Properties

Label 45.2.l.a.2.3
Level $45$
Weight $2$
Character 45.2
Analytic conductor $0.359$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,2,Mod(2,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.2");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 45.l (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.359326809096\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 18 x^{14} - 36 x^{13} + 34 x^{12} + 18 x^{11} - 72 x^{10} + 132 x^{9} - 93 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 2.3
Root \(-0.0499037 + 0.186243i\) of defining polynomial
Character \(\chi\) \(=\) 45.2
Dual form 45.2.l.a.23.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0499037 + 0.186243i) q^{2} +(-0.806271 - 1.53295i) q^{3} +(1.69985 - 0.981412i) q^{4} +(-0.250705 + 2.22197i) q^{5} +(0.245265 - 0.226662i) q^{6} +(-2.35868 + 0.632007i) q^{7} +(0.540289 + 0.540289i) q^{8} +(-1.69985 + 2.47194i) q^{9} +O(q^{10})\) \(q+(0.0499037 + 0.186243i) q^{2} +(-0.806271 - 1.53295i) q^{3} +(1.69985 - 0.981412i) q^{4} +(-0.250705 + 2.22197i) q^{5} +(0.245265 - 0.226662i) q^{6} +(-2.35868 + 0.632007i) q^{7} +(0.540289 + 0.540289i) q^{8} +(-1.69985 + 2.47194i) q^{9} +(-0.426337 + 0.0641924i) q^{10} +(-2.14390 - 1.23778i) q^{11} +(-2.87500 - 1.81450i) q^{12} +(1.57505 + 0.422032i) q^{13} +(-0.235414 - 0.407749i) q^{14} +(3.60830 - 1.40719i) q^{15} +(1.88916 - 3.27212i) q^{16} +(-0.403949 + 0.403949i) q^{17} +(-0.545211 - 0.193227i) q^{18} +4.28779i q^{19} +(1.75450 + 4.02307i) q^{20} +(2.87057 + 3.10617i) q^{21} +(0.123539 - 0.461055i) q^{22} +(1.82845 - 6.82387i) q^{23} +(0.392615 - 1.26385i) q^{24} +(-4.87429 - 1.11412i) q^{25} +0.314402i q^{26} +(5.15990 + 0.612733i) q^{27} +(-3.38916 + 3.38916i) q^{28} +(3.20524 - 5.55164i) q^{29} +(0.442147 + 0.601796i) q^{30} +(-1.97194 - 3.41550i) q^{31} +(2.17978 + 0.584071i) q^{32} +(-0.168889 + 4.28446i) q^{33} +(-0.0953913 - 0.0550742i) q^{34} +(-0.812968 - 5.39937i) q^{35} +(-0.463514 + 5.87020i) q^{36} +(-0.171954 - 0.171954i) q^{37} +(-0.798571 + 0.213977i) q^{38} +(-0.622960 - 2.75474i) q^{39} +(-1.33596 + 1.06505i) q^{40} +(-6.52359 + 3.76639i) q^{41} +(-0.435250 + 0.689633i) q^{42} +(1.32695 + 4.95226i) q^{43} -4.85908 q^{44} +(-5.06642 - 4.39675i) q^{45} +1.36214 q^{46} +(0.780885 + 2.91430i) q^{47} +(-6.53917 - 0.257767i) q^{48} +(-0.898221 + 0.518588i) q^{49} +(-0.0357486 - 0.963402i) q^{50} +(0.944926 + 0.293541i) q^{51} +(3.09154 - 0.828375i) q^{52} +(6.12030 + 6.12030i) q^{53} +(0.143381 + 0.991573i) q^{54} +(3.28779 - 4.45335i) q^{55} +(-1.61584 - 0.932904i) q^{56} +(6.57296 - 3.45712i) q^{57} +(1.19391 + 0.319907i) q^{58} +(2.27234 + 3.93581i) q^{59} +(4.75255 - 5.93325i) q^{60} +(-0.235795 + 0.408408i) q^{61} +(0.537706 - 0.537706i) q^{62} +(2.44713 - 6.90485i) q^{63} -7.12153i q^{64} +(-1.33261 + 3.39390i) q^{65} +(-0.806380 + 0.182356i) q^{66} +(-0.443446 + 1.65496i) q^{67} +(-0.290215 + 1.08310i) q^{68} +(-11.9349 + 2.69897i) q^{69} +(0.965025 - 0.420858i) q^{70} -3.50583i q^{71} +(-2.25397 + 0.417150i) q^{72} +(6.88847 - 6.88847i) q^{73} +(0.0234441 - 0.0406064i) q^{74} +(2.22212 + 8.37032i) q^{75} +(4.20809 + 7.28862i) q^{76} +(5.83906 + 1.56457i) q^{77} +(0.481962 - 0.253493i) q^{78} +(6.50159 + 3.75369i) q^{79} +(6.79693 + 5.01799i) q^{80} +(-3.22099 - 8.40388i) q^{81} +(-1.02702 - 1.02702i) q^{82} +(-10.6660 + 2.85794i) q^{83} +(7.92799 + 2.46282i) q^{84} +(-0.796291 - 0.998835i) q^{85} +(-0.856104 + 0.494272i) q^{86} +(-11.0947 - 0.437340i) q^{87} +(-0.489565 - 1.82708i) q^{88} -2.90124 q^{89} +(0.566032 - 1.16300i) q^{90} -3.98176 q^{91} +(-3.58893 - 13.3941i) q^{92} +(-3.64587 + 5.77670i) q^{93} +(-0.503800 + 0.290869i) q^{94} +(-9.52734 - 1.07497i) q^{95} +(-0.862145 - 3.81241i) q^{96} +(1.41681 - 0.379633i) q^{97} +(-0.141408 - 0.141408i) q^{98} +(6.70403 - 3.19554i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} - 6 q^{3} - 6 q^{5} - 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 6 q^{2} - 6 q^{3} - 6 q^{5} - 2 q^{7} - 8 q^{10} - 6 q^{12} - 2 q^{13} - 6 q^{15} - 8 q^{16} + 36 q^{18} + 18 q^{20} - 12 q^{21} - 10 q^{22} + 18 q^{23} + 4 q^{25} + 18 q^{27} - 16 q^{28} + 30 q^{30} - 4 q^{31} + 30 q^{32} - 12 q^{33} - 48 q^{36} + 4 q^{37} - 30 q^{38} + 6 q^{40} - 24 q^{41} + 6 q^{42} - 2 q^{43} - 36 q^{45} + 32 q^{46} - 12 q^{47} - 30 q^{48} - 54 q^{50} + 36 q^{51} - 14 q^{52} - 16 q^{55} + 36 q^{56} - 6 q^{57} - 6 q^{58} + 18 q^{60} + 8 q^{61} + 36 q^{63} + 66 q^{65} + 36 q^{66} + 4 q^{67} + 42 q^{68} + 18 q^{70} + 18 q^{72} - 8 q^{73} + 42 q^{75} + 24 q^{76} - 6 q^{77} - 42 q^{78} - 48 q^{81} + 32 q^{82} - 66 q^{83} + 22 q^{85} - 48 q^{86} - 18 q^{87} + 18 q^{88} - 66 q^{90} - 40 q^{91} - 60 q^{92} - 18 q^{93} - 36 q^{95} - 24 q^{96} + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0499037 + 0.186243i 0.0352872 + 0.131694i 0.981322 0.192370i \(-0.0616174\pi\)
−0.946035 + 0.324064i \(0.894951\pi\)
\(3\) −0.806271 1.53295i −0.465501 0.885048i
\(4\) 1.69985 0.981412i 0.849927 0.490706i
\(5\) −0.250705 + 2.22197i −0.112119 + 0.993695i
\(6\) 0.245265 0.226662i 0.100129 0.0925344i
\(7\) −2.35868 + 0.632007i −0.891499 + 0.238876i −0.675362 0.737487i \(-0.736012\pi\)
−0.216137 + 0.976363i \(0.569346\pi\)
\(8\) 0.540289 + 0.540289i 0.191021 + 0.191021i
\(9\) −1.69985 + 2.47194i −0.566618 + 0.823980i
\(10\) −0.426337 + 0.0641924i −0.134820 + 0.0202994i
\(11\) −2.14390 1.23778i −0.646409 0.373204i 0.140670 0.990057i \(-0.455074\pi\)
−0.787079 + 0.616852i \(0.788408\pi\)
\(12\) −2.87500 1.81450i −0.829940 0.523802i
\(13\) 1.57505 + 0.422032i 0.436839 + 0.117051i 0.470535 0.882381i \(-0.344061\pi\)
−0.0336956 + 0.999432i \(0.510728\pi\)
\(14\) −0.235414 0.407749i −0.0629170 0.108975i
\(15\) 3.60830 1.40719i 0.931658 0.363335i
\(16\) 1.88916 3.27212i 0.472290 0.818031i
\(17\) −0.403949 + 0.403949i −0.0979721 + 0.0979721i −0.754394 0.656422i \(-0.772069\pi\)
0.656422 + 0.754394i \(0.272069\pi\)
\(18\) −0.545211 0.193227i −0.128507 0.0455441i
\(19\) 4.28779i 0.983687i 0.870684 + 0.491843i \(0.163677\pi\)
−0.870684 + 0.491843i \(0.836323\pi\)
\(20\) 1.75450 + 4.02307i 0.392319 + 0.899586i
\(21\) 2.87057 + 3.10617i 0.626410 + 0.677822i
\(22\) 0.123539 0.461055i 0.0263387 0.0982973i
\(23\) 1.82845 6.82387i 0.381258 1.42288i −0.462723 0.886503i \(-0.653128\pi\)
0.843981 0.536373i \(-0.180206\pi\)
\(24\) 0.392615 1.26385i 0.0801422 0.257983i
\(25\) −4.87429 1.11412i −0.974859 0.222823i
\(26\) 0.314402i 0.0616594i
\(27\) 5.15990 + 0.612733i 0.993023 + 0.117921i
\(28\) −3.38916 + 3.38916i −0.640491 + 0.640491i
\(29\) 3.20524 5.55164i 0.595199 1.03091i −0.398320 0.917247i \(-0.630407\pi\)
0.993519 0.113668i \(-0.0362600\pi\)
\(30\) 0.442147 + 0.601796i 0.0807246 + 0.109872i
\(31\) −1.97194 3.41550i −0.354171 0.613442i 0.632805 0.774312i \(-0.281904\pi\)
−0.986976 + 0.160869i \(0.948570\pi\)
\(32\) 2.17978 + 0.584071i 0.385335 + 0.103250i
\(33\) −0.168889 + 4.28446i −0.0293998 + 0.745829i
\(34\) −0.0953913 0.0550742i −0.0163595 0.00944515i
\(35\) −0.812968 5.39937i −0.137417 0.912660i
\(36\) −0.463514 + 5.87020i −0.0772524 + 0.978366i
\(37\) −0.171954 0.171954i −0.0282691 0.0282691i 0.692831 0.721100i \(-0.256363\pi\)
−0.721100 + 0.692831i \(0.756363\pi\)
\(38\) −0.798571 + 0.213977i −0.129545 + 0.0347116i
\(39\) −0.622960 2.75474i −0.0997535 0.441111i
\(40\) −1.33596 + 1.06505i −0.211234 + 0.168400i
\(41\) −6.52359 + 3.76639i −1.01881 + 0.588212i −0.913760 0.406255i \(-0.866835\pi\)
−0.105053 + 0.994467i \(0.533501\pi\)
\(42\) −0.435250 + 0.689633i −0.0671606 + 0.106413i
\(43\) 1.32695 + 4.95226i 0.202359 + 0.755213i 0.990238 + 0.139384i \(0.0445122\pi\)
−0.787880 + 0.615829i \(0.788821\pi\)
\(44\) −4.85908 −0.732534
\(45\) −5.06642 4.39675i −0.755257 0.655429i
\(46\) 1.36214 0.200837
\(47\) 0.780885 + 2.91430i 0.113904 + 0.425095i 0.999203 0.0399279i \(-0.0127128\pi\)
−0.885299 + 0.465023i \(0.846046\pi\)
\(48\) −6.53917 0.257767i −0.943847 0.0372055i
\(49\) −0.898221 + 0.518588i −0.128317 + 0.0740841i
\(50\) −0.0357486 0.963402i −0.00505562 0.136246i
\(51\) 0.944926 + 0.293541i 0.132316 + 0.0411039i
\(52\) 3.09154 0.828375i 0.428719 0.114875i
\(53\) 6.12030 + 6.12030i 0.840688 + 0.840688i 0.988948 0.148260i \(-0.0473672\pi\)
−0.148260 + 0.988948i \(0.547367\pi\)
\(54\) 0.143381 + 0.991573i 0.0195116 + 0.134936i
\(55\) 3.28779 4.45335i 0.443326 0.600490i
\(56\) −1.61584 0.932904i −0.215925 0.124665i
\(57\) 6.57296 3.45712i 0.870610 0.457907i
\(58\) 1.19391 + 0.319907i 0.156768 + 0.0420058i
\(59\) 2.27234 + 3.93581i 0.295833 + 0.512399i 0.975178 0.221421i \(-0.0710693\pi\)
−0.679345 + 0.733819i \(0.737736\pi\)
\(60\) 4.75255 5.93325i 0.613551 0.765979i
\(61\) −0.235795 + 0.408408i −0.0301904 + 0.0522913i −0.880726 0.473626i \(-0.842945\pi\)
0.850535 + 0.525918i \(0.176278\pi\)
\(62\) 0.537706 0.537706i 0.0682888 0.0682888i
\(63\) 2.44713 6.90485i 0.308310 0.869929i
\(64\) 7.12153i 0.890191i
\(65\) −1.33261 + 3.39390i −0.165291 + 0.420961i
\(66\) −0.806380 + 0.182356i −0.0992585 + 0.0224465i
\(67\) −0.443446 + 1.65496i −0.0541756 + 0.202186i −0.987709 0.156305i \(-0.950042\pi\)
0.933533 + 0.358491i \(0.116709\pi\)
\(68\) −0.290215 + 1.08310i −0.0351937 + 0.131345i
\(69\) −11.9349 + 2.69897i −1.43679 + 0.324918i
\(70\) 0.965025 0.420858i 0.115343 0.0503021i
\(71\) 3.50583i 0.416065i −0.978122 0.208032i \(-0.933294\pi\)
0.978122 0.208032i \(-0.0667060\pi\)
\(72\) −2.25397 + 0.417150i −0.265633 + 0.0491616i
\(73\) 6.88847 6.88847i 0.806234 0.806234i −0.177827 0.984062i \(-0.556907\pi\)
0.984062 + 0.177827i \(0.0569069\pi\)
\(74\) 0.0234441 0.0406064i 0.00272533 0.00472040i
\(75\) 2.22212 + 8.37032i 0.256588 + 0.966521i
\(76\) 4.20809 + 7.28862i 0.482701 + 0.836062i
\(77\) 5.83906 + 1.56457i 0.665422 + 0.178299i
\(78\) 0.481962 0.253493i 0.0545715 0.0287025i
\(79\) 6.50159 + 3.75369i 0.731485 + 0.422323i 0.818965 0.573843i \(-0.194548\pi\)
−0.0874799 + 0.996166i \(0.527881\pi\)
\(80\) 6.79693 + 5.01799i 0.759920 + 0.561029i
\(81\) −3.22099 8.40388i −0.357888 0.933765i
\(82\) −1.02702 1.02702i −0.113415 0.113415i
\(83\) −10.6660 + 2.85794i −1.17074 + 0.313700i −0.791249 0.611493i \(-0.790569\pi\)
−0.379495 + 0.925194i \(0.623902\pi\)
\(84\) 7.92799 + 2.46282i 0.865014 + 0.268716i
\(85\) −0.796291 0.998835i −0.0863699 0.108339i
\(86\) −0.856104 + 0.494272i −0.0923161 + 0.0532987i
\(87\) −11.0947 0.437340i −1.18947 0.0468878i
\(88\) −0.489565 1.82708i −0.0521878 0.194767i
\(89\) −2.90124 −0.307531 −0.153765 0.988107i \(-0.549140\pi\)
−0.153765 + 0.988107i \(0.549140\pi\)
\(90\) 0.566032 1.16300i 0.0596650 0.122591i
\(91\) −3.98176 −0.417402
\(92\) −3.58893 13.3941i −0.374171 1.39643i
\(93\) −3.64587 + 5.77670i −0.378059 + 0.599016i
\(94\) −0.503800 + 0.290869i −0.0519630 + 0.0300008i
\(95\) −9.52734 1.07497i −0.977484 0.110290i
\(96\) −0.862145 3.81241i −0.0879923 0.389103i
\(97\) 1.41681 0.379633i 0.143855 0.0385459i −0.186173 0.982517i \(-0.559608\pi\)
0.330028 + 0.943971i \(0.392942\pi\)
\(98\) −0.141408 0.141408i −0.0142844 0.0142844i
\(99\) 6.70403 3.19554i 0.673780 0.321164i
\(100\) −9.37900 + 2.88985i −0.937900 + 0.288985i
\(101\) 15.3563 + 8.86596i 1.52801 + 0.882196i 0.999445 + 0.0333015i \(0.0106022\pi\)
0.528563 + 0.848894i \(0.322731\pi\)
\(102\) −0.00751461 + 0.190635i −0.000744058 + 0.0188756i
\(103\) −10.2381 2.74330i −1.00879 0.270305i −0.283668 0.958922i \(-0.591551\pi\)
−0.725125 + 0.688617i \(0.758218\pi\)
\(104\) 0.622960 + 1.07900i 0.0610863 + 0.105805i
\(105\) −7.62148 + 5.59959i −0.743780 + 0.546464i
\(106\) −0.834438 + 1.44529i −0.0810478 + 0.140379i
\(107\) −10.4591 + 10.4591i −1.01112 + 1.01112i −0.0111806 + 0.999937i \(0.503559\pi\)
−0.999937 + 0.0111806i \(0.996441\pi\)
\(108\) 9.37242 4.02243i 0.901862 0.387058i
\(109\) 0.343204i 0.0328730i 0.999865 + 0.0164365i \(0.00523214\pi\)
−0.999865 + 0.0164365i \(0.994768\pi\)
\(110\) 0.993479 + 0.390090i 0.0947245 + 0.0371936i
\(111\) −0.124955 + 0.402239i −0.0118602 + 0.0381788i
\(112\) −2.38793 + 8.91187i −0.225638 + 0.842092i
\(113\) 1.39133 5.19250i 0.130885 0.488469i −0.869096 0.494643i \(-0.835299\pi\)
0.999981 + 0.00617426i \(0.00196534\pi\)
\(114\) 0.971879 + 1.05164i 0.0910248 + 0.0984955i
\(115\) 14.7040 + 5.77354i 1.37116 + 0.538385i
\(116\) 12.5827i 1.16827i
\(117\) −3.72059 + 3.17603i −0.343969 + 0.293624i
\(118\) −0.619619 + 0.619619i −0.0570405 + 0.0570405i
\(119\) 0.697490 1.20809i 0.0639388 0.110745i
\(120\) 2.70981 + 1.18923i 0.247371 + 0.108562i
\(121\) −2.43581 4.21894i −0.221437 0.383540i
\(122\) −0.0878302 0.0235340i −0.00795177 0.00213067i
\(123\) 11.0335 + 6.96358i 0.994854 + 0.627885i
\(124\) −6.70403 3.87057i −0.602039 0.347588i
\(125\) 3.69754 10.5512i 0.330718 0.943730i
\(126\) 1.40810 + 0.111184i 0.125444 + 0.00990510i
\(127\) −3.59190 3.59190i −0.318729 0.318729i 0.529550 0.848279i \(-0.322361\pi\)
−0.848279 + 0.529550i \(0.822361\pi\)
\(128\) 5.68590 1.52353i 0.502567 0.134662i
\(129\) 6.52167 6.02702i 0.574201 0.530649i
\(130\) −0.698592 0.0788222i −0.0612706 0.00691316i
\(131\) 14.5188 8.38241i 1.26851 0.732375i 0.293804 0.955866i \(-0.405079\pi\)
0.974706 + 0.223491i \(0.0717453\pi\)
\(132\) 3.91774 + 7.44872i 0.340995 + 0.648327i
\(133\) −2.70992 10.1135i −0.234980 0.876956i
\(134\) −0.330355 −0.0285383
\(135\) −2.65509 + 11.3115i −0.228513 + 0.973541i
\(136\) −0.436499 −0.0374295
\(137\) −1.65517 6.17718i −0.141411 0.527752i −0.999889 0.0149021i \(-0.995256\pi\)
0.858478 0.512850i \(-0.171410\pi\)
\(138\) −1.09826 2.08810i −0.0934899 0.177751i
\(139\) −9.09433 + 5.25061i −0.771371 + 0.445351i −0.833364 0.552725i \(-0.813588\pi\)
0.0619924 + 0.998077i \(0.480255\pi\)
\(140\) −6.68093 8.38029i −0.564642 0.708264i
\(141\) 3.83787 3.54677i 0.323207 0.298692i
\(142\) 0.652936 0.174954i 0.0547931 0.0146818i
\(143\) −2.85435 2.85435i −0.238693 0.238693i
\(144\) 4.87720 + 10.2320i 0.406433 + 0.852669i
\(145\) 11.5320 + 8.51378i 0.957682 + 0.707031i
\(146\) 1.62669 + 0.939170i 0.134626 + 0.0777262i
\(147\) 1.51918 + 0.958803i 0.125300 + 0.0790808i
\(148\) −0.461055 0.123539i −0.0378985 0.0101549i
\(149\) 4.96581 + 8.60103i 0.406815 + 0.704624i 0.994531 0.104443i \(-0.0333061\pi\)
−0.587716 + 0.809067i \(0.699973\pi\)
\(150\) −1.44802 + 0.831564i −0.118230 + 0.0678969i
\(151\) −6.95939 + 12.0540i −0.566347 + 0.980942i 0.430576 + 0.902555i \(0.358311\pi\)
−0.996923 + 0.0783879i \(0.975023\pi\)
\(152\) −2.31665 + 2.31665i −0.187905 + 0.187905i
\(153\) −0.311884 1.68519i −0.0252143 0.136240i
\(154\) 1.16556i 0.0939236i
\(155\) 8.08352 3.52531i 0.649284 0.283160i
\(156\) −3.76247 4.07127i −0.301239 0.325962i
\(157\) 5.42234 20.2365i 0.432750 1.61505i −0.313644 0.949541i \(-0.601550\pi\)
0.746394 0.665504i \(-0.231784\pi\)
\(158\) −0.374646 + 1.39820i −0.0298052 + 0.111235i
\(159\) 4.44748 14.3167i 0.352708 1.13539i
\(160\) −1.84427 + 4.69698i −0.145802 + 0.371329i
\(161\) 17.2510i 1.35957i
\(162\) 1.40443 1.01927i 0.110342 0.0800815i
\(163\) −2.42872 + 2.42872i −0.190232 + 0.190232i −0.795796 0.605564i \(-0.792948\pi\)
0.605564 + 0.795796i \(0.292948\pi\)
\(164\) −7.39277 + 12.8046i −0.577278 + 0.999875i
\(165\) −9.47761 1.44940i −0.737831 0.112836i
\(166\) −1.06454 1.84385i −0.0826247 0.143110i
\(167\) −8.23252 2.20590i −0.637052 0.170697i −0.0741841 0.997245i \(-0.523635\pi\)
−0.562868 + 0.826547i \(0.690302\pi\)
\(168\) −0.127290 + 3.22917i −0.00982066 + 0.249136i
\(169\) −8.95567 5.17056i −0.688898 0.397735i
\(170\) 0.146288 0.198149i 0.0112198 0.0151974i
\(171\) −10.5992 7.28862i −0.810539 0.557375i
\(172\) 7.11584 + 7.11584i 0.542577 + 0.542577i
\(173\) −17.0726 + 4.57458i −1.29800 + 0.347799i −0.840695 0.541509i \(-0.817853\pi\)
−0.457308 + 0.889308i \(0.651186\pi\)
\(174\) −0.472213 2.08813i −0.0357984 0.158301i
\(175\) 12.2010 0.452740i 0.922313 0.0342239i
\(176\) −8.10033 + 4.67673i −0.610585 + 0.352521i
\(177\) 4.20126 6.65670i 0.315786 0.500348i
\(178\) −0.144783 0.540336i −0.0108519 0.0404999i
\(179\) 8.30788 0.620960 0.310480 0.950580i \(-0.399510\pi\)
0.310480 + 0.950580i \(0.399510\pi\)
\(180\) −12.9272 2.50160i −0.963536 0.186458i
\(181\) −4.73429 −0.351897 −0.175948 0.984399i \(-0.556299\pi\)
−0.175948 + 0.984399i \(0.556299\pi\)
\(182\) −0.198705 0.741576i −0.0147290 0.0549693i
\(183\) 0.816183 + 0.0321731i 0.0603340 + 0.00237830i
\(184\) 4.67475 2.69897i 0.344627 0.198971i
\(185\) 0.425187 0.338967i 0.0312604 0.0249214i
\(186\) −1.25781 0.390739i −0.0922273 0.0286503i
\(187\) 1.36603 0.366025i 0.0998937 0.0267664i
\(188\) 4.18752 + 4.18752i 0.305406 + 0.305406i
\(189\) −12.5578 + 1.81585i −0.913447 + 0.132084i
\(190\) −0.275244 1.82805i −0.0199683 0.132620i
\(191\) −3.34902 1.93356i −0.242327 0.139907i 0.373919 0.927461i \(-0.378014\pi\)
−0.616246 + 0.787554i \(0.711347\pi\)
\(192\) −10.9169 + 5.74188i −0.787861 + 0.414384i
\(193\) 16.5901 + 4.44530i 1.19418 + 0.319979i 0.800536 0.599284i \(-0.204548\pi\)
0.393643 + 0.919263i \(0.371215\pi\)
\(194\) 0.141408 + 0.244926i 0.0101525 + 0.0175847i
\(195\) 6.27712 0.693573i 0.449514 0.0496678i
\(196\) −1.01790 + 1.76305i −0.0727070 + 0.125932i
\(197\) 11.0386 11.0386i 0.786469 0.786469i −0.194445 0.980913i \(-0.562291\pi\)
0.980913 + 0.194445i \(0.0622905\pi\)
\(198\) 0.929703 + 1.08911i 0.0660711 + 0.0773996i
\(199\) 3.60138i 0.255295i −0.991820 0.127648i \(-0.959257\pi\)
0.991820 0.127648i \(-0.0407427\pi\)
\(200\) −2.03158 3.23547i −0.143655 0.228782i
\(201\) 2.89451 0.654569i 0.204163 0.0461698i
\(202\) −0.884888 + 3.30245i −0.0622605 + 0.232359i
\(203\) −4.05148 + 15.1203i −0.284358 + 1.06124i
\(204\) 1.89432 0.428385i 0.132629 0.0299929i
\(205\) −6.73332 15.4395i −0.470275 1.07834i
\(206\) 2.04368i 0.142390i
\(207\) 13.7601 + 16.1194i 0.956394 + 1.12038i
\(208\) 4.35646 4.35646i 0.302066 0.302066i
\(209\) 5.30734 9.19258i 0.367116 0.635864i
\(210\) −1.42322 1.14001i −0.0982118 0.0786680i
\(211\) 9.56007 + 16.5585i 0.658142 + 1.13994i 0.981096 + 0.193521i \(0.0619909\pi\)
−0.322954 + 0.946415i \(0.604676\pi\)
\(212\) 16.4102 + 4.39709i 1.12705 + 0.301993i
\(213\) −5.37425 + 2.82664i −0.368237 + 0.193678i
\(214\) −2.46988 1.42599i −0.168837 0.0974783i
\(215\) −11.3364 + 1.70690i −0.773139 + 0.116409i
\(216\) 2.45678 + 3.11889i 0.167163 + 0.212213i
\(217\) 6.80981 + 6.80981i 0.462280 + 0.462280i
\(218\) −0.0639194 + 0.0171272i −0.00432917 + 0.00116000i
\(219\) −16.1136 5.00569i −1.08886 0.338253i
\(220\) 1.21820 10.7967i 0.0821307 0.727915i
\(221\) −0.806719 + 0.465759i −0.0542658 + 0.0313304i
\(222\) −0.0811499 0.00319884i −0.00544642 0.000214692i
\(223\) −1.08126 4.03530i −0.0724062 0.270224i 0.920226 0.391386i \(-0.128004\pi\)
−0.992633 + 0.121163i \(0.961338\pi\)
\(224\) −5.51055 −0.368189
\(225\) 11.0396 10.1551i 0.735975 0.677009i
\(226\) 1.03650 0.0689469
\(227\) 3.55990 + 13.2857i 0.236279 + 0.881803i 0.977568 + 0.210618i \(0.0675478\pi\)
−0.741290 + 0.671185i \(0.765786\pi\)
\(228\) 7.78022 12.3274i 0.515257 0.816401i
\(229\) 13.2694 7.66109i 0.876866 0.506259i 0.00724242 0.999974i \(-0.497695\pi\)
0.869624 + 0.493715i \(0.164361\pi\)
\(230\) −0.341496 + 3.02664i −0.0225176 + 0.199571i
\(231\) −2.30946 10.2124i −0.151951 0.671929i
\(232\) 4.73125 1.26773i 0.310622 0.0832308i
\(233\) 2.98562 + 2.98562i 0.195595 + 0.195595i 0.798108 0.602514i \(-0.205834\pi\)
−0.602514 + 0.798108i \(0.705834\pi\)
\(234\) −0.777184 0.534438i −0.0508061 0.0349373i
\(235\) −6.67126 + 1.00447i −0.435185 + 0.0655246i
\(236\) 7.72529 + 4.46020i 0.502874 + 0.290334i
\(237\) 0.512173 12.9931i 0.0332692 0.843991i
\(238\) 0.259805 + 0.0696146i 0.0168407 + 0.00451245i
\(239\) −2.59439 4.49362i −0.167817 0.290668i 0.769835 0.638243i \(-0.220339\pi\)
−0.937652 + 0.347575i \(0.887005\pi\)
\(240\) 2.21215 14.4652i 0.142794 0.933725i
\(241\) 1.85872 3.21939i 0.119730 0.207379i −0.799930 0.600093i \(-0.795130\pi\)
0.919661 + 0.392714i \(0.128464\pi\)
\(242\) 0.664193 0.664193i 0.0426959 0.0426959i
\(243\) −10.2857 + 11.7134i −0.659829 + 0.751416i
\(244\) 0.925646i 0.0592584i
\(245\) −0.927099 2.12583i −0.0592302 0.135814i
\(246\) −0.746308 + 2.40241i −0.0475829 + 0.153172i
\(247\) −1.80959 + 6.75347i −0.115141 + 0.429713i
\(248\) 0.779940 2.91078i 0.0495262 0.184834i
\(249\) 12.9808 + 14.0461i 0.822622 + 0.890137i
\(250\) 2.14961 + 0.162097i 0.135953 + 0.0102519i
\(251\) 3.97271i 0.250755i −0.992109 0.125378i \(-0.959986\pi\)
0.992109 0.125378i \(-0.0400142\pi\)
\(252\) −2.61673 14.1389i −0.164838 0.890666i
\(253\) −12.3665 + 12.3665i −0.777472 + 0.777472i
\(254\) 0.489717 0.848215i 0.0307276 0.0532217i
\(255\) −0.889136 + 2.02600i −0.0556798 + 0.126873i
\(256\) −6.55403 11.3519i −0.409627 0.709495i
\(257\) −16.5120 4.42437i −1.02999 0.275985i −0.296030 0.955179i \(-0.595663\pi\)
−0.733959 + 0.679194i \(0.762329\pi\)
\(258\) 1.44794 + 0.913846i 0.0901451 + 0.0568935i
\(259\) 0.514262 + 0.296909i 0.0319547 + 0.0184491i
\(260\) 1.06556 + 7.07698i 0.0660832 + 0.438896i
\(261\) 8.27489 + 17.3602i 0.512203 + 1.07457i
\(262\) 2.28571 + 2.28571i 0.141211 + 0.141211i
\(263\) 10.3436 2.77155i 0.637812 0.170901i 0.0746001 0.997214i \(-0.476232\pi\)
0.563212 + 0.826312i \(0.309565\pi\)
\(264\) −2.40610 + 2.22360i −0.148085 + 0.136853i
\(265\) −15.1335 + 12.0647i −0.929645 + 0.741131i
\(266\) 1.74834 1.00941i 0.107198 0.0618907i
\(267\) 2.33919 + 4.44745i 0.143156 + 0.272179i
\(268\) 0.870407 + 3.24840i 0.0531685 + 0.198428i
\(269\) −15.8925 −0.968985 −0.484492 0.874796i \(-0.660996\pi\)
−0.484492 + 0.874796i \(0.660996\pi\)
\(270\) −2.23919 + 0.0699950i −0.136273 + 0.00425976i
\(271\) 0.974200 0.0591785 0.0295892 0.999562i \(-0.490580\pi\)
0.0295892 + 0.999562i \(0.490580\pi\)
\(272\) 0.558646 + 2.08490i 0.0338729 + 0.126415i
\(273\) 3.21038 + 6.10383i 0.194301 + 0.369421i
\(274\) 1.06786 0.616528i 0.0645117 0.0372458i
\(275\) 9.07095 + 8.42185i 0.546999 + 0.507857i
\(276\) −17.6387 + 16.3009i −1.06173 + 0.981197i
\(277\) −23.0788 + 6.18395i −1.38667 + 0.371557i −0.873540 0.486753i \(-0.838181\pi\)
−0.513131 + 0.858310i \(0.671515\pi\)
\(278\) −1.43173 1.43173i −0.0858695 0.0858695i
\(279\) 11.7949 + 0.931335i 0.706144 + 0.0557576i
\(280\) 2.47798 3.35646i 0.148088 0.200587i
\(281\) −23.9241 13.8126i −1.42720 0.823991i −0.430296 0.902688i \(-0.641591\pi\)
−0.996899 + 0.0786961i \(0.974924\pi\)
\(282\) 0.852086 + 0.537779i 0.0507410 + 0.0320243i
\(283\) −16.4535 4.40870i −0.978058 0.262070i −0.265831 0.964020i \(-0.585646\pi\)
−0.712227 + 0.701950i \(0.752313\pi\)
\(284\) −3.44066 5.95939i −0.204165 0.353625i
\(285\) 6.03374 + 15.4716i 0.357408 + 0.916460i
\(286\) 0.389161 0.674046i 0.0230115 0.0398572i
\(287\) 13.0067 13.0067i 0.767761 0.767761i
\(288\) −5.14910 + 4.39546i −0.303414 + 0.259005i
\(289\) 16.6736i 0.980803i
\(290\) −1.01014 + 2.57263i −0.0593176 + 0.151070i
\(291\) −1.72429 1.86581i −0.101080 0.109376i
\(292\) 4.94897 18.4698i 0.289617 1.08086i
\(293\) 6.90146 25.7566i 0.403188 1.50472i −0.404186 0.914677i \(-0.632445\pi\)
0.807374 0.590041i \(-0.200888\pi\)
\(294\) −0.102758 + 0.330784i −0.00599296 + 0.0192917i
\(295\) −9.31493 + 4.06234i −0.542336 + 0.236519i
\(296\) 0.185810i 0.0108000i
\(297\) −10.3039 7.70045i −0.597890 0.446825i
\(298\) −1.35407 + 1.35407i −0.0784392 + 0.0784392i
\(299\) 5.75979 9.97625i 0.333097 0.576941i
\(300\) 11.9920 + 12.0475i 0.692359 + 0.695563i
\(301\) −6.25973 10.8422i −0.360805 0.624933i
\(302\) −2.59228 0.694599i −0.149169 0.0399697i
\(303\) 1.20972 30.6887i 0.0694965 1.76302i
\(304\) 14.0302 + 8.10033i 0.804686 + 0.464586i
\(305\) −0.848356 0.626318i −0.0485767 0.0358629i
\(306\) 0.298292 0.142184i 0.0170522 0.00812810i
\(307\) −12.3556 12.3556i −0.705171 0.705171i 0.260345 0.965516i \(-0.416164\pi\)
−0.965516 + 0.260345i \(0.916164\pi\)
\(308\) 11.4610 3.07098i 0.653053 0.174985i
\(309\) 4.04938 + 17.9064i 0.230361 + 1.01866i
\(310\) 1.05996 + 1.32957i 0.0602018 + 0.0755147i
\(311\) 7.49228 4.32567i 0.424848 0.245286i −0.272301 0.962212i \(-0.587785\pi\)
0.697149 + 0.716926i \(0.254451\pi\)
\(312\) 1.15177 1.82493i 0.0652064 0.103316i
\(313\) 4.85240 + 18.1094i 0.274274 + 1.02360i 0.956326 + 0.292301i \(0.0944209\pi\)
−0.682052 + 0.731303i \(0.738912\pi\)
\(314\) 4.03949 0.227962
\(315\) 14.7289 + 7.16854i 0.829877 + 0.403901i
\(316\) 14.7357 0.828946
\(317\) 5.02186 + 18.7418i 0.282056 + 1.05265i 0.950964 + 0.309301i \(0.100095\pi\)
−0.668908 + 0.743345i \(0.733238\pi\)
\(318\) 2.88834 + 0.113855i 0.161970 + 0.00638468i
\(319\) −13.7434 + 7.93476i −0.769484 + 0.444262i
\(320\) 15.8238 + 1.78540i 0.884578 + 0.0998070i
\(321\) 24.4661 + 7.60037i 1.36556 + 0.424211i
\(322\) −3.21287 + 0.860886i −0.179046 + 0.0479753i
\(323\) −1.73205 1.73205i −0.0963739 0.0963739i
\(324\) −13.7229 11.1243i −0.762382 0.618015i
\(325\) −7.20704 3.81190i −0.399775 0.211446i
\(326\) −0.573535 0.331131i −0.0317652 0.0183396i
\(327\) 0.526114 0.276716i 0.0290942 0.0153024i
\(328\) −5.55956 1.48968i −0.306975 0.0822538i
\(329\) −3.68372 6.38039i −0.203090 0.351763i
\(330\) −0.203026 1.83747i −0.0111762 0.101149i
\(331\) 17.1969 29.7859i 0.945226 1.63718i 0.189929 0.981798i \(-0.439174\pi\)
0.755298 0.655382i \(-0.227492\pi\)
\(332\) −15.3258 + 15.3258i −0.841114 + 0.841114i
\(333\) 0.717358 0.132764i 0.0393110 0.00727540i
\(334\) 1.64333i 0.0899191i
\(335\) −3.56610 1.40023i −0.194837 0.0765028i
\(336\) 15.5867 3.52481i 0.850326 0.192294i
\(337\) −8.28744 + 30.9291i −0.451445 + 1.68482i 0.246888 + 0.969044i \(0.420592\pi\)
−0.698333 + 0.715773i \(0.746075\pi\)
\(338\) 0.516060 1.92596i 0.0280700 0.104758i
\(339\) −9.08161 + 2.05373i −0.493245 + 0.111543i
\(340\) −2.33385 0.916386i −0.126571 0.0496980i
\(341\) 9.76331i 0.528713i
\(342\) 0.828518 2.33775i 0.0448011 0.126411i
\(343\) 13.8776 13.8776i 0.749320 0.749320i
\(344\) −1.95871 + 3.39259i −0.105607 + 0.182916i
\(345\) −3.00490 27.1955i −0.161778 1.46416i
\(346\) −1.70397 2.95136i −0.0916059 0.158666i
\(347\) −15.5122 4.15647i −0.832737 0.223131i −0.182829 0.983145i \(-0.558526\pi\)
−0.649907 + 0.760014i \(0.725192\pi\)
\(348\) −19.2885 + 10.1450i −1.03397 + 0.543830i
\(349\) 15.1664 + 8.75630i 0.811837 + 0.468714i 0.847593 0.530646i \(-0.178051\pi\)
−0.0357566 + 0.999361i \(0.511384\pi\)
\(350\) 0.693197 + 2.24977i 0.0370529 + 0.120255i
\(351\) 7.86849 + 3.14273i 0.419989 + 0.167746i
\(352\) −3.95028 3.95028i −0.210550 0.210550i
\(353\) 18.4846 4.95294i 0.983837 0.263618i 0.269177 0.963091i \(-0.413248\pi\)
0.714660 + 0.699472i \(0.246582\pi\)
\(354\) 1.44942 + 0.450262i 0.0770360 + 0.0239312i
\(355\) 7.78984 + 0.878927i 0.413442 + 0.0466486i
\(356\) −4.93169 + 2.84731i −0.261379 + 0.150907i
\(357\) −2.41430 0.0951692i −0.127778 0.00503689i
\(358\) 0.414594 + 1.54728i 0.0219120 + 0.0817766i
\(359\) 23.0127 1.21457 0.607283 0.794486i \(-0.292259\pi\)
0.607283 + 0.794486i \(0.292259\pi\)
\(360\) −0.361811 5.11284i −0.0190691 0.269471i
\(361\) 0.614846 0.0323603
\(362\) −0.236258 0.881728i −0.0124175 0.0463426i
\(363\) −4.50350 + 7.13557i −0.236372 + 0.374521i
\(364\) −6.76842 + 3.90775i −0.354762 + 0.204822i
\(365\) 13.5790 + 17.0329i 0.710757 + 0.891545i
\(366\) 0.0347385 + 0.153614i 0.00181581 + 0.00802953i
\(367\) 26.1875 7.01692i 1.36698 0.366280i 0.500603 0.865677i \(-0.333112\pi\)
0.866373 + 0.499397i \(0.166445\pi\)
\(368\) −18.8743 18.8743i −0.983891 0.983891i
\(369\) 1.77884 22.5282i 0.0926029 1.17277i
\(370\) 0.0843487 + 0.0622724i 0.00438508 + 0.00323739i
\(371\) −18.3039 10.5678i −0.950293 0.548652i
\(372\) −0.528121 + 13.3977i −0.0273818 + 0.694636i
\(373\) 28.9771 + 7.76440i 1.50038 + 0.402025i 0.913227 0.407451i \(-0.133582\pi\)
0.587152 + 0.809477i \(0.300249\pi\)
\(374\) 0.136339 + 0.236147i 0.00704994 + 0.0122109i
\(375\) −19.1557 + 2.83900i −0.989195 + 0.146605i
\(376\) −1.15266 + 1.99647i −0.0594440 + 0.102960i
\(377\) 7.39138 7.39138i 0.380675 0.380675i
\(378\) −0.964871 2.24819i −0.0496276 0.115634i
\(379\) 20.0943i 1.03218i −0.856535 0.516089i \(-0.827388\pi\)
0.856535 0.516089i \(-0.172612\pi\)
\(380\) −17.2501 + 7.52295i −0.884911 + 0.385919i
\(381\) −2.61015 + 8.40224i −0.133722 + 0.430460i
\(382\) 0.192983 0.720223i 0.00987388 0.0368498i
\(383\) −7.14181 + 26.6536i −0.364929 + 1.36194i 0.502587 + 0.864527i \(0.332382\pi\)
−0.867516 + 0.497409i \(0.834285\pi\)
\(384\) −6.91987 7.48780i −0.353128 0.382110i
\(385\) −4.94031 + 12.5820i −0.251781 + 0.641236i
\(386\) 3.31162i 0.168557i
\(387\) −14.4973 5.13797i −0.736941 0.261178i
\(388\) 2.03579 2.03579i 0.103352 0.103352i
\(389\) −6.71184 + 11.6253i −0.340304 + 0.589424i −0.984489 0.175446i \(-0.943863\pi\)
0.644185 + 0.764870i \(0.277197\pi\)
\(390\) 0.442424 + 1.13446i 0.0224030 + 0.0574455i
\(391\) 2.01790 + 3.49510i 0.102049 + 0.176755i
\(392\) −0.765487 0.205111i −0.0386629 0.0103597i
\(393\) −24.5558 15.4980i −1.23868 0.781771i
\(394\) 2.60673 + 1.50500i 0.131325 + 0.0758207i
\(395\) −9.97057 + 13.5053i −0.501674 + 0.679523i
\(396\) 8.25973 12.0114i 0.415067 0.603594i
\(397\) −12.8716 12.8716i −0.646008 0.646008i 0.306018 0.952026i \(-0.401003\pi\)
−0.952026 + 0.306018i \(0.901003\pi\)
\(398\) 0.670732 0.179722i 0.0336208 0.00900866i
\(399\) −13.3186 + 12.3084i −0.666764 + 0.616191i
\(400\) −12.8539 + 13.8445i −0.642693 + 0.692227i
\(401\) −21.7606 + 12.5635i −1.08667 + 0.627391i −0.932689 0.360682i \(-0.882544\pi\)
−0.153985 + 0.988073i \(0.549211\pi\)
\(402\) 0.266356 + 0.506417i 0.0132846 + 0.0252578i
\(403\) −1.66445 6.21180i −0.0829120 0.309432i
\(404\) 34.8046 1.73159
\(405\) 19.4807 5.05004i 0.968003 0.250939i
\(406\) −3.01824 −0.149793
\(407\) 0.155811 + 0.581494i 0.00772325 + 0.0288236i
\(408\) 0.351936 + 0.669129i 0.0174234 + 0.0331268i
\(409\) 9.81878 5.66888i 0.485508 0.280308i −0.237201 0.971461i \(-0.576230\pi\)
0.722709 + 0.691153i \(0.242897\pi\)
\(410\) 2.53947 2.02452i 0.125416 0.0999839i
\(411\) −8.13478 + 7.51777i −0.401259 + 0.370824i
\(412\) −20.0957 + 5.38461i −0.990042 + 0.265281i
\(413\) −7.84719 7.84719i −0.386135 0.386135i
\(414\) −2.31545 + 3.36714i −0.113798 + 0.165486i
\(415\) −3.67625 24.4160i −0.180460 1.19853i
\(416\) 3.18676 + 1.83988i 0.156244 + 0.0902074i
\(417\) 15.3814 + 9.70771i 0.753231 + 0.475389i
\(418\) 1.97691 + 0.529711i 0.0966938 + 0.0259090i
\(419\) −4.26264 7.38311i −0.208244 0.360688i 0.742918 0.669383i \(-0.233441\pi\)
−0.951161 + 0.308694i \(0.900108\pi\)
\(420\) −7.45990 + 16.9983i −0.364006 + 0.829432i
\(421\) 1.10329 1.91095i 0.0537710 0.0931341i −0.837887 0.545844i \(-0.816209\pi\)
0.891658 + 0.452710i \(0.149543\pi\)
\(422\) −2.60683 + 2.60683i −0.126898 + 0.126898i
\(423\) −8.53138 3.02359i −0.414810 0.147012i
\(424\) 6.61346i 0.321178i
\(425\) 2.41902 1.51892i 0.117339 0.0736785i
\(426\) −0.794637 0.859856i −0.0385003 0.0416601i
\(427\) 0.298048 1.11233i 0.0144235 0.0538294i
\(428\) −7.51426 + 28.0436i −0.363215 + 1.35554i
\(429\) −2.07419 + 6.67695i −0.100143 + 0.322366i
\(430\) −0.883628 2.02615i −0.0426123 0.0977098i
\(431\) 1.95738i 0.0942838i 0.998888 + 0.0471419i \(0.0150113\pi\)
−0.998888 + 0.0471419i \(0.984989\pi\)
\(432\) 11.7528 15.7263i 0.565458 0.756630i
\(433\) −9.71652 + 9.71652i −0.466946 + 0.466946i −0.900924 0.433978i \(-0.857110\pi\)
0.433978 + 0.900924i \(0.357110\pi\)
\(434\) −0.928445 + 1.60811i −0.0445668 + 0.0771919i
\(435\) 3.75325 24.5424i 0.179954 1.17672i
\(436\) 0.336825 + 0.583398i 0.0161310 + 0.0279397i
\(437\) 29.2593 + 7.84002i 1.39966 + 0.375039i
\(438\) 0.128145 3.25085i 0.00612302 0.155332i
\(439\) 4.68008 + 2.70205i 0.223368 + 0.128962i 0.607509 0.794313i \(-0.292169\pi\)
−0.384141 + 0.923275i \(0.625502\pi\)
\(440\) 4.18245 0.629740i 0.199391 0.0300217i
\(441\) 0.244926 3.10188i 0.0116631 0.147708i
\(442\) −0.127003 0.127003i −0.00604090 0.00604090i
\(443\) 26.0848 6.98940i 1.23933 0.332077i 0.421122 0.907004i \(-0.361636\pi\)
0.818204 + 0.574927i \(0.194970\pi\)
\(444\) 0.182356 + 0.806380i 0.00865424 + 0.0382691i
\(445\) 0.727355 6.44647i 0.0344799 0.305592i
\(446\) 0.697588 0.402752i 0.0330317 0.0190709i
\(447\) 9.18114 14.5471i 0.434253 0.688053i
\(448\) 4.50086 + 16.7974i 0.212646 + 0.793604i
\(449\) −23.8541 −1.12574 −0.562872 0.826544i \(-0.690304\pi\)
−0.562872 + 0.826544i \(0.690304\pi\)
\(450\) 2.44224 + 1.54927i 0.115128 + 0.0730335i
\(451\) 18.6479 0.878093
\(452\) −2.73093 10.1920i −0.128452 0.479389i
\(453\) 24.0893 + 0.949576i 1.13182 + 0.0446150i
\(454\) −2.29672 + 1.32601i −0.107790 + 0.0622328i
\(455\) 0.998248 8.84736i 0.0467986 0.414770i
\(456\) 5.41914 + 1.68345i 0.253774 + 0.0788349i
\(457\) 19.1467 5.13035i 0.895647 0.239988i 0.218501 0.975837i \(-0.429883\pi\)
0.677146 + 0.735849i \(0.263217\pi\)
\(458\) 2.08902 + 2.08902i 0.0976133 + 0.0976133i
\(459\) −2.33185 + 1.83682i −0.108842 + 0.0857356i
\(460\) 30.6609 4.61653i 1.42957 0.215247i
\(461\) −1.14371 0.660321i −0.0532679 0.0307542i 0.473130 0.880993i \(-0.343124\pi\)
−0.526397 + 0.850239i \(0.676458\pi\)
\(462\) 1.78674 0.939758i 0.0831269 0.0437215i
\(463\) −14.8827 3.98780i −0.691656 0.185329i −0.104166 0.994560i \(-0.533217\pi\)
−0.587490 + 0.809231i \(0.699884\pi\)
\(464\) −12.1104 20.9759i −0.562213 0.973782i
\(465\) −11.9216 9.54925i −0.552852 0.442836i
\(466\) −0.407058 + 0.705045i −0.0188566 + 0.0326606i
\(467\) 1.77645 1.77645i 0.0822044 0.0822044i −0.664809 0.747013i \(-0.731487\pi\)
0.747013 + 0.664809i \(0.231487\pi\)
\(468\) −3.20747 + 9.05022i −0.148265 + 0.418346i
\(469\) 4.18380i 0.193190i
\(470\) −0.519997 1.19235i −0.0239857 0.0549990i
\(471\) −35.3933 + 8.00390i −1.63084 + 0.368800i
\(472\) −0.898753 + 3.35419i −0.0413685 + 0.154389i
\(473\) 3.28495 12.2596i 0.151042 0.563697i
\(474\) 2.44543 0.553014i 0.112322 0.0254008i
\(475\) 4.77710 20.9000i 0.219188 0.958956i
\(476\) 2.73810i 0.125501i
\(477\) −25.5327 + 4.72541i −1.16906 + 0.216361i
\(478\) 0.707436 0.707436i 0.0323574 0.0323574i
\(479\) −18.9907 + 32.8928i −0.867705 + 1.50291i −0.00336919 + 0.999994i \(0.501072\pi\)
−0.864336 + 0.502915i \(0.832261\pi\)
\(480\) 8.68720 0.959870i 0.396515 0.0438119i
\(481\) −0.198266 0.343406i −0.00904014 0.0156580i
\(482\) 0.692346 + 0.185513i 0.0315355 + 0.00844991i
\(483\) 26.4448 13.9089i 1.20328 0.632879i
\(484\) −8.28104 4.78106i −0.376411 0.217321i
\(485\) 0.488332 + 3.24328i 0.0221740 + 0.147270i
\(486\) −2.69484 1.33110i −0.122240 0.0603800i
\(487\) 23.6900 + 23.6900i 1.07350 + 1.07350i 0.997076 + 0.0764213i \(0.0243494\pi\)
0.0764213 + 0.997076i \(0.475651\pi\)
\(488\) −0.348056 + 0.0932612i −0.0157557 + 0.00422174i
\(489\) 5.68131 + 1.76490i 0.256918 + 0.0798114i
\(490\) 0.349656 0.278753i 0.0157958 0.0125928i
\(491\) 18.9114 10.9185i 0.853460 0.492746i −0.00835660 0.999965i \(-0.502660\pi\)
0.861817 + 0.507220i \(0.169327\pi\)
\(492\) 25.5894 + 1.00871i 1.15366 + 0.0454761i
\(493\) 0.947827 + 3.53734i 0.0426880 + 0.159314i
\(494\) −1.34809 −0.0606535
\(495\) 5.41966 + 15.6973i 0.243596 + 0.705540i
\(496\) −14.9013 −0.669086
\(497\) 2.21571 + 8.26913i 0.0993881 + 0.370921i
\(498\) −1.96821 + 3.11853i −0.0881974 + 0.139745i
\(499\) 2.74862 1.58691i 0.123045 0.0710401i −0.437214 0.899357i \(-0.644035\pi\)
0.560259 + 0.828317i \(0.310702\pi\)
\(500\) −4.06980 21.5643i −0.182007 0.964387i
\(501\) 3.25612 + 14.3986i 0.145473 + 0.643281i
\(502\) 0.739889 0.198253i 0.0330229 0.00884845i
\(503\) 7.00484 + 7.00484i 0.312330 + 0.312330i 0.845812 0.533481i \(-0.179117\pi\)
−0.533481 + 0.845812i \(0.679117\pi\)
\(504\) 5.05277 2.40845i 0.225068 0.107281i
\(505\) −23.5498 + 31.8985i −1.04795 + 1.41946i
\(506\) −2.92030 1.68603i −0.129823 0.0749534i
\(507\) −0.705498 + 17.8974i −0.0313323 + 0.794853i
\(508\) −9.63084 2.58058i −0.427299 0.114495i
\(509\) −8.36206 14.4835i −0.370642 0.641971i 0.619023 0.785373i \(-0.287529\pi\)
−0.989664 + 0.143403i \(0.954196\pi\)
\(510\) −0.421700 0.0644903i −0.0186732 0.00285568i
\(511\) −11.8942 + 20.6013i −0.526167 + 0.911347i
\(512\) 10.1119 10.1119i 0.446886 0.446886i
\(513\) −2.62727 + 22.1246i −0.115997 + 0.976824i
\(514\) 3.29603i 0.145382i
\(515\) 8.66228 22.0611i 0.381706 0.972127i
\(516\) 5.17091 16.6455i 0.227637 0.732777i
\(517\) 1.93313 7.21452i 0.0850188 0.317294i
\(518\) −0.0296337 + 0.110595i −0.00130203 + 0.00485925i
\(519\) 20.7777 + 22.4830i 0.912040 + 0.986894i
\(520\) −2.55368 + 1.11369i −0.111986 + 0.0488385i
\(521\) 1.34092i 0.0587466i −0.999569 0.0293733i \(-0.990649\pi\)
0.999569 0.0293733i \(-0.00935116\pi\)
\(522\) −2.82026 + 2.40748i −0.123440 + 0.105372i
\(523\) −9.19187 + 9.19187i −0.401933 + 0.401933i −0.878914 0.476981i \(-0.841731\pi\)
0.476981 + 0.878914i \(0.341731\pi\)
\(524\) 16.4532 28.4978i 0.718761 1.24493i
\(525\) −10.5314 18.3385i −0.459627 0.800359i
\(526\) 1.03237 + 1.78811i 0.0450133 + 0.0779653i
\(527\) 2.17625 + 0.583126i 0.0947991 + 0.0254014i
\(528\) 13.7002 + 8.64667i 0.596226 + 0.376298i
\(529\) −23.3034 13.4542i −1.01319 0.584967i
\(530\) −3.00219 2.21644i −0.130407 0.0962759i
\(531\) −13.5917 1.07321i −0.589831 0.0465734i
\(532\) −14.5320 14.5320i −0.630043 0.630043i
\(533\) −11.8645 + 3.17908i −0.513908 + 0.137701i
\(534\) −0.711572 + 0.657601i −0.0307927 + 0.0284572i
\(535\) −20.6176 25.8619i −0.891378 1.11811i
\(536\) −1.13375 + 0.654569i −0.0489704 + 0.0282731i
\(537\) −6.69840 12.7355i −0.289057 0.549579i
\(538\) −0.793096 2.95987i −0.0341928 0.127609i
\(539\) 2.56759 0.110594
\(540\) 6.58800 + 21.8337i 0.283502 + 0.939572i
\(541\) −34.0389 −1.46345 −0.731724 0.681601i \(-0.761284\pi\)
−0.731724 + 0.681601i \(0.761284\pi\)
\(542\) 0.0486162 + 0.181438i 0.00208824 + 0.00779343i
\(543\) 3.81712 + 7.25741i 0.163808 + 0.311445i
\(544\) −1.11646 + 0.644587i −0.0478677 + 0.0276364i
\(545\) −0.762590 0.0860430i −0.0326658 0.00368568i
\(546\) −0.976587 + 0.902515i −0.0417941 + 0.0386241i
\(547\) −9.12437 + 2.44487i −0.390130 + 0.104535i −0.448552 0.893757i \(-0.648060\pi\)
0.0584215 + 0.998292i \(0.481393\pi\)
\(548\) −8.87591 8.87591i −0.379160 0.379160i
\(549\) −0.608745 1.27711i −0.0259806 0.0545055i
\(550\) −1.11584 + 2.10968i −0.0475794 + 0.0899571i
\(551\) 23.8043 + 13.7434i 1.01410 + 0.585489i
\(552\) −7.90650 4.99005i −0.336523 0.212391i
\(553\) −17.7075 4.74472i −0.753001 0.201766i
\(554\) −2.30343 3.98967i −0.0978636 0.169505i
\(555\) −0.862435 0.378490i −0.0366083 0.0160660i
\(556\) −10.3060 + 17.8506i −0.437073 + 0.757033i
\(557\) −1.48579 + 1.48579i −0.0629551 + 0.0629551i −0.737883 0.674928i \(-0.764175\pi\)
0.674928 + 0.737883i \(0.264175\pi\)
\(558\) 0.415156 + 2.24320i 0.0175750 + 0.0949623i
\(559\) 8.36006i 0.353593i
\(560\) −19.2032 7.54015i −0.811484 0.318629i
\(561\) −1.66248 1.79893i −0.0701901 0.0759509i
\(562\) 1.37860 5.14501i 0.0581527 0.217029i
\(563\) −5.52969 + 20.6371i −0.233049 + 0.869750i 0.745970 + 0.665979i \(0.231986\pi\)
−0.979019 + 0.203770i \(0.934681\pi\)
\(564\) 3.04297 9.79553i 0.128132 0.412466i
\(565\) 11.1888 + 4.39327i 0.470715 + 0.184826i
\(566\) 3.28436i 0.138052i
\(567\) 12.9086 + 17.7864i 0.542111 + 0.746959i
\(568\) 1.89416 1.89416i 0.0794771 0.0794771i
\(569\) −5.82589 + 10.0907i −0.244234 + 0.423026i −0.961916 0.273345i \(-0.911870\pi\)
0.717682 + 0.696371i \(0.245203\pi\)
\(570\) −2.58038 + 1.89583i −0.108080 + 0.0794077i
\(571\) 10.5623 + 18.2945i 0.442020 + 0.765601i 0.997839 0.0657023i \(-0.0209288\pi\)
−0.555819 + 0.831303i \(0.687595\pi\)
\(572\) −7.65328 2.05069i −0.320000 0.0857436i
\(573\) −0.263825 + 6.69284i −0.0110214 + 0.279598i
\(574\) 3.07149 + 1.77332i 0.128201 + 0.0740171i
\(575\) −16.5150 + 31.2244i −0.688723 + 1.30215i
\(576\) 17.6040 + 12.1056i 0.733500 + 0.504398i
\(577\) 30.1119 + 30.1119i 1.25357 + 1.25357i 0.954106 + 0.299469i \(0.0968094\pi\)
0.299469 + 0.954106i \(0.403191\pi\)
\(578\) −3.10535 + 0.832076i −0.129166 + 0.0346098i
\(579\) −6.56168 29.0158i −0.272694 1.20586i
\(580\) 27.9583 + 3.15453i 1.16090 + 0.130985i
\(581\) 23.3515 13.4820i 0.968782 0.559327i
\(582\) 0.261445 0.414248i 0.0108373 0.0171711i
\(583\) −5.54571 20.6969i −0.229680 0.857177i
\(584\) 7.44353 0.308015
\(585\) −6.12427 9.06328i −0.253207 0.374720i
\(586\) 5.14140 0.212389
\(587\) −2.28631 8.53262i −0.0943661 0.352179i 0.902556 0.430571i \(-0.141688\pi\)
−0.996923 + 0.0783924i \(0.975021\pi\)
\(588\) 3.52336 + 0.138887i 0.145301 + 0.00572761i
\(589\) 14.6450 8.45527i 0.603435 0.348393i
\(590\) −1.22143 1.53211i −0.0502856 0.0630762i
\(591\) −25.8217 8.02150i −1.06216 0.329960i
\(592\) −0.887505 + 0.237806i −0.0364762 + 0.00977377i
\(593\) −24.5829 24.5829i −1.00950 1.00950i −0.999954 0.00954475i \(-0.996962\pi\)
−0.00954475 0.999954i \(-0.503038\pi\)
\(594\) 0.919955 2.30330i 0.0377462 0.0945056i
\(595\) 2.50947 + 1.85267i 0.102878 + 0.0759523i
\(596\) 16.8823 + 9.74700i 0.691526 + 0.399253i
\(597\) −5.52073 + 2.90369i −0.225948 + 0.118840i
\(598\) 2.14544 + 0.574869i 0.0877336 + 0.0235082i
\(599\) 18.8291 + 32.6129i 0.769335 + 1.33253i 0.937924 + 0.346840i \(0.112745\pi\)
−0.168590 + 0.985686i \(0.553921\pi\)
\(600\) −3.32180 + 5.72297i −0.135612 + 0.233639i
\(601\) 11.1158 19.2532i 0.453424 0.785354i −0.545172 0.838324i \(-0.683536\pi\)
0.998596 + 0.0529703i \(0.0168689\pi\)
\(602\) 1.70690 1.70690i 0.0695679 0.0695679i
\(603\) −3.33718 3.90937i −0.135900 0.159202i
\(604\) 27.3201i 1.11164i
\(605\) 9.98503 4.35458i 0.405949 0.177039i
\(606\) 5.77593 1.30618i 0.234631 0.0530599i
\(607\) 5.59982 20.8988i 0.227290 0.848257i −0.754184 0.656663i \(-0.771968\pi\)
0.981474 0.191594i \(-0.0613658\pi\)
\(608\) −2.50437 + 9.34645i −0.101566 + 0.379049i
\(609\) 26.4452 5.98037i 1.07161 0.242337i
\(610\) 0.0743114 0.189256i 0.00300878 0.00766275i
\(611\) 4.91972i 0.199031i
\(612\) −2.18403 2.55850i −0.0882841 0.103421i
\(613\) 15.7726 15.7726i 0.637051 0.637051i −0.312776 0.949827i \(-0.601259\pi\)
0.949827 + 0.312776i \(0.101259\pi\)
\(614\) 1.68455 2.91773i 0.0679830 0.117750i
\(615\) −18.2390 + 22.7702i −0.735468 + 0.918183i
\(616\) 2.30946 + 4.00010i 0.0930507 + 0.161169i
\(617\) −40.8914 10.9568i −1.64622 0.441104i −0.687672 0.726021i \(-0.741367\pi\)
−0.958552 + 0.284917i \(0.908034\pi\)
\(618\) −3.13286 + 1.64776i −0.126022 + 0.0662827i
\(619\) −27.5855 15.9265i −1.10876 0.640141i −0.170250 0.985401i \(-0.554457\pi\)
−0.938507 + 0.345260i \(0.887791\pi\)
\(620\) 10.2810 13.9258i 0.412896 0.559272i
\(621\) 13.6158 34.0901i 0.546385 1.36799i
\(622\) 1.17952 + 1.17952i 0.0472944 + 0.0472944i
\(623\) 6.84311 1.83361i 0.274163 0.0734619i
\(624\) −10.1907 3.16573i −0.407955 0.126731i
\(625\) 22.5175 + 10.8611i 0.900699 + 0.434443i
\(626\) −3.13060 + 1.80745i −0.125124 + 0.0722403i
\(627\) −18.3709 0.724161i −0.733663 0.0289202i
\(628\) −10.6431 39.7206i −0.424706 1.58502i
\(629\) 0.138922 0.00553917
\(630\) −0.600066 + 3.10088i −0.0239072 + 0.123542i
\(631\) 15.7931 0.628713 0.314356 0.949305i \(-0.398211\pi\)
0.314356 + 0.949305i \(0.398211\pi\)
\(632\) 1.48466 + 5.54081i 0.0590564 + 0.220402i
\(633\) 17.6753 28.0057i 0.702532 1.11313i
\(634\) −3.23993 + 1.87057i −0.128674 + 0.0742899i
\(635\) 8.88160 7.08058i 0.352455 0.280984i
\(636\) −6.49053 28.7012i −0.257366 1.13808i
\(637\) −1.63360 + 0.437722i −0.0647256 + 0.0173432i
\(638\) −2.16364 2.16364i −0.0856594 0.0856594i
\(639\) 8.66619 + 5.95939i 0.342829 + 0.235750i
\(640\) 1.95976 + 13.0158i 0.0774663 + 0.514497i
\(641\) −8.57453 4.95051i −0.338673 0.195533i 0.321012 0.947075i \(-0.395977\pi\)
−0.659685 + 0.751542i \(0.729310\pi\)
\(642\) −0.194569 + 4.93592i −0.00767902 + 0.194805i
\(643\) 45.6232 + 12.2247i 1.79920 + 0.482095i 0.993853 0.110706i \(-0.0353113\pi\)
0.805349 + 0.592801i \(0.201978\pi\)
\(644\) 16.9303 + 29.3241i 0.667147 + 1.15553i
\(645\) 11.7568 + 16.0020i 0.462925 + 0.630076i
\(646\) 0.236147 0.409018i 0.00929107 0.0160926i
\(647\) 9.75824 9.75824i 0.383636 0.383636i −0.488774 0.872410i \(-0.662556\pi\)
0.872410 + 0.488774i \(0.162556\pi\)
\(648\) 2.80026 6.28079i 0.110005 0.246733i
\(649\) 11.2506i 0.441625i
\(650\) 0.350281 1.53249i 0.0137392 0.0601092i
\(651\) 4.94853 15.9296i 0.193948 0.624331i
\(652\) −1.74490 + 6.51206i −0.0683356 + 0.255032i
\(653\) −0.802065 + 2.99335i −0.0313872 + 0.117139i −0.979842 0.199773i \(-0.935979\pi\)
0.948455 + 0.316912i \(0.102646\pi\)
\(654\) 0.0777914 + 0.0841760i 0.00304189 + 0.00329154i
\(655\) 14.9855 + 34.3618i 0.585533 + 1.34262i
\(656\) 28.4613i 1.11123i
\(657\) 5.31850 + 28.7373i 0.207494 + 1.12115i
\(658\) 1.00447 1.00447i 0.0391584 0.0391584i
\(659\) −13.5644 + 23.4942i −0.528393 + 0.915204i 0.471059 + 0.882102i \(0.343872\pi\)
−0.999452 + 0.0331023i \(0.989461\pi\)
\(660\) −17.5330 + 6.83766i −0.682472 + 0.266155i
\(661\) −9.54526 16.5329i −0.371268 0.643055i 0.618493 0.785790i \(-0.287743\pi\)
−0.989761 + 0.142736i \(0.954410\pi\)
\(662\) 6.40560 + 1.71638i 0.248961 + 0.0667088i
\(663\) 1.36442 + 0.861129i 0.0529896 + 0.0334435i
\(664\) −7.30683 4.21860i −0.283560 0.163713i
\(665\) 23.1514 3.48584i 0.897772 0.135175i
\(666\) 0.0605251 + 0.126978i 0.00234530 + 0.00492028i
\(667\) −32.0231 32.0231i −1.23994 1.23994i
\(668\) −16.1590 + 4.32979i −0.625210 + 0.167524i
\(669\) −5.31412 + 4.91105i −0.205456 + 0.189872i
\(670\) 0.0828216 0.734039i 0.00319968 0.0283584i
\(671\) 1.01104 0.583723i 0.0390307 0.0225344i
\(672\) 4.44300 + 8.44739i 0.171392 + 0.325865i
\(673\) 0.0359820 + 0.134287i 0.00138701 + 0.00517638i 0.966616 0.256230i \(-0.0824804\pi\)
−0.965229 + 0.261406i \(0.915814\pi\)
\(674\) −6.17391 −0.237810
\(675\) −24.4682 8.73537i −0.941782 0.336225i
\(676\) −20.2978 −0.780684
\(677\) −2.09108 7.80401i −0.0803667 0.299933i 0.914030 0.405647i \(-0.132954\pi\)
−0.994397 + 0.105714i \(0.966287\pi\)
\(678\) −0.835699 1.58890i −0.0320948 0.0610213i
\(679\) −3.10188 + 1.79087i −0.119039 + 0.0687272i
\(680\) 0.109432 0.969887i 0.00419654 0.0371935i
\(681\) 17.4961 16.1690i 0.670450 0.619598i
\(682\) −1.81835 + 0.487225i −0.0696281 + 0.0186568i
\(683\) 35.0271 + 35.0271i 1.34027 + 1.34027i 0.895784 + 0.444490i \(0.146615\pi\)
0.444490 + 0.895784i \(0.353385\pi\)
\(684\) −25.1702 1.98745i −0.962406 0.0759921i
\(685\) 14.1405 2.12909i 0.540279 0.0813483i
\(686\) 3.27715 + 1.89206i 0.125122 + 0.0722393i
\(687\) −22.4428 14.1644i −0.856245 0.540404i
\(688\) 18.7112 + 5.01366i 0.713359 + 0.191144i
\(689\) 7.05680 + 12.2227i 0.268843 + 0.465649i
\(690\) 4.91502 1.91680i 0.187112 0.0729713i
\(691\) −20.5195 + 35.5408i −0.780597 + 1.35203i 0.150997 + 0.988534i \(0.451752\pi\)
−0.931594 + 0.363500i \(0.881582\pi\)
\(692\) −24.5313 + 24.5313i −0.932541 + 0.932541i
\(693\) −13.7931 + 11.7743i −0.523956 + 0.447267i
\(694\) 3.09646i 0.117540i
\(695\) −9.38671 21.5237i −0.356058 0.816440i
\(696\) −5.75804 6.23062i −0.218258 0.236171i
\(697\) 1.11377 4.15663i 0.0421869 0.157444i
\(698\) −0.873943 + 3.26160i −0.0330792 + 0.123453i
\(699\) 2.16958 6.98402i 0.0820611 0.264160i
\(700\) 20.2957 12.7438i 0.767105 0.481672i
\(701\) 37.2173i 1.40568i −0.711348 0.702840i \(-0.751915\pi\)
0.711348 0.702840i \(-0.248085\pi\)
\(702\) −0.192645 + 1.62228i −0.00727091 + 0.0612292i
\(703\) 0.737304 0.737304i 0.0278080 0.0278080i
\(704\) −8.81487 + 15.2678i −0.332223 + 0.575427i
\(705\) 6.91865 + 9.41682i 0.260571 + 0.354658i
\(706\) 1.84490 + 3.19546i 0.0694337 + 0.120263i
\(707\) −41.8240 11.2067i −1.57295 0.421471i
\(708\) 0.608573 15.4386i 0.0228716 0.580218i
\(709\) 13.3449 + 7.70466i 0.501177 + 0.289355i 0.729199 0.684301i \(-0.239893\pi\)
−0.228023 + 0.973656i \(0.573226\pi\)
\(710\) 0.225047 + 1.49466i 0.00844587 + 0.0560938i
\(711\) −20.3307 + 9.69081i −0.762459 + 0.363434i
\(712\) −1.56751 1.56751i −0.0587448 0.0587448i
\(713\) −26.9125 + 7.21120i −1.00788 + 0.270061i
\(714\) −0.102758 0.454396i −0.00384562 0.0170053i
\(715\) 7.05788 5.62668i 0.263950 0.210426i
\(716\) 14.1222 8.15345i 0.527771 0.304709i
\(717\) −4.79670 + 7.60014i −0.179136 + 0.283833i
\(718\) 1.14842 + 4.28596i 0.0428587 + 0.159951i
\(719\) 11.9324 0.445002 0.222501 0.974932i \(-0.428578\pi\)
0.222501 + 0.974932i \(0.428578\pi\)
\(720\) −23.9580 + 8.27176i −0.892861 + 0.308270i
\(721\) 25.8823 0.963908
\(722\) 0.0306831 + 0.114511i 0.00114191 + 0.00426165i
\(723\) −6.43378 0.253613i −0.239275 0.00943196i
\(724\) −8.04760 + 4.64628i −0.299087 + 0.172678i
\(725\) −21.8085 + 23.4893i −0.809947 + 0.872372i
\(726\) −1.55369 0.482653i −0.0576629 0.0179129i
\(727\) −4.20134 + 1.12575i −0.155819 + 0.0417516i −0.335885 0.941903i \(-0.609035\pi\)
0.180066 + 0.983654i \(0.442369\pi\)
\(728\) −2.15130 2.15130i −0.0797326 0.0797326i
\(729\) 26.2491 + 6.32329i 0.972189 + 0.234196i
\(730\) −2.49462 + 3.37900i −0.0923302 + 0.125062i
\(731\) −2.53649 1.46444i −0.0938153 0.0541643i
\(732\) 1.41897 0.746322i 0.0524465 0.0275848i
\(733\) −47.6943 12.7796i −1.76163 0.472027i −0.774583 0.632473i \(-0.782040\pi\)
−0.987045 + 0.160446i \(0.948707\pi\)
\(734\) 2.61370 + 4.52707i 0.0964736 + 0.167097i
\(735\) −2.51130 + 3.13519i −0.0926306 + 0.115643i
\(736\) 7.97125 13.8066i 0.293824 0.508918i
\(737\) 2.99918 2.99918i 0.110476 0.110476i
\(738\) 4.28450 0.792945i 0.157715 0.0291887i
\(739\) 16.1890i 0.595523i −0.954640 0.297761i \(-0.903760\pi\)
0.954640 0.297761i \(-0.0962400\pi\)
\(740\) 0.390090 0.993479i 0.0143400 0.0365210i
\(741\) 11.8117 2.67112i 0.433915 0.0981262i
\(742\) 1.05474 3.93635i 0.0387208 0.144508i
\(743\) 5.14520 19.2021i 0.188759 0.704458i −0.805035 0.593227i \(-0.797854\pi\)
0.993795 0.111232i \(-0.0354796\pi\)
\(744\) −5.09091 + 1.15127i −0.186642 + 0.0422075i
\(745\) −20.3562 + 8.87755i −0.745793 + 0.325248i
\(746\) 5.78426i 0.211777i
\(747\) 11.0660 31.2238i 0.404883 1.14242i
\(748\) 1.96282 1.96282i 0.0717679 0.0717679i
\(749\) 18.0595 31.2799i 0.659878 1.14294i
\(750\) −1.48468 3.42594i −0.0542129 0.125097i
\(751\) 7.95061 + 13.7709i 0.290122 + 0.502506i 0.973838 0.227242i \(-0.0729708\pi\)
−0.683716 + 0.729748i \(0.739637\pi\)
\(752\) 11.0112 + 2.95043i 0.401536 + 0.107591i
\(753\) −6.08995 + 3.20308i −0.221930 + 0.116727i
\(754\) 1.74545 + 1.00774i 0.0635655 + 0.0366996i
\(755\) −25.0389 18.4856i −0.911259 0.672758i
\(756\) −19.5644 + 15.4111i −0.711550 + 0.560495i
\(757\) 21.3482 + 21.3482i 0.775914 + 0.775914i 0.979133 0.203219i \(-0.0651404\pi\)
−0.203219 + 0.979133i \(0.565140\pi\)
\(758\) 3.74243 1.00278i 0.135931 0.0364227i
\(759\) 28.9278 + 8.98641i 1.05001 + 0.326186i
\(760\) −4.56672 5.72831i −0.165652 0.207788i
\(761\) 4.74778 2.74113i 0.172107 0.0993659i −0.411472 0.911422i \(-0.634985\pi\)
0.583579 + 0.812056i \(0.301652\pi\)
\(762\) −1.69511 0.0668196i −0.0614075 0.00242062i
\(763\) −0.216908 0.809511i −0.00785259 0.0293063i