Properties

Label 45.2.l.a
Level $45$
Weight $2$
Character orbit 45.l
Analytic conductor $0.359$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,2,Mod(2,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.2");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 45.l (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.359326809096\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 18 x^{14} - 36 x^{13} + 34 x^{12} + 18 x^{11} - 72 x^{10} + 132 x^{9} - 93 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{5} q^{2} + (\beta_{15} - \beta_{13} - \beta_{12} + \cdots - 1) q^{3}+ \cdots + ( - 2 \beta_{15} - \beta_{9} + \cdots - \beta_1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_{5} q^{2} + (\beta_{15} - \beta_{13} - \beta_{12} + \cdots - 1) q^{3}+ \cdots + ( - 2 \beta_{15} - 3 \beta_{14} + \cdots + 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} - 6 q^{3} - 6 q^{5} - 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 6 q^{2} - 6 q^{3} - 6 q^{5} - 2 q^{7} - 8 q^{10} - 6 q^{12} - 2 q^{13} - 6 q^{15} - 8 q^{16} + 36 q^{18} + 18 q^{20} - 12 q^{21} - 10 q^{22} + 18 q^{23} + 4 q^{25} + 18 q^{27} - 16 q^{28} + 30 q^{30} - 4 q^{31} + 30 q^{32} - 12 q^{33} - 48 q^{36} + 4 q^{37} - 30 q^{38} + 6 q^{40} - 24 q^{41} + 6 q^{42} - 2 q^{43} - 36 q^{45} + 32 q^{46} - 12 q^{47} - 30 q^{48} - 54 q^{50} + 36 q^{51} - 14 q^{52} - 16 q^{55} + 36 q^{56} - 6 q^{57} - 6 q^{58} + 18 q^{60} + 8 q^{61} + 36 q^{63} + 66 q^{65} + 36 q^{66} + 4 q^{67} + 42 q^{68} + 18 q^{70} + 18 q^{72} - 8 q^{73} + 42 q^{75} + 24 q^{76} - 6 q^{77} - 42 q^{78} - 48 q^{81} + 32 q^{82} - 66 q^{83} + 22 q^{85} - 48 q^{86} - 18 q^{87} + 18 q^{88} - 66 q^{90} - 40 q^{91} - 60 q^{92} - 18 q^{93} - 36 q^{95} - 24 q^{96} + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 6 x^{15} + 18 x^{14} - 36 x^{13} + 34 x^{12} + 18 x^{11} - 72 x^{10} + 132 x^{9} - 93 x^{8} + \cdots + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 80029143512 \nu^{15} + 385788744870 \nu^{14} - 820783926284 \nu^{13} + 848040618120 \nu^{12} + \cdots + 33432180594 ) / 3707507912227 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 94386116202 \nu^{15} - 619740656932 \nu^{14} + 2033008548312 \nu^{13} - 4441986378774 \nu^{12} + \cdots - 80029143512 ) / 3707507912227 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 140020985001 \nu^{15} - 843322184609 \nu^{14} + 2535236829090 \nu^{13} + \cdots - 5622211270526 ) / 3707507912227 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 140094553942 \nu^{15} + 840493754711 \nu^{14} - 2524530400854 \nu^{13} + \cdots - 1652709999986 ) / 3707507912227 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 190424165289 \nu^{15} - 1059314239720 \nu^{14} + 2941649532255 \nu^{13} + \cdots + 7166890770427 ) / 3707507912227 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 250381984552 \nu^{15} + 1889212496921 \nu^{14} - 6927613311171 \nu^{13} + \cdots + 5660844178894 ) / 3707507912227 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 254444403226 \nu^{15} + 1391318146672 \nu^{14} - 3674576400880 \nu^{13} + \cdots + 146893504700 ) / 3707507912227 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 196858530 \nu^{15} - 1212076232 \nu^{14} + 3734556994 \nu^{13} - 7676123862 \nu^{12} + \cdots + 785074438 ) / 1973128213 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 677106342206 \nu^{15} + 3890533925017 \nu^{14} - 11114551602021 \nu^{13} + \cdots - 11893459432082 ) / 3707507912227 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 785074438 \nu^{15} + 4907305158 \nu^{14} - 15343416116 \nu^{13} + 31997236762 \nu^{12} + \cdots - 3343669588 ) / 1973128213 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 1616321538 \nu^{15} + 9938916556 \nu^{14} - 30594542475 \nu^{13} + 62871582510 \nu^{12} + \cdots - 10233974547 ) / 3810388399 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 2029780580195 \nu^{15} + 12360646755715 \nu^{14} - 37626995630777 \nu^{13} + \cdots - 14351633608601 ) / 3707507912227 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 2802573231023 \nu^{15} - 17485025240258 \nu^{14} + 54572756591878 \nu^{13} + \cdots + 12411058785072 ) / 3707507912227 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 2852772870096 \nu^{15} + 17521813816267 \nu^{14} - 53872302373806 \nu^{13} + \cdots - 17972736434118 ) / 3707507912227 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{8} + \beta_{3} - 2\beta_{2} + \beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{15} + \beta_{14} - \beta_{12} + \beta_{11} + \beta_{8} + \beta_{7} + \beta_{5} + \beta_{4} + 4\beta_{3} - \beta_{2} + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( - \beta_{15} + 5 \beta_{14} + 2 \beta_{13} + \beta_{12} + 8 \beta_{11} - \beta_{10} + \beta_{7} + \cdots + 8 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( - 16 \beta_{15} + 8 \beta_{13} + 14 \beta_{12} + 7 \beta_{11} + 3 \beta_{9} - 8 \beta_{8} - 8 \beta_{6} + \cdots + 14 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - 35 \beta_{15} - 16 \beta_{14} + 8 \beta_{13} + 30 \beta_{12} - 8 \beta_{11} + 16 \beta_{10} + \cdots + 16 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( \beta_{15} - \beta_{14} - 10 \beta_{12} - 10 \beta_{11} + 51 \beta_{10} - \beta_{8} + 51 \beta_{7} + \cdots + 10 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 50 \beta_{15} + 148 \beta_{14} + 50 \beta_{13} - 50 \beta_{12} + 145 \beta_{11} + 50 \beta_{10} + \cdots + 50 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 288 \beta_{15} + 278 \beta_{14} + 298 \beta_{13} + 228 \beta_{12} + 456 \beta_{11} - 55 \beta_{9} + \cdots + 228 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 1385 \beta_{15} - 288 \beta_{14} + 576 \beta_{13} + 1032 \beta_{12} + 288 \beta_{11} + 288 \beta_{10} + \cdots + 288 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 1533 \beta_{15} - 1603 \beta_{14} + 817 \beta_{12} - 1245 \beta_{11} + 1673 \beta_{10} - 1603 \beta_{8} + \cdots - 817 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 3206 \beta_{15} - 1603 \beta_{13} - 3206 \beta_{12} - 1603 \beta_{11} + 3206 \beta_{10} + 428 \beta_{9} + \cdots - 3923 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 8782 \beta_{15} + 8782 \beta_{14} - 6751 \beta_{12} + 6751 \beta_{11} + 428 \beta_{8} + 9210 \beta_{6} + \cdots - 6751 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( - 8782 \beta_{15} + 8782 \beta_{14} + 8782 \beta_{13} + 8782 \beta_{12} + 17564 \beta_{11} + \cdots - 8782 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 47744 \beta_{15} - 45285 \beta_{14} + 36503 \beta_{12} - 22803 \beta_{11} - 45285 \beta_{8} + \cdots - 36503 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1 + \beta_{11}\) \(-\beta_{12}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2.1
0.601150 2.24352i
0.430324 1.60599i
−0.0499037 + 0.186243i
−0.347596 + 1.29724i
0.601150 + 2.24352i
0.430324 + 1.60599i
−0.0499037 0.186243i
−0.347596 1.29724i
2.24352 0.601150i
1.60599 0.430324i
−0.186243 + 0.0499037i
−1.29724 + 0.347596i
2.24352 + 0.601150i
1.60599 + 0.430324i
−0.186243 0.0499037i
−1.29724 0.347596i
−0.601150 2.24352i −1.72336 0.173261i −2.93996 + 1.69739i 1.70912 1.44185i 0.647285 + 3.97056i 0.751454 0.201351i 2.29074 + 2.29074i 2.93996 + 0.597183i −4.26225 2.96768i
2.2 −0.430324 1.60599i 1.35314 + 1.08121i −0.661975 + 0.382191i −2.23073 + 0.154373i 1.15412 2.63840i −1.73749 + 0.465559i −1.45267 1.45267i 0.661975 + 2.92605i 1.20786 + 3.51610i
2.3 0.0499037 + 0.186243i −0.806271 1.53295i 1.69985 0.981412i −0.250705 + 2.22197i 0.245265 0.226662i −2.35868 + 0.632007i 0.540289 + 0.540289i −1.69985 + 2.47194i −0.426337 + 0.0641924i
2.4 0.347596 + 1.29724i −1.18953 + 1.25897i 0.170031 0.0981673i −1.59371 1.56847i −2.04667 1.10550i 1.97869 0.530190i 2.08575 + 2.08575i −0.170031 2.99518i 1.48073 2.61262i
23.1 −0.601150 + 2.24352i −1.72336 + 0.173261i −2.93996 1.69739i 1.70912 + 1.44185i 0.647285 3.97056i 0.751454 + 0.201351i 2.29074 2.29074i 2.93996 0.597183i −4.26225 + 2.96768i
23.2 −0.430324 + 1.60599i 1.35314 1.08121i −0.661975 0.382191i −2.23073 0.154373i 1.15412 + 2.63840i −1.73749 0.465559i −1.45267 + 1.45267i 0.661975 2.92605i 1.20786 3.51610i
23.3 0.0499037 0.186243i −0.806271 + 1.53295i 1.69985 + 0.981412i −0.250705 2.22197i 0.245265 + 0.226662i −2.35868 0.632007i 0.540289 0.540289i −1.69985 2.47194i −0.426337 0.0641924i
23.4 0.347596 1.29724i −1.18953 1.25897i 0.170031 + 0.0981673i −1.59371 + 1.56847i −2.04667 + 1.10550i 1.97869 + 0.530190i 2.08575 2.08575i −0.170031 + 2.99518i 1.48073 + 2.61262i
32.1 −2.24352 0.601150i 0.173261 + 1.72336i 2.93996 + 1.69739i 2.10323 + 0.759216i 0.647285 3.97056i −0.201351 + 0.751454i −2.29074 2.29074i −2.93996 + 0.597183i −4.26225 2.96768i
32.2 −1.60599 0.430324i −1.08121 1.35314i 0.661975 + 0.382191i −1.24906 1.85468i 1.15412 + 2.63840i 0.465559 1.73749i 1.45267 + 1.45267i −0.661975 + 2.92605i 1.20786 + 3.51610i
32.3 0.186243 + 0.0499037i 1.53295 + 0.806271i −1.69985 0.981412i −2.04963 + 0.893868i 0.245265 + 0.226662i 0.632007 2.35868i −0.540289 0.540289i 1.69985 + 2.47194i −0.426337 + 0.0641924i
32.4 1.29724 + 0.347596i −1.25897 + 1.18953i −0.170031 0.0981673i 0.561484 2.16443i −2.04667 + 1.10550i −0.530190 + 1.97869i −2.08575 2.08575i 0.170031 2.99518i 1.48073 2.61262i
38.1 −2.24352 + 0.601150i 0.173261 1.72336i 2.93996 1.69739i 2.10323 0.759216i 0.647285 + 3.97056i −0.201351 0.751454i −2.29074 + 2.29074i −2.93996 0.597183i −4.26225 + 2.96768i
38.2 −1.60599 + 0.430324i −1.08121 + 1.35314i 0.661975 0.382191i −1.24906 + 1.85468i 1.15412 2.63840i 0.465559 + 1.73749i 1.45267 1.45267i −0.661975 2.92605i 1.20786 3.51610i
38.3 0.186243 0.0499037i 1.53295 0.806271i −1.69985 + 0.981412i −2.04963 0.893868i 0.245265 0.226662i 0.632007 + 2.35868i −0.540289 + 0.540289i 1.69985 2.47194i −0.426337 0.0641924i
38.4 1.29724 0.347596i −1.25897 1.18953i −0.170031 + 0.0981673i 0.561484 + 2.16443i −2.04667 1.10550i −0.530190 1.97869i −2.08575 + 2.08575i 0.170031 + 2.99518i 1.48073 + 2.61262i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner
9.d odd 6 1 inner
45.l even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 45.2.l.a 16
3.b odd 2 1 135.2.m.a 16
4.b odd 2 1 720.2.cu.c 16
5.b even 2 1 225.2.p.b 16
5.c odd 4 1 inner 45.2.l.a 16
5.c odd 4 1 225.2.p.b 16
9.c even 3 1 135.2.m.a 16
9.c even 3 1 405.2.f.a 16
9.d odd 6 1 inner 45.2.l.a 16
9.d odd 6 1 405.2.f.a 16
15.d odd 2 1 675.2.q.a 16
15.e even 4 1 135.2.m.a 16
15.e even 4 1 675.2.q.a 16
20.e even 4 1 720.2.cu.c 16
36.h even 6 1 720.2.cu.c 16
45.h odd 6 1 225.2.p.b 16
45.j even 6 1 675.2.q.a 16
45.k odd 12 1 135.2.m.a 16
45.k odd 12 1 405.2.f.a 16
45.k odd 12 1 675.2.q.a 16
45.l even 12 1 inner 45.2.l.a 16
45.l even 12 1 225.2.p.b 16
45.l even 12 1 405.2.f.a 16
180.v odd 12 1 720.2.cu.c 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
45.2.l.a 16 1.a even 1 1 trivial
45.2.l.a 16 5.c odd 4 1 inner
45.2.l.a 16 9.d odd 6 1 inner
45.2.l.a 16 45.l even 12 1 inner
135.2.m.a 16 3.b odd 2 1
135.2.m.a 16 9.c even 3 1
135.2.m.a 16 15.e even 4 1
135.2.m.a 16 45.k odd 12 1
225.2.p.b 16 5.b even 2 1
225.2.p.b 16 5.c odd 4 1
225.2.p.b 16 45.h odd 6 1
225.2.p.b 16 45.l even 12 1
405.2.f.a 16 9.c even 3 1
405.2.f.a 16 9.d odd 6 1
405.2.f.a 16 45.k odd 12 1
405.2.f.a 16 45.l even 12 1
675.2.q.a 16 15.d odd 2 1
675.2.q.a 16 15.e even 4 1
675.2.q.a 16 45.j even 6 1
675.2.q.a 16 45.k odd 12 1
720.2.cu.c 16 4.b odd 2 1
720.2.cu.c 16 20.e even 4 1
720.2.cu.c 16 36.h even 6 1
720.2.cu.c 16 180.v odd 12 1

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(45, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} + 6 T^{15} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{16} + 6 T^{15} + \cdots + 6561 \) Copy content Toggle raw display
$5$ \( T^{16} + 6 T^{15} + \cdots + 390625 \) Copy content Toggle raw display
$7$ \( T^{16} + 2 T^{15} + \cdots + 2401 \) Copy content Toggle raw display
$11$ \( (T^{8} - 10 T^{6} + 102 T^{4} + \cdots + 4)^{2} \) Copy content Toggle raw display
$13$ \( T^{16} + 2 T^{15} + \cdots + 4477456 \) Copy content Toggle raw display
$17$ \( T^{16} + 964 T^{12} + \cdots + 16 \) Copy content Toggle raw display
$19$ \( (T^{8} + 60 T^{6} + \cdots + 324)^{2} \) Copy content Toggle raw display
$23$ \( T^{16} - 18 T^{15} + \cdots + 62742241 \) Copy content Toggle raw display
$29$ \( T^{16} + \cdots + 981506241 \) Copy content Toggle raw display
$31$ \( (T^{8} + 2 T^{7} + \cdots + 676)^{2} \) Copy content Toggle raw display
$37$ \( (T^{8} - 2 T^{7} + 2 T^{6} + \cdots + 4)^{2} \) Copy content Toggle raw display
$41$ \( (T^{8} + 12 T^{7} + \cdots + 32761)^{2} \) Copy content Toggle raw display
$43$ \( T^{16} + 2 T^{15} + \cdots + 11316496 \) Copy content Toggle raw display
$47$ \( T^{16} + \cdots + 33243864241 \) Copy content Toggle raw display
$53$ \( T^{16} + \cdots + 409600000000 \) Copy content Toggle raw display
$59$ \( T^{16} + \cdots + 592240896 \) Copy content Toggle raw display
$61$ \( (T^{8} - 4 T^{7} + \cdots + 11449)^{2} \) Copy content Toggle raw display
$67$ \( T^{16} + \cdots + 539415333601 \) Copy content Toggle raw display
$71$ \( (T^{8} + 116 T^{6} + \cdots + 128164)^{2} \) Copy content Toggle raw display
$73$ \( (T^{8} + 4 T^{7} + \cdots + 270400)^{2} \) Copy content Toggle raw display
$79$ \( T^{16} + \cdots + 17\!\cdots\!96 \) Copy content Toggle raw display
$83$ \( T^{16} + \cdots + 13841287201 \) Copy content Toggle raw display
$89$ \( (T^{8} - 300 T^{6} + \cdots + 3969)^{2} \) Copy content Toggle raw display
$97$ \( T^{16} + \cdots + 6146560000 \) Copy content Toggle raw display
show more
show less