\(94\) 9.63215 5.56112i 0.993480 0.573586i
\(95\) 2.39123 2.42970i 0.245335 0.249282i
\(96\) −1.63189 + 1.00491i −0.166554 + 0.102563i
\(97\) 3.82988 1.02621i 0.388865 0.104196i −0.0590888 0.998253i \(-0.518820\pi\)
0.447954 + 0.894057i \(0.352153\pi\)
\(98\) −2.66250 2.66250i −0.268953 0.268953i
\(99\) −1.18858 + 2.35800i −0.119456 + 0.236988i
\(100\) 0.504341 + 0.842213i 0.0504341 + 0.0842213i
\(101\) −2.23195 1.28862i −0.222087 0.128222i 0.384829 0.922988i \(-0.374260\pi\)
−0.606916 + 0.794766i \(0.707594\pi\)
\(102\) 3.58117 1.06927i 0.354589 0.105873i
\(103\) 12.6183 + 3.38106i 1.24332 + 0.333146i 0.819752 0.572719i \(-0.194111\pi\)
0.423566 + 0.905865i \(0.360778\pi\)
\(104\) −8.19538 14.1948i −0.803623 1.39192i
\(105\) 7.58380 2.33044i 0.740103 0.227427i
\(106\) −4.42157 + 7.65839i −0.429461 + 0.743848i
\(107\) 9.23034 9.23034i 0.892331 0.892331i −0.102411 0.994742i \(-0.532656\pi\)
0.994742 + 0.102411i \(0.0326557\pi\)
\(108\) 1.00429 + 0.179369i 0.0966381 + 0.0172598i
\(109\) 8.05480i 0.771510i −0.922601 0.385755i \(-0.873941\pi\)
0.922601 0.385755i \(-0.126059\pi\)
\(110\) −2.27855 + 1.33988i −0.217251 + 0.127752i
\(111\) 10.4244 0.295649i 0.989441 0.0280618i
\(112\) −1.89213 + 7.06153i −0.178790 + 0.667252i
\(113\) 3.10662 11.5941i 0.292246 1.09068i −0.651134 0.758963i \(-0.725706\pi\)
0.943380 0.331714i \(-0.107627\pi\)
\(114\) 1.68540 3.12028i 0.157852 0.292241i
\(115\) −3.05973 + 1.79924i −0.285322 + 0.167780i
\(116\) 0.312794i 0.0290422i
\(117\) −3.39503 + 16.3209i −0.313871 + 1.50887i
\(118\) −7.25113 + 7.25113i −0.667521 + 0.667521i
\(119\) −1.64564 + 2.85034i −0.150856 + 0.261290i
\(120\) 8.36617 + 7.77929i 0.763723 + 0.710149i
\(121\) −5.11262 8.85532i −0.464784 0.805029i
\(122\) 17.2274 + 4.61608i 1.55970 + 0.417920i
\(123\) −1.44140 + 6.06190i −0.129967 + 0.546583i
\(124\) 1.18858 + 0.686224i 0.106737 + 0.0616248i
\(125\) 7.71420 8.09266i 0.689979 0.723830i
\(126\) 6.90230 4.52519i 0.614906 0.403136i
\(127\) 1.90230 + 1.90230i 0.168802 + 0.168802i 0.786452 0.617651i \(-0.211915\pi\)
−0.617651 + 0.786452i \(0.711915\pi\)
\(128\) −9.04933 + 2.42476i −0.799855 + 0.214321i
\(129\) −2.93202 1.58372i −0.258150 0.139438i
\(130\) −11.7052 + 11.8935i −1.02661 + 1.04313i
\(131\) −18.5109 + 10.6873i −1.61731 + 0.933754i −0.629696 + 0.776841i \(0.716821\pi\)
−0.987613 + 0.156912i \(0.949846\pi\)
\(132\) 0.205569 0.217569i 0.0178925 0.0189370i
\(133\) 0.808307 + 3.01664i 0.0700891 + 0.261576i
\(134\) −4.46113 −0.385383
\(135\) −1.07947 11.5687i −0.0929063 0.995675i
\(136\) −4.73922 −0.406385
\(137\) 1.77541 + 6.62594i 0.151684 + 0.566092i 0.999367 + 0.0355883i \(0.0113305\pi\)
−0.847683 + 0.530504i \(0.822003\pi\)
\(138\) −2.53595 + 2.68400i −0.215875 + 0.228477i
\(139\) −1.24863 + 0.720896i −0.105907 + 0.0611456i −0.552018 0.833832i \(-0.686142\pi\)
0.446111 + 0.894978i \(0.352809\pi\)
\(140\) −0.899297 + 0.00717612i −0.0760045 + 0.000606493i
\(141\) 12.6207 + 6.81703i 1.06286 + 0.574097i
\(142\) −7.65111 + 2.05011i −0.642067 + 0.172041i
\(143\) 3.45853 + 3.45853i 0.289217 + 0.289217i
\(144\) 9.56047 + 4.81906i 0.796706 + 0.401589i
\(145\) −3.43357 + 0.949452i −0.285143 + 0.0788477i
\(146\) 2.61366 + 1.50900i 0.216308 + 0.124885i
\(147\) 1.12337 4.72437i 0.0926536 0.389659i
\(148\) −1.14184 0.305956i −0.0938589 0.0251494i
\(149\) 8.28457 + 14.3493i 0.678699 + 1.17554i 0.975373 + 0.220562i \(0.0707891\pi\)
−0.296674 + 0.954979i \(0.595878\pi\)
\(150\) 5.36348 10.3203i 0.437927 0.842646i
\(151\) 0.00283730 0.00491435i 0.000230896 0.000399924i −0.865910 0.500200i \(-0.833260\pi\)
0.866141 + 0.499800i \(0.166593\pi\)
\(152\) −3.17985 + 3.17985i −0.257920 + 0.257920i
\(153\) 3.59599 + 3.20964i 0.290718 + 0.259484i
\(154\) 2.42157i 0.195136i
\(155\) 3.92497 15.1301i 0.315261 1.21528i
\(156\) 0.898049 1.66261i 0.0719014 0.133115i
\(157\) 2.18944 8.17112i 0.174737 0.652126i −0.821860 0.569690i \(-0.807063\pi\)
0.996596 0.0824362i \(-0.0262701\pi\)
\(158\) 2.68677 10.0272i 0.213748 0.797717i
\(159\) −11.4003 + 0.323326i −0.904099 + 0.0256414i
\(160\) −1.25414 2.13276i −0.0991488 0.168609i
\(161\) 3.25179i 0.256277i
\(162\) −4.42956 11.2461i −0.348019 0.883581i
\(163\) 4.19302 4.19302i 0.328422 0.328422i −0.523564 0.851986i \(-0.675398\pi\)
0.851986 + 0.523564i \(0.175398\pi\)
\(164\) 0.353149 0.611672i 0.0275763 0.0477635i
\(165\) −3.01227 1.59614i −0.234505 0.124260i
\(166\) −6.67224 11.5567i −0.517866 0.896970i
\(167\) −5.76334 1.54428i −0.445980 0.119500i 0.0288375 0.999584i \(-0.490819\pi\)
−0.474818 + 0.880084i \(0.657486\pi\)
\(168\) −10.0283 + 2.99425i −0.773702 + 0.231012i
\(169\) 15.4826 + 8.93886i 1.19097 + 0.687605i
\(170\) 1.28594 + 4.65044i 0.0986271 + 0.356672i
\(171\) 4.56633 0.259222i 0.349196 0.0198232i
\(172\) 0.267103 + 0.267103i 0.0203664 + 0.0203664i
\(173\) 13.1994 3.53677i 1.00353 0.268896i 0.280608 0.959822i \(-0.409464\pi\)
0.722925 + 0.690927i \(0.242797\pi\)
\(174\) −3.15562 + 1.94322i −0.239227 + 0.147315i
\(175\) 2.80849 + 9.84991i 0.212302 + 0.744583i
\(176\) 2.72042 1.57063i 0.205059 0.118391i
\(177\) −12.8665 3.05941i −0.967106 0.229959i
\(178\) −1.60855 6.00319i −0.120566 0.449958i
\(179\) −17.2370 −1.28836 −0.644178 0.764875i \(-0.722801\pi\)
−0.644178 + 0.764875i \(0.722801\pi\)
\(180\) −0.257930 + 1.29155i −0.0192250 + 0.0962664i
\(181\) 14.7708 1.09790 0.548952 0.835854i \(-0.315027\pi\)
0.548952 + 0.835854i \(0.315027\pi\)
\(182\) −3.95669 14.7666i −0.293289 1.09457i
\(183\) 6.58076 + 22.0402i 0.486464 + 1.62926i
\(184\) 4.05503 2.34117i 0.298941 0.172594i
\(185\) 0.107429 + 13.4628i 0.00789837 + 0.989807i
\(186\) −0.460987 16.2541i −0.0338012 1.19181i
\(187\) 1.36603 0.366025i 0.0998937 0.0267664i
\(188\) −1.14973 1.14973i −0.0838528 0.0838528i
\(189\) 9.63706 + 4.51974i 0.700993 + 0.328763i
\(190\) 3.98310 + 2.25746i 0.288964 + 0.163773i
\(191\) 4.56792 + 2.63729i 0.330523 + 0.190827i 0.656073 0.754697i \(-0.272216\pi\)
−0.325550 + 0.945525i \(0.605550\pi\)
\(192\) −10.8569 10.2580i −0.783527 0.740309i
\(193\) −8.98952 2.40873i −0.647080 0.173384i −0.0796715 0.996821i \(-0.525387\pi\)
−0.567408 + 0.823437i \(0.692054\pi\)
\(194\) 2.66250 + 4.61158i 0.191156 + 0.331092i
\(195\) −20.9766 4.81132i −1.50216 0.344545i
\(196\) −0.275228 + 0.476709i −0.0196592 + 0.0340507i
\(197\) −9.49539 + 9.49539i −0.676519 + 0.676519i −0.959211 0.282692i \(-0.908773\pi\)
0.282692 + 0.959211i \(0.408773\pi\)
\(198\) −3.47204 0.722243i −0.246747 0.0513276i
\(199\) 17.6342i 1.25005i −0.780604 0.625026i \(-0.785088\pi\)
0.780604 0.625026i \(-0.214912\pi\)
\(200\) −10.2610 + 10.5938i −0.725561 + 0.749097i
\(201\) −3.01682 4.89907i −0.212790 0.345554i
\(202\) 0.895835 3.34330i 0.0630307 0.235234i
\(203\) 0.844680 3.15239i 0.0592849 0.221254i
\(204\) −0.286490 0.465237i −0.0200583 0.0325731i
\(205\) −7.78634 2.01989i −0.543822 0.141075i
\(206\) 17.5443i 1.22237i
\(207\) −4.66240 0.969859i −0.324060 0.0674098i
\(208\) 14.0226 14.0226i 0.972291 0.972291i
\(209\) 0.670964 1.16214i 0.0464116 0.0803872i
\(210\) 5.65924 + 9.02800i 0.390525 + 0.622991i
\(211\) 0.0616050 + 0.106703i 0.00424106 + 0.00734574i 0.868138 0.496323i \(-0.165317\pi\)
−0.863897 + 0.503668i \(0.831983\pi\)
\(212\) 1.24873 + 0.334597i 0.0857633 + 0.0229802i
\(213\) −7.42540 7.01583i −0.508780 0.480716i
\(214\) 15.1824 + 8.76558i 1.03785 + 0.599203i
\(215\) 2.12126 3.74279i 0.144669 0.255256i
\(216\) 1.30216 + 15.2716i 0.0886009 + 1.03910i
\(217\) 10.1256 + 10.1256i 0.687368 + 0.687368i
\(218\) 10.4490 2.79981i 0.707698 0.189627i
\(219\) 0.110345 + 3.89068i 0.00745640 + 0.262908i
\(220\) 0.275416 + 0.271055i 0.0185685 + 0.0182745i
\(221\) 7.73186 4.46399i 0.520101 0.300281i
\(222\) 4.00701 + 13.4202i 0.268933 + 0.900707i
\(223\) 0.648014 + 2.41842i 0.0433942 + 0.161949i 0.984223 0.176933i \(-0.0566177\pi\)
−0.940829 + 0.338883i \(0.889951\pi\)
\(224\) 2.26663 0.151445
\(225\) 14.9604 1.08904i 0.997361 0.0726024i
\(226\) 16.1202 1.07230
\(227\) 3.94671 + 14.7293i 0.261952 + 0.977619i 0.964090 + 0.265577i \(0.0855626\pi\)
−0.702137 + 0.712042i \(0.747771\pi\)
\(228\) −0.504382 0.119932i −0.0334035 0.00794272i
\(229\) −19.1083 + 11.0322i −1.26271 + 0.729029i −0.973599 0.228265i \(-0.926695\pi\)
−0.289116 + 0.957294i \(0.593361\pi\)
\(230\) −3.39761 3.34381i −0.224032 0.220485i
\(231\) 2.65929 1.63758i 0.174969 0.107745i
\(232\) 4.53922 1.21628i 0.298014 0.0798527i
\(233\) −4.22173 4.22173i −0.276575 0.276575i 0.555165 0.831740i \(-0.312655\pi\)
−0.831740 + 0.555165i \(0.812655\pi\)
\(234\) −22.3524 + 1.26890i −1.46122 + 0.0829507i
\(235\) −9.13085 + 16.1106i −0.595631 + 1.05094i
\(236\) 1.29829 + 0.749566i 0.0845112 + 0.0487926i
\(237\) 12.8284 3.83030i 0.833294 0.248805i
\(238\) −4.26960 1.14404i −0.276757 0.0741569i
\(239\) −6.79199 11.7641i −0.439338 0.760955i 0.558301 0.829639i \(-0.311453\pi\)
−0.997639 + 0.0686835i \(0.978120\pi\)
\(240\) −6.47154 + 12.2132i −0.417736 + 0.788359i
\(241\) −2.56728 + 4.44666i −0.165373 + 0.286434i −0.936788 0.349898i \(-0.886216\pi\)
0.771415 + 0.636333i \(0.219549\pi\)
\(242\) 9.71038 9.71038i 0.624207 0.624207i
\(243\) 9.35468 12.4696i 0.600103 0.799923i
\(244\) 2.60733i 0.166917i
\(245\) 6.06832 + 1.57421i 0.387691 + 0.100573i
\(246\) −8.36479 + 0.237236i −0.533319 + 0.0151256i
\(247\) 2.19262 8.18298i 0.139513 0.520670i
\(248\) −5.33669 + 19.9168i −0.338880 + 1.26472i
\(249\) 8.17907 15.1424i 0.518327 0.959609i
\(250\) 13.1796 + 7.19422i 0.833550 + 0.455003i
\(251\) 2.60221i 0.164250i −0.996622 0.0821251i \(-0.973829\pi\)
0.996622 0.0821251i \(-0.0261707\pi\)
\(252\) −0.900159 0.803448i −0.0567047 0.0506125i
\(253\) −0.987999 + 0.987999i −0.0621150 + 0.0621150i
\(254\) −1.80652 + 3.12898i −0.113351 + 0.196329i
\(255\) −4.23735 + 4.55702i −0.265353 + 0.285371i
\(256\) 2.33257 + 4.04013i 0.145786 + 0.252508i
\(257\) −10.1958 2.73197i −0.635999 0.170415i −0.0736085 0.997287i \(-0.523452\pi\)
−0.562390 + 0.826872i \(0.690118\pi\)
\(258\) 1.03531 4.35404i 0.0644555 0.271071i
\(259\) −10.6815 6.16695i −0.663714 0.383196i
\(260\) 2.12235 + 1.20286i 0.131623 + 0.0745984i
\(261\) −4.26796 2.15131i −0.264180 0.133163i
\(262\) −20.2984 20.2984i −1.25404 1.25404i
\(263\) −8.12541 + 2.17720i −0.501034 + 0.134252i −0.500480 0.865748i \(-0.666843\pi\)
−0.000554412 1.00000i \(0.500176\pi\)
\(264\) 3.95668 + 2.13718i 0.243517 + 0.131534i
\(265\) −0.117486 14.7231i −0.00721711 0.904434i
\(266\) −3.63236 + 2.09714i −0.222714 + 0.128584i
\(267\) 5.50473 5.82609i 0.336884 0.356551i
\(268\) 0.168795 + 0.629953i 0.0103108 + 0.0384805i
\(269\) 26.7708 1.63225 0.816123 0.577878i \(-0.196119\pi\)
0.816123 + 0.577878i \(0.196119\pi\)
\(270\) 14.6322 5.42157i 0.890488 0.329946i
\(271\) −18.5850 −1.12896 −0.564480 0.825447i \(-0.690923\pi\)
−0.564480 + 0.825447i \(0.690923\pi\)
\(272\) −1.48405 5.53853i −0.0899834 0.335823i
\(273\) 13.5405 14.3309i 0.819506 0.867347i
\(274\) −7.97833 + 4.60629i −0.481989 + 0.278276i
\(275\) 2.13941 3.84604i 0.129011 0.231925i
\(276\) 0.474957 + 0.256546i 0.0285891 + 0.0154422i
\(277\) −26.3206 + 7.05259i −1.58145 + 0.423749i −0.939375 0.342891i \(-0.888594\pi\)
−0.642078 + 0.766640i \(0.721927\pi\)
\(278\) −1.36920 1.36920i −0.0821189 0.0821189i
\(279\) 17.5380 11.4980i 1.04997 0.688368i
\(280\) −3.60100 13.0226i −0.215201 0.778248i
\(281\) −22.7050 13.1087i −1.35447 0.782002i −0.365595 0.930774i \(-0.619135\pi\)
−0.988872 + 0.148772i \(0.952468\pi\)
\(282\) −4.45643 + 18.7418i −0.265377 + 1.11606i
\(283\) 3.44050 + 0.921880i 0.204517 + 0.0548001i 0.359623 0.933098i \(-0.382905\pi\)
−0.155106 + 0.987898i \(0.549572\pi\)
\(284\) 0.578988 + 1.00284i 0.0343566 + 0.0595074i
\(285\) 0.214486 + 5.90070i 0.0127050 + 0.349528i
\(286\) −3.28439 + 5.68873i −0.194210 + 0.336382i
\(287\) 5.21088 5.21088i 0.307589 0.307589i
\(288\) 0.676030 3.24988i 0.0398355 0.191501i
\(289\) 14.4186i 0.848151i
\(290\) −2.42517 4.12416i −0.142411 0.242179i
\(291\) −3.26378 + 6.04243i −0.191326 + 0.354213i
\(292\) 0.114191 0.426168i 0.00668254 0.0249396i
\(293\) 0.771199 2.87816i 0.0450539 0.168144i −0.939733 0.341909i \(-0.888927\pi\)
0.984787 + 0.173765i \(0.0555933\pi\)
\(294\) 6.51914 0.184891i 0.380204 0.0107831i
\(295\) 4.28726 16.5267i 0.249614 0.962220i
\(296\) 17.7600i 1.03228i
\(297\) −1.55481 4.30130i −0.0902192 0.249587i
\(298\) −15.7349 + 15.7349i −0.911496 + 0.911496i
\(299\) −4.41042 + 7.63907i −0.255061 + 0.441779i
\(300\) −1.66025 0.366886i −0.0958548 0.0211822i
\(301\) 1.97062 + 3.41321i 0.113584 + 0.196734i
\(302\) 0.00736135 + 0.00197247i 0.000423598 + 0.000113503i
\(303\) 4.27731 1.27712i 0.245725 0.0733684i
\(304\) −4.71190 2.72042i −0.270246 0.156027i
\(305\) −28.6210 + 7.91428i −1.63883 + 0.453170i
\(306\) −2.91374 + 5.78053i −0.166568 + 0.330451i
\(307\) 21.8017 + 21.8017i 1.24429 + 1.24429i 0.958205 + 0.286081i \(0.0923528\pi\)
0.286081 + 0.958205i \(0.407647\pi\)
\(308\) −0.341948 + 0.0916247i −0.0194843 + 0.00522080i
\(309\) −19.2665 + 11.8642i −1.09603 + 0.674933i
\(310\) 20.9917 0.167508i 1.19225 0.00951380i
\(311\) 29.3878 16.9671i 1.66643 0.962114i 0.696892 0.717176i \(-0.254565\pi\)
0.969539 0.244939i \(-0.0787679\pi\)
\(312\) 27.6196 + 6.56741i 1.56365 + 0.371806i
\(313\) 6.00279 + 22.4027i 0.339298 + 1.26628i 0.899134 + 0.437673i \(0.144197\pi\)
−0.559836 + 0.828603i \(0.689136\pi\)
\(314\) 11.3610 0.641137
\(315\) −6.08721 + 12.3199i −0.342976 + 0.694150i
\(316\) −1.51758 −0.0853708
\(317\) −1.03536 3.86401i −0.0581515 0.217024i 0.930736 0.365693i \(-0.119168\pi\)
−0.988887 + 0.148669i \(0.952501\pi\)
\(318\) −4.38211 14.6765i −0.245737 0.823019i
\(319\) −1.21444 + 0.701157i −0.0679956 + 0.0392573i
\(320\) 13.5258 13.7434i 0.756118 0.768282i
\(321\) 0.640980 + 22.6005i 0.0357760 + 1.26144i
\(322\) 4.21836 1.13031i 0.235080 0.0629896i
\(323\) −1.73205 1.73205i −0.0963739 0.0963739i
\(324\) −1.42046 + 1.05101i −0.0789143 + 0.0583896i
\(325\) 6.76180 26.9485i 0.375077 1.49483i
\(326\) 6.89684 + 3.98189i 0.381981 + 0.220537i
\(327\) 10.1408 + 9.58143i 0.560786 + 0.529854i
\(328\) 10.2497 + 2.74640i 0.565945 + 0.151645i
\(329\) −8.48242 14.6920i −0.467651 0.809995i
\(330\) 1.02354 4.46246i 0.0563439 0.245650i
\(331\) −2.98175 + 5.16454i −0.163892 + 0.283869i −0.936261 0.351305i \(-0.885738\pi\)
0.772369 + 0.635174i \(0.219071\pi\)
\(332\) −1.37945 + 1.37945i −0.0757071 + 0.0757071i
\(333\) −12.0279 + 13.4757i −0.659127 + 0.738466i
\(334\) 8.01324i 0.438465i
\(335\) 6.40271 3.76504i 0.349817 0.205706i
\(336\) −6.63954 10.7821i −0.362216 0.588210i
\(337\) −2.56397 + 9.56887i −0.139668 + 0.521250i 0.860267 + 0.509845i \(0.170297\pi\)
−0.999935 + 0.0114051i \(0.996370\pi\)
\(338\) −6.21422 + 23.1918i −0.338009 + 1.26147i
\(339\) 10.9012 + 17.7026i 0.592072 + 0.961476i
\(340\) 0.608028 0.357545i 0.0329750 0.0193906i
\(341\) 6.15295i 0.333201i
\(342\) 1.92351 + 5.83354i 0.104012 + 0.315442i
\(343\) −14.2007 + 14.2007i −0.766764 + 0.766764i
\(344\) −2.83755 + 4.91478i −0.152990 + 0.264987i
\(345\) 1.37445 5.99238i 0.0739978 0.322619i
\(346\) 9.17611 + 15.8935i 0.493311 + 0.854440i
\(347\) −10.2471 2.74569i −0.550091 0.147396i −0.0269407 0.999637i \(-0.508577\pi\)
−0.523150 + 0.852241i \(0.675243\pi\)
\(348\) 0.393799 + 0.372078i 0.0211098 + 0.0199455i
\(349\) −8.08831 4.66979i −0.432957 0.249968i 0.267648 0.963517i \(-0.413753\pi\)
−0.700606 + 0.713549i \(0.747087\pi\)
\(350\) −11.8015 + 7.06709i −0.630818 + 0.377752i
\(351\) −16.5091 23.6885i −0.881193 1.26440i
\(352\) −0.688675 0.688675i −0.0367065 0.0367065i
\(353\) −18.5470 + 4.96965i −0.987156 + 0.264508i −0.716055 0.698043i \(-0.754054\pi\)
−0.271100 + 0.962551i \(0.587388\pi\)
\(354\) −0.503538 17.7544i −0.0267627 0.943638i
\(355\) 9.25081 9.39963i 0.490982 0.498881i
\(356\) −0.786842 + 0.454284i −0.0417026 + 0.0240770i
\(357\) −1.63096 5.46239i −0.0863194 0.289100i
\(358\) −5.99152 22.3606i −0.316662 1.18180i
\(359\) 12.5944 0.664705 0.332352 0.943155i \(-0.392158\pi\)
0.332352 + 0.943155i \(0.392158\pi\)
\(360\) −19.7457 + 1.27907i −1.04069 + 0.0674131i
\(361\) 16.6757 0.877669
\(362\) 5.13426 + 19.1613i 0.269851 + 1.00710i
\(363\) 17.2302 + 4.09702i 0.904353 + 0.215038i
\(364\) −1.93546 + 1.11744i −0.101446 + 0.0585698i
\(365\) −5.02471 + 0.0400957i −0.263005 + 0.00209870i
\(366\) −26.3041 + 16.1979i −1.37494 + 0.846680i
\(367\) 27.3263 7.32206i 1.42642 0.382209i 0.538665 0.842520i \(-0.318929\pi\)
0.887757 + 0.460312i \(0.152262\pi\)
\(368\) 4.00583 + 4.00583i 0.208818 + 0.208818i
\(369\) −5.91718 9.02551i −0.308036 0.469849i
\(370\) −17.4272 + 4.81898i −0.905999 + 0.250527i
\(371\) 11.6814 + 6.74425i 0.606467 + 0.350144i
\(372\) −2.27779 + 0.680100i −0.118098 + 0.0352616i
\(373\) −2.25734 0.604851i −0.116880 0.0313180i 0.199905 0.979815i \(-0.435937\pi\)
−0.316785 + 0.948497i \(0.602603\pi\)
\(374\) 0.949649 + 1.64484i 0.0491052 + 0.0850526i
\(375\) 1.01217 + 19.3384i 0.0522684 + 0.998633i
\(376\) 12.2141 21.1554i 0.629894 1.09101i
\(377\) −6.25992 + 6.25992i −0.322402 + 0.322402i
\(378\) −2.51341 + 14.0727i −0.129276 + 0.723820i
\(379\) 18.4618i 0.948320i 0.880439 + 0.474160i \(0.157248\pi\)
−0.880439 + 0.474160i \(0.842752\pi\)
\(380\) 0.168066 0.647865i 0.00862159 0.0332348i
\(381\) −4.65779 + 0.132101i −0.238626 + 0.00676772i
\(382\) −1.83342 + 6.84241i −0.0938059 + 0.350088i
\(383\) −6.26481 + 23.3806i −0.320117 + 1.19469i 0.599014 + 0.800739i \(0.295559\pi\)
−0.919131 + 0.393953i \(0.871107\pi\)
\(384\) 7.71175 14.2772i 0.393539 0.728580i
\(385\) 2.04372 + 3.47549i 0.104158 + 0.177127i
\(386\) 12.4989i 0.636176i
\(387\) 5.48159 1.80746i 0.278645 0.0918784i
\(388\) 0.550457 0.550457i 0.0279452 0.0279452i
\(389\) 13.5444 23.4596i 0.686729 1.18945i −0.286161 0.958182i \(-0.592379\pi\)
0.972890 0.231268i \(-0.0742876\pi\)
\(390\) −1.04992 28.8841i −0.0531645 1.46261i
\(391\) 1.27523 + 2.20876i 0.0644911 + 0.111702i
\(392\) −7.98815 2.14042i −0.403463 0.108108i
\(393\) 8.56432 36.0177i 0.432013 1.81685i
\(394\) −15.6184 9.01729i −0.786844 0.454284i
\(395\) 4.60647 + 16.6587i 0.231776 + 0.838190i
\(396\) 0.0293839 + 0.517611i 0.00147659 + 0.0260110i
\(397\) −18.2252 18.2252i −0.914698 0.914698i 0.0819389 0.996637i \(-0.473889\pi\)
−0.996637 + 0.0819389i \(0.973889\pi\)
\(398\) 22.8758 6.12955i 1.14666 0.307247i
\(399\) −4.75938 2.57075i −0.238267 0.128699i
\(400\) −15.5937 8.67421i −0.779685 0.433711i
\(401\) −11.1294 + 6.42558i −0.555777 + 0.320878i −0.751449 0.659791i \(-0.770645\pi\)
0.195672 + 0.980669i \(0.437311\pi\)
\(402\) 5.30666 5.61645i 0.264672 0.280123i
\(403\) −10.0535 37.5202i −0.500801 1.86902i
\(404\) −0.506000 −0.0251745
\(405\) 15.8488 + 12.4023i 0.787531 + 0.616275i
\(406\) 4.38302 0.217526
\(407\) 1.37166 + 5.11910i 0.0679906 + 0.253744i
\(408\) 5.63745 5.96656i 0.279096 0.295389i
\(409\) 22.2450 12.8431i 1.09994 0.635053i 0.163737 0.986504i \(-0.447645\pi\)
0.936206 + 0.351451i \(0.114312\pi\)
\(410\) −0.0862038 10.8029i −0.00425730 0.533517i
\(411\) −10.4538 5.64656i −0.515648 0.278524i
\(412\) 2.47741 0.663820i 0.122053 0.0327041i
\(413\) 11.0602 + 11.0602i 0.544237 + 0.544237i
\(414\) −0.362487 6.38540i −0.0178153 0.313825i
\(415\) 19.3295 + 10.9552i 0.948850 + 0.537770i
\(416\) −5.32474 3.07424i −0.261067 0.150727i
\(417\) 0.577694 2.42952i 0.0282898 0.118974i
\(418\) 1.74081 + 0.466448i 0.0851457 + 0.0228147i
\(419\) 6.13243 + 10.6217i 0.299589 + 0.518903i 0.976042 0.217583i \(-0.0698172\pi\)
−0.676453 + 0.736486i \(0.736484\pi\)
\(420\) 1.06071 1.14073i 0.0517572 0.0556618i
\(421\) −7.24056 + 12.5410i −0.352883 + 0.611212i −0.986753 0.162228i \(-0.948132\pi\)
0.633870 + 0.773439i \(0.281465\pi\)
\(422\) −0.117006 + 0.117006i −0.00569577 + 0.00569577i
\(423\) −23.5952 + 7.78012i −1.14724 + 0.378283i
\(424\) 19.4225i 0.943240i
\(425\) −5.77042 5.58911i −0.279906 0.271112i
\(426\) 6.52020 12.0712i 0.315905 0.584853i
\(427\) 7.04094 26.2771i 0.340735 1.27164i
\(428\) 0.663324 2.47556i 0.0320630 0.119661i
\(429\) −8.46824 + 0.240170i −0.408850 + 0.0115955i
\(430\) 5.59265 + 1.45082i 0.269701 + 0.0699646i
\(431\) 35.9660i 1.73242i 0.499678 + 0.866211i \(0.333452\pi\)
−0.499678 + 0.866211i \(0.666548\pi\)
\(432\) −17.4396 + 6.30395i −0.839061 + 0.303299i
\(433\) −0.331545 + 0.331545i −0.0159331 + 0.0159331i −0.715028 0.699095i \(-0.753586\pi\)
0.699095 + 0.715028i \(0.253586\pi\)
\(434\) −9.61573 + 16.6549i −0.461570 + 0.799462i
\(435\) 2.88901 5.45218i 0.138517 0.261412i
\(436\) −0.790718 1.36956i −0.0378685 0.0655902i
\(437\) 2.33763 + 0.626366i 0.111824 + 0.0299632i
\(438\) −5.00881 + 1.49553i −0.239330 + 0.0714591i
\(439\) −1.28953 0.744511i −0.0615459 0.0355336i 0.468911 0.883245i \(-0.344646\pi\)
−0.530457 + 0.847712i \(0.677980\pi\)
\(440\) −2.86258 + 5.05078i −0.136468 + 0.240787i
\(441\) 4.61158 + 7.03407i 0.219599 + 0.334956i
\(442\) 8.47845 + 8.47845i 0.403279 + 0.403279i
\(443\) 30.9468 8.29218i 1.47033 0.393973i 0.567285 0.823522i \(-0.307994\pi\)
0.903044 + 0.429548i \(0.141327\pi\)
\(444\) 1.74345 1.07361i 0.0827403 0.0509511i
\(445\) 7.37510 + 7.25833i 0.349613 + 0.344078i
\(446\) −2.91203 + 1.68126i −0.137889 + 0.0796101i
\(447\) −27.9202 6.63888i −1.32058 0.314008i
\(448\) 4.57213 + 17.0634i 0.216013 + 0.806172i
\(449\) −21.8283 −1.03014 −0.515071 0.857147i \(-0.672234\pi\)
−0.515071 + 0.857147i \(0.672234\pi\)
\(450\) 6.61292 + 19.0288i 0.311736 + 0.897025i
\(451\) −3.16647 −0.149103
\(452\) −0.609937 2.27631i −0.0286890 0.107069i
\(453\) 0.00281198 + 0.00941786i 0.000132118 + 0.000442490i
\(454\) −17.7357 + 10.2397i −0.832376 + 0.480572i
\(455\) 18.1412 + 17.8540i 0.850472 + 0.837006i
\(456\) −0.220817 7.78588i −0.0103407 0.364607i
\(457\) 0.880339 0.235886i 0.0411805 0.0110343i −0.238170 0.971223i \(-0.576548\pi\)
0.279351 + 0.960189i \(0.409881\pi\)
\(458\) −20.9534 20.9534i −0.979090 0.979090i
\(459\) −8.31839 + 0.709282i −0.388269 + 0.0331065i
\(460\) −0.343622 + 0.606293i −0.0160215 + 0.0282685i
\(461\) −18.7320 10.8149i −0.872434 0.503700i −0.00427761 0.999991i \(-0.501362\pi\)
−0.868156 + 0.496291i \(0.834695\pi\)
\(462\) 3.04870 + 2.88054i 0.141838 + 0.134015i
\(463\) −18.1245 4.85644i −0.842316 0.225698i −0.188236 0.982124i \(-0.560277\pi\)
−0.654079 + 0.756426i \(0.726944\pi\)
\(464\) 2.84283 + 4.92393i 0.131975 + 0.228588i
\(465\) 14.3795 + 22.9392i 0.666834 + 1.06378i
\(466\) 4.00916 6.94407i 0.185721 0.321678i
\(467\) 16.8295 16.8295i 0.778777 0.778777i −0.200846 0.979623i \(-0.564369\pi\)
0.979623 + 0.200846i \(0.0643691\pi\)
\(468\) 1.02492 + 3.10834i 0.0473771 + 0.143683i
\(469\) 6.80460i 0.314207i
\(470\) −24.0733 6.24496i −1.11042 0.288059i
\(471\) 7.68281 + 12.4763i 0.354005 + 0.574875i
\(472\) −5.82929 + 21.7552i −0.268315 + 1.00136i
\(473\) 0.438306 1.63578i 0.0201533 0.0752133i
\(474\) 9.42793 + 15.3102i 0.433039 + 0.703220i
\(475\) −7.62184 + 0.121648i −0.349714 + 0.00558158i
\(476\) 0.646194i 0.0296182i
\(477\) 13.1539 14.7372i 0.602276 0.674772i
\(478\) 12.9000 12.9000i 0.590033 0.590033i
\(479\) −8.91724 + 15.4451i −0.407439 + 0.705705i −0.994602 0.103764i \(-0.966911\pi\)
0.587163 + 0.809469i \(0.300245\pi\)
\(480\) 4.17693 + 0.958046i 0.190650 + 0.0437286i
\(481\) 16.7285 + 28.9747i 0.762756 + 1.32113i
\(482\) −6.66078 1.78475i −0.303390 0.0812931i
\(483\) 4.09392 + 3.86810i 0.186280 + 0.176005i
\(484\) −1.73861 1.00378i −0.0790275 0.0456265i
\(485\) −7.71328 4.37158i −0.350242 0.198503i
\(486\) 19.4277 + 7.80094i 0.881259 + 0.353858i
\(487\) −21.8232 21.8232i −0.988904 0.988904i 0.0110354 0.999939i \(-0.496487\pi\)
−0.999939 + 0.0110354i \(0.996487\pi\)
\(488\) 37.8372 10.1385i 1.71281 0.458946i
\(489\) 0.291174 + 10.2666i 0.0131674 + 0.464273i
\(490\) 0.0671834 + 8.41929i 0.00303504 + 0.380345i
\(491\) 35.1670 20.3037i 1.58707 0.916292i 0.593278 0.804998i \(-0.297834\pi\)
0.993787 0.111295i \(-0.0354997\pi\)
\(492\) 0.349997 + 1.17221i 0.0157791 + 0.0528472i
\(493\) 0.662503 + 2.47249i 0.0298376 + 0.111356i
\(494\) 11.3775 0.511896
\(495\) 5.59269 1.89371i 0.251373 0.0851157i
\(496\) −24.9471 −1.12016
\(497\) 3.12705 + 11.6703i 0.140267 + 0.523484i
\(498\) 22.4864 + 5.34683i 1.00764 + 0.239597i
\(499\) 37.3397 21.5581i 1.67156 0.965073i 0.704788 0.709418i \(-0.251042\pi\)
0.966768 0.255655i \(-0.0822910\pi\)
\(500\) 0.517216 2.13328i 0.0231306 0.0954033i
\(501\) 8.79988 5.41892i 0.393150 0.242100i
\(502\) 3.37571 0.904518i 0.150665 0.0403706i
\(503\) −28.0936 28.0936i −1.25263 1.25263i −0.954537 0.298093i \(-0.903649\pi\)
−0.298093 0.954537i \(-0.596351\pi\)
\(504\) 8.15932 16.1872i 0.363445 0.721033i
\(505\) 1.53591 + 5.55443i 0.0683471 + 0.247169i
\(506\) −1.62510 0.938252i −0.0722445 0.0417104i
\(507\) −29.6708 + 8.85909i −1.31773 + 0.393446i
\(508\) 0.510193 + 0.136706i 0.0226361 + 0.00606534i
\(509\) 7.39188 + 12.8031i 0.327639 + 0.567488i 0.982043 0.188658i \(-0.0604136\pi\)
−0.654404 + 0.756145i \(0.727080\pi\)
\(510\) −7.38445 3.91288i −0.326989 0.173265i
\(511\) 2.30168 3.98663i 0.101820 0.176358i
\(512\) −17.6794 + 17.6794i −0.781325 + 0.781325i
\(513\) −5.10544 + 6.05725i −0.225411 + 0.267434i
\(514\) 14.1761i 0.625282i
\(515\) −14.8067 25.1799i −0.652463 1.10956i
\(516\) −0.654003 + 0.0185484i −0.0287909 + 0.000816546i
\(517\) −1.88667 + 7.04114i −0.0829755 + 0.309669i
\(518\) 4.28721 16.0001i 0.188369 0.703003i
\(519\) −11.2484 + 20.8248i −0.493750 + 0.914108i
\(520\) −9.20315 + 35.4766i −0.403585 + 1.55575i
\(521\) 28.4812i 1.24778i −0.781511 0.623892i \(-0.785551\pi\)
0.781511 0.623892i \(-0.214449\pi\)
\(522\) 1.30725 6.28437i 0.0572170 0.275059i
\(523\) 15.4076 15.4076i 0.673726 0.673726i −0.284847 0.958573i \(-0.591943\pi\)
0.958573 + 0.284847i \(0.0919428\pi\)
\(524\) −2.09829 + 3.63434i −0.0916641 + 0.158767i
\(525\) −15.7416 8.18095i −0.687019 0.357046i
\(526\) −5.64872 9.78386i −0.246296 0.426597i
\(527\) −10.8486 2.90687i −0.472572 0.126625i
\(528\) −1.25863 + 5.29325i −0.0547750 + 0.230359i
\(529\) 17.7363 + 10.2401i 0.771145 + 0.445221i
\(530\) 19.0586 5.27010i 0.827855 0.228918i
\(531\) 19.1568 12.5593i 0.831335 0.545028i
\(532\) 0.433573 + 0.433573i 0.0187978 + 0.0187978i
\(533\) −19.3089 + 5.17380i −0.836361 + 0.224102i
\(534\) 9.47128 + 5.11586i 0.409862 + 0.221385i
\(535\) −29.1880 + 0.232911i −1.26191 + 0.0100696i
\(536\) −8.48544 + 4.89907i −0.366515 + 0.211608i
\(537\) 20.5040 21.7010i 0.884813 0.936466i
\(538\) 9.30542 + 34.7283i 0.401185 + 1.49724i
\(539\) 2.46780 0.106296
\(540\) −1.31921 1.86107i −0.0567698 0.0800875i
\(541\) −1.11754 −0.0480466 −0.0240233 0.999711i \(-0.507648\pi\)
−0.0240233 + 0.999711i \(0.507648\pi\)
\(542\) −6.46008 24.1093i −0.277484 1.03558i
\(543\) −17.5703 + 18.5960i −0.754015 + 0.798033i
\(544\) −1.53959 + 0.888885i −0.0660096 + 0.0381106i
\(545\) −12.6337 + 12.8370i −0.541169 + 0.549875i
\(546\) 23.2973 + 12.5839i 0.997033 + 0.538542i
\(547\) −31.1213 + 8.33894i −1.33065 + 0.356547i −0.852958 0.521979i \(-0.825194\pi\)
−0.477694 + 0.878526i \(0.658527\pi\)
\(548\) 0.952326 + 0.952326i 0.0406813 + 0.0406813i
\(549\) −35.5761 17.9325i −1.51835 0.765342i
\(550\) 5.73290 + 1.43847i 0.244452 + 0.0613367i
\(551\) 2.10347 + 1.21444i 0.0896109 + 0.0517369i
\(552\) −1.87611 + 7.89008i −0.0798526 + 0.335824i
\(553\) −15.2945 4.09814i −0.650387 0.174271i
\(554\) −18.2979 31.6928i −0.777402 1.34650i
\(555\) −17.0772 15.8792i −0.724885 0.674035i
\(556\) −0.141537 + 0.245149i −0.00600250 + 0.0103966i
\(557\) 30.4033 30.4033i 1.28823 1.28823i 0.352366 0.935862i \(-0.385377\pi\)
0.935862 0.352366i \(-0.114623\pi\)
\(558\) 21.0119 + 18.7544i 0.889503 + 0.793937i
\(559\) 10.6910i 0.452182i
\(560\) 14.0913 8.28625i 0.595467 0.350158i
\(561\) −1.16411 + 2.15519i −0.0491489 + 0.0909922i
\(562\) 9.11308 34.0105i 0.384412 1.43465i
\(563\) 0.300692 1.12220i 0.0126727 0.0472950i −0.959300 0.282389i \(-0.908873\pi\)
0.971973 + 0.235094i \(0.0755398\pi\)
\(564\) 2.81512 0.0798405i 0.118538 0.00336189i
\(565\) −23.1360 + 13.6049i −0.973338 + 0.572361i
\(566\) 4.78361i 0.201070i
\(567\) −17.1538 + 6.75644i −0.720393 + 0.283744i
\(568\) −12.3017 + 12.3017i −0.516167 + 0.516167i
\(569\) −0.145367 + 0.251784i −0.00609412 + 0.0105553i −0.869056 0.494713i \(-0.835273\pi\)
0.862962 + 0.505268i \(0.168606\pi\)
\(570\) −7.58010 + 2.32930i −0.317495 + 0.0975636i
\(571\) −13.0283 22.5656i −0.545215 0.944341i −0.998593 0.0530223i \(-0.983115\pi\)
0.453378 0.891318i \(-0.350219\pi\)
\(572\) 0.927572 + 0.248542i 0.0387837 + 0.0103921i
\(573\) −8.75395 + 2.61375i −0.365702 + 0.109191i
\(574\) 8.57106 + 4.94851i 0.357749 + 0.206547i
\(575\) 7.69838 + 1.93164i 0.321044 + 0.0805551i
\(576\) 25.8292 1.46627i 1.07621 0.0610948i
\(577\) −2.52834 2.52834i −0.105256 0.105256i 0.652517 0.757774i \(-0.273713\pi\)
−0.757774 + 0.652517i \(0.773713\pi\)
\(578\) −18.7044 + 5.01183i −0.778000 + 0.208465i
\(579\) 13.7258 8.45230i 0.570427 0.351266i
\(580\) −0.490608 + 0.498501i −0.0203714 + 0.0206991i
\(581\) −17.6274 + 10.1772i −0.731309 + 0.422222i
\(582\) −8.97298 2.13360i −0.371942 0.0884408i
\(583\) −1.50006 5.59831i −0.0621262 0.231858i
\(584\) 6.62852 0.274290
\(585\) 31.0096 20.6858i 1.28209 0.855251i
\(586\) 4.00174 0.165310
\(587\) 10.7212 + 40.0121i 0.442511 + 1.65147i 0.722425 + 0.691449i \(0.243027\pi\)
−0.279914 + 0.960025i \(0.590306\pi\)
\(588\) −0.272772 0.913566i −0.0112489 0.0376748i
\(589\) −9.22943 + 5.32861i −0.380292 + 0.219562i
\(590\) 22.9294 0.182969i 0.943987 0.00753273i
\(591\) −0.659386 23.2495i −0.0271235 0.956358i
\(592\) 20.7553 5.56137i 0.853038 0.228571i
\(593\) 26.6583 + 26.6583i 1.09473 + 1.09473i 0.995017 + 0.0997087i \(0.0317911\pi\)
0.0997087 + 0.995017i \(0.468209\pi\)
\(594\) 5.03939 3.51208i 0.206769 0.144102i
\(595\) 7.09335 1.96145i 0.290799 0.0804117i
\(596\) 2.81726 + 1.62655i 0.115400 + 0.0666260i
\(597\) 22.2009 + 20.9764i 0.908624 + 0.858506i
\(598\) −11.4428 3.06608i −0.467930 0.125382i
\(599\) −13.2427 22.9370i −0.541080 0.937178i −0.998842 0.0481037i \(-0.984682\pi\)
0.457762 0.889075i \(-0.348651\pi\)
\(600\) −1.13160 25.5200i −0.0461974 1.04185i
\(601\) 4.26710 7.39084i 0.174059 0.301479i −0.765776 0.643107i \(-0.777645\pi\)
0.939835 + 0.341628i \(0.110978\pi\)
\(602\) −3.74279 + 3.74279i −0.152545 + 0.152545i
\(603\) 9.75641 + 2.02950i 0.397312 + 0.0826475i
\(604\) 0.00111412i 4.53329e-5i
\(605\) −5.74131 + 22.1318i −0.233417 + 0.899784i
\(606\) 3.14351 + 5.10480i 0.127696 + 0.207368i
\(607\) −11.9000 + 44.4113i −0.483005 + 1.80260i 0.105876 + 0.994379i \(0.466235\pi\)
−0.588881 + 0.808220i \(0.700431\pi\)
\(608\) −0.436602 + 1.62942i −0.0177066 + 0.0660818i
\(609\) 2.96400 + 4.81329i 0.120107 + 0.195045i
\(610\) −20.2153 34.3774i −0.818493 1.39190i
\(611\) 46.0190i 1.86173i
\(612\) 0.926510 + 0.192730i 0.0374520 + 0.00779064i
\(613\) 17.3219 17.3219i 0.699625 0.699625i −0.264705 0.964330i \(-0.585274\pi\)
0.964330 + 0.264705i \(0.0852744\pi\)
\(614\) −20.7039 + 35.8602i −0.835542 + 1.44720i
\(615\) 11.8051 7.40008i 0.476027 0.298400i
\(616\) −2.65929 4.60603i −0.107146 0.185582i
\(617\) 36.3708 + 9.74553i 1.46423 + 0.392340i 0.900950 0.433923i \(-0.142871\pi\)
0.563284 + 0.826263i \(0.309538\pi\)
\(618\) −22.0878 20.8694i −0.888500 0.839492i
\(619\) 8.57434 + 4.95040i 0.344632 + 0.198973i 0.662318 0.749223i \(-0.269573\pi\)
−0.317687 + 0.948196i \(0.602906\pi\)
\(620\) −0.817915 2.95789i −0.0328483 0.118792i
\(621\) 6.76710 4.71617i 0.271554 0.189253i
\(622\) 32.2255 + 32.2255i 1.29213 + 1.29213i
\(623\) −9.15670 + 2.45353i −0.366855 + 0.0982986i
\(624\) 0.973765 + 34.3344i 0.0389818 + 1.37447i
\(625\) −24.9873 + 0.797817i −0.999491 + 0.0319127i
\(626\) −26.9753 + 15.5742i −1.07815 + 0.622469i
\(627\) 0.664976 + 2.22713i 0.0265566 + 0.0889431i
\(628\) −0.429864 1.60427i −0.0171534 0.0640175i
\(629\) 9.67378 0.385719
\(630\) −18.0979 3.61425i −0.721036 0.143995i
\(631\) −22.0279 −0.876918 −0.438459 0.898751i \(-0.644476\pi\)
−0.438459 + 0.898751i \(0.644476\pi\)
\(632\) −5.90104 22.0230i −0.234731 0.876027i
\(633\) −0.207617 0.0493675i −0.00825205 0.00196218i
\(634\) 4.65268 2.68622i 0.184781 0.106684i
\(635\) −0.0480011 6.01540i −0.00190487 0.238714i
\(636\) −1.90665 + 1.17411i −0.0756038 + 0.0465564i
\(637\) 15.0485 4.03223i 0.596242 0.159763i
\(638\) −1.33171 1.33171i −0.0527227 0.0527227i
\(639\) 17.6655 1.00284i 0.698836 0.0396716i
\(640\) 18.2251 + 10.3293i 0.720412 + 0.408300i
\(641\) 21.8054 + 12.5894i 0.861263 + 0.497251i 0.864435 0.502744i \(-0.167676\pi\)
−0.00317173 + 0.999995i \(0.501010\pi\)
\(642\) −29.0956 + 8.68736i −1.14831 + 0.342863i
\(643\) 30.0492 + 8.05166i 1.18502 + 0.317526i 0.796918 0.604088i \(-0.206462\pi\)
0.388107 + 0.921614i \(0.373129\pi\)
\(644\) −0.319219 0.552904i −0.0125790 0.0217875i
\(645\) 2.18877 + 7.12277i 0.0861826 + 0.280459i
\(646\) 1.64484 2.84895i 0.0647154 0.112090i
\(647\) −7.86580 + 7.86580i −0.309237 + 0.309237i −0.844613 0.535377i \(-0.820170\pi\)
0.535377 + 0.844613i \(0.320170\pi\)
\(648\) −20.7755 16.5267i −0.816140 0.649230i
\(649\) 6.72090i 0.263818i
\(650\) 37.3091 0.595469i 1.46339 0.0233562i
\(651\) −24.7925 + 0.703147i −0.971695 + 0.0275585i
\(652\) 0.301325 1.12456i 0.0118008 0.0440411i
\(653\) 0.0749391 0.279676i 0.00293259 0.0109446i −0.964444 0.264287i \(-0.914863\pi\)
0.967377 + 0.253343i \(0.0815300\pi\)
\(654\) −8.90457 + 16.4855i −0.348196 + 0.644635i
\(655\) 46.2637 + 12.0015i 1.80767 + 0.468937i
\(656\) 12.8384i 0.501256i
\(657\) −5.02953 4.48917i −0.196221 0.175139i
\(658\) 16.1106 16.1106i 0.628058 0.628058i
\(659\) 13.4009 23.2111i 0.522026 0.904175i −0.477646 0.878552i \(-0.658510\pi\)
0.999672 0.0256228i \(-0.00815688\pi\)
\(660\) −0.668868 + 0.0243128i −0.0260356 + 0.000946374i
\(661\) −12.6438 21.8997i −0.491787 0.851800i 0.508168 0.861258i \(-0.330323\pi\)
−0.999955 + 0.00945786i \(0.996989\pi\)
\(662\) −7.73611 2.07289i −0.300673 0.0805650i
\(663\) −3.57724 + 15.0443i −0.138928 + 0.584271i
\(664\) −25.3823 14.6545i −0.985024 0.568704i
\(665\) 3.44332 6.07544i 0.133526 0.235596i
\(666\) −21.6622 10.9191i −0.839393 0.423106i
\(667\) −1.78827 1.78827i −0.0692421 0.0692421i
\(668\) −1.13154 + 0.303196i −0.0437807 + 0.0117310i
\(669\) −3.81556 2.06095i −0.147518 0.0796811i
\(670\) 7.10973 + 6.99716i 0.274673 + 0.270324i
\(671\) −10.1231 + 5.84458i −0.390799 + 0.225628i
\(672\) −2.69622 + 2.85362i −0.104009 + 0.110081i
\(673\) 6.30290 + 23.5227i 0.242959 + 0.906735i 0.974398 + 0.224829i \(0.0721822\pi\)
−0.731439 + 0.681906i \(0.761151\pi\)
\(674\) −13.3044 −0.512466
\(675\) −16.4248 + 20.1302i −0.632191 + 0.774812i
\(676\) 3.51002 0.135001
\(677\) −0.240265 0.896681i −0.00923414 0.0344623i 0.961155 0.276009i \(-0.0890120\pi\)
−0.970389 + 0.241547i \(0.922345\pi\)
\(678\) −19.1754 + 20.2949i −0.736429 + 0.779420i
\(679\) 7.03407 4.06112i 0.269943 0.155852i
\(680\) 7.55292 + 7.43334i 0.289641 + 0.285056i
\(681\) −23.2386 12.5522i −0.890503 0.481000i
\(682\) 7.98188 2.13874i 0.305642 0.0818966i
\(683\) −22.2024 22.2024i −0.849550 0.849550i 0.140526 0.990077i \(-0.455120\pi\)
−0.990077 + 0.140526i \(0.955120\pi\)
\(684\) 0.750970 0.492340i 0.0287141 0.0188251i
\(685\) 7.56311 13.3445i 0.288972 0.509866i
\(686\) −23.3578 13.4856i −0.891805 0.514884i
\(687\) 8.84071 37.1801i 0.337294 1.41851i
\(688\) −6.63225 1.77711i −0.252852 0.0677515i
\(689\) −18.2945 31.6871i −0.696966 1.20718i
\(690\) 8.25133 0.299929i 0.314123 0.0114181i
\(691\) −4.05877 + 7.02999i −0.154403 + 0.267433i −0.932841 0.360287i \(-0.882679\pi\)
0.778439 + 0.627721i \(0.216012\pi\)
\(692\) 1.89711 1.89711i 0.0721173 0.0721173i
\(693\) −1.10164 + 5.29593i −0.0418479 + 0.201176i
\(694\) 14.2473i 0.540821i
\(695\) 3.12065 + 0.809543i 0.118373 + 0.0307077i
\(696\) −3.86828 + 7.16156i −0.146627 + 0.271458i
\(697\) −1.49595 + 5.58297i −0.0566633 + 0.211470i
\(698\) 3.24640 12.1157i 0.122878 0.458586i
\(699\) 10.3369 0.293168i 0.390979 0.0110887i
\(700\) 1.44447 + 1.39909i 0.0545958 + 0.0528805i
\(701\) 19.6359i 0.741637i 0.928705 + 0.370819i \(0.120923\pi\)
−0.928705 + 0.370819i \(0.879077\pi\)
\(702\) 24.9913 29.6504i 0.943236 1.11908i
\(703\) 6.49076 6.49076i 0.244804 0.244804i
\(704\) 3.79526 6.57359i 0.143039 0.247752i
\(705\) −9.42143 30.6596i −0.354832 1.15471i
\(706\) −12.8937 22.3325i −0.485260 0.840496i
\(707\) −5.09956 1.36642i −0.191789 0.0513896i
\(708\) −2.48804 + 0.742876i −0.0935061 + 0.0279190i
\(709\) −2.68383 1.54951i −0.100793 0.0581931i 0.448756 0.893654i \(-0.351867\pi\)
−0.549549 + 0.835461i \(0.685201\pi\)
\(710\) 15.4092 + 8.73329i 0.578295 + 0.327754i
\(711\) −10.4375 + 20.7069i −0.391438 + 0.776569i
\(712\) −9.65210 9.65210i −0.361728 0.361728i
\(713\) 10.7184 2.87199i 0.401408 0.107557i
\(714\) 6.51914 4.01445i 0.243973 0.150237i
\(715\) −0.0872699 10.9365i −0.00326371 0.409002i
\(716\) −2.93083 + 1.69211i −0.109530 + 0.0632373i
\(717\) 22.8900 + 5.44280i 0.854841 + 0.203265i
\(718\) 4.37774 + 16.3380i 0.163376 + 0.609727i
\(719\) −20.3126 −0.757533 −0.378767 0.925492i \(-0.623652\pi\)
−0.378767 + 0.925492i \(0.623652\pi\)
\(720\) −7.67800 22.6755i −0.286142 0.845066i
\(721\) 26.7604 0.996608
\(722\) 5.79640 + 21.6325i 0.215720 + 0.805077i
\(723\) −2.54437 8.52158i −0.0946261 0.316921i
\(724\) 2.51149 1.45001i 0.0933388 0.0538892i
\(725\) 6.96129 + 3.87232i 0.258536 + 0.143814i
\(726\) 0.674315 + 23.7759i 0.0250262 + 0.882407i
\(727\) −17.0647 + 4.57247i −0.632895 + 0.169584i −0.560983 0.827827i \(-0.689577\pi\)
−0.0719119 + 0.997411i \(0.522910\pi\)
\(728\) −23.7421 23.7421i −0.879941 0.879941i
\(729\) 4.57117 + 26.6102i 0.169303 + 0.985564i
\(730\) −1.79858 6.50434i −0.0665685 0.240736i
\(731\) −2.67706 1.54560i −0.0990147 0.0571662i
\(732\) 3.28256 + 3.10150i 0.121327 + 0.114635i
\(733\) 25.4785 + 6.82693i 0.941068 + 0.252158i 0.696568 0.717491i \(-0.254709\pi\)
0.244500 + 0.969649i \(0.421376\pi\)
\(734\) 18.9970 + 32.9038i 0.701192 + 1.21450i
\(735\) −9.20035 + 5.76729i −0.339360 + 0.212730i
\(736\) 0.878218 1.52112i 0.0323715 0.0560692i
\(737\) 2.06746 2.06746i 0.0761558 0.0761558i
\(738\) 9.65150 10.8133i 0.355277 0.398041i
\(739\) 6.41459i 0.235965i 0.993016 + 0.117982i \(0.0376426\pi\)
−0.993016 + 0.117982i \(0.962357\pi\)
\(740\) 1.33988 + 2.27855i 0.0492549 + 0.0837612i
\(741\) 7.69396 + 12.4944i 0.282645 + 0.458992i
\(742\) −4.68854 + 17.4979i −0.172122 + 0.642368i
\(743\) −4.95625 + 18.4970i −0.181827 + 0.678588i 0.813460 + 0.581620i \(0.197581\pi\)
−0.995288 + 0.0969677i \(0.969086\pi\)
\(744\) −18.7266 30.4104i −0.686549 1.11490i
\(745\) 9.30331 35.8627i 0.340847 1.31391i
\(746\) 3.13856i 0.114911i
\(747\) 9.33459 + 28.3096i 0.341535 + 1.03579i
\(748\) 0.196335 0.196335i 0.00717870 0.00717870i
\(749\) 13.3702 23.1579i 0.488536 0.846170i
\(750\) −24.7349 + 8.03499i −0.903189 + 0.293397i
\(751\) −1.96958 3.41141i −0.0718709 0.124484i 0.827850 0.560949i \(-0.189564\pi\)
−0.899721 + 0.436465i \(0.856230\pi\)
\(752\) 28.5482 + 7.64946i 1.04105 + 0.278947i
\(753\) 3.27612 + 3.09541i 0.119388 + 0.112803i
\(754\) −10.2966 5.94472i −0.374979 0.216494i
\(755\) −0.0122298 + 0.00338180i −0.000445090 + 0.000123076i
\(756\) 2.08229 0.177550i 0.0757321 0.00645743i
\(757\) 17.3710 + 17.3710i 0.631361 + 0.631361i 0.948409 0.317049i \(-0.102692\pi\)
−0.317049 + 0.948409i \(0.602692\pi\)
\(758\) −23.9495 + 6.41725i −0.869885 + 0.233085i
\(759\) −0.0686093 2.41912i −0.00249036 0.0878085i
\(760\) 10.0552 0.0802378i 0.364742 0.00291053i
\(761\) 7.11860 4.10993i 0.258049 0.148985i −0.365395 0.930853i \(-0.619066\pi\)
0.623444 + 0.781868i \(0.285733\pi\)
\(762\) −1.79039 5.99637i −0.0648591 0.217226i
\(763\) −4.27057 15.9380i −0.154605 0.576994i
\(764\)