Properties

Label 45.2.j.a.4.4
Level $45$
Weight $2$
Character 45.4
Analytic conductor $0.359$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,2,Mod(4,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 45.j (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.359326809096\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 4.4
Root \(-0.258819 - 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 45.4
Dual form 45.2.j.a.34.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.67303 - 0.965926i) q^{2} +(-1.67303 + 0.448288i) q^{3} +(0.866025 - 1.50000i) q^{4} +(-2.09077 + 0.792893i) q^{5} +(-2.36603 + 2.36603i) q^{6} +(0.776457 - 0.448288i) q^{7} +0.517638i q^{8} +(2.59808 - 1.50000i) q^{9} +O(q^{10})\) \(q+(1.67303 - 0.965926i) q^{2} +(-1.67303 + 0.448288i) q^{3} +(0.866025 - 1.50000i) q^{4} +(-2.09077 + 0.792893i) q^{5} +(-2.36603 + 2.36603i) q^{6} +(0.776457 - 0.448288i) q^{7} +0.517638i q^{8} +(2.59808 - 1.50000i) q^{9} +(-2.73205 + 3.34607i) q^{10} +(-2.36603 - 4.09808i) q^{11} +(-0.776457 + 2.89778i) q^{12} +(2.12132 + 1.22474i) q^{13} +(0.866025 - 1.50000i) q^{14} +(3.14248 - 2.26380i) q^{15} +(2.23205 + 3.86603i) q^{16} +0.378937i q^{17} +(2.89778 - 5.01910i) q^{18} -2.73205 q^{19} +(-0.621320 + 3.82282i) q^{20} +(-1.09808 + 1.09808i) q^{21} +(-7.91688 - 4.57081i) q^{22} +(-1.67303 - 0.965926i) q^{23} +(-0.232051 - 0.866025i) q^{24} +(3.74264 - 3.31552i) q^{25} +4.73205 q^{26} +(-3.67423 + 3.67423i) q^{27} -1.55291i q^{28} +(3.23205 + 5.59808i) q^{29} +(3.07081 - 6.82282i) q^{30} +(1.36603 - 2.36603i) q^{31} +(6.57201 + 3.79435i) q^{32} +(5.79555 + 5.79555i) q^{33} +(0.366025 + 0.633975i) q^{34} +(-1.26795 + 1.55291i) q^{35} -5.19615i q^{36} -4.24264i q^{37} +(-4.57081 + 2.63896i) q^{38} +(-4.09808 - 1.09808i) q^{39} +(-0.410432 - 1.08226i) q^{40} +(-2.13397 + 3.69615i) q^{41} +(-0.776457 + 2.89778i) q^{42} +(-7.91688 + 4.57081i) q^{43} -8.19615 q^{44} +(-4.24264 + 5.19615i) q^{45} -3.73205 q^{46} +(3.79435 - 2.19067i) q^{47} +(-5.46739 - 5.46739i) q^{48} +(-3.09808 + 5.36603i) q^{49} +(3.05902 - 9.16208i) q^{50} +(-0.169873 - 0.633975i) q^{51} +(3.67423 - 2.12132i) q^{52} -3.86370i q^{53} +(-2.59808 + 9.69615i) q^{54} +(8.19615 + 6.69213i) q^{55} +(0.232051 + 0.401924i) q^{56} +(4.57081 - 1.22474i) q^{57} +(10.8147 + 6.24384i) q^{58} +(1.26795 - 2.19615i) q^{59} +(-0.674235 - 6.67423i) q^{60} +(-5.33013 - 9.23205i) q^{61} -5.27792i q^{62} +(1.34486 - 2.32937i) q^{63} +5.73205 q^{64} +(-5.40629 - 0.878680i) q^{65} +(15.2942 + 4.09808i) q^{66} +(4.45069 + 2.56961i) q^{67} +(0.568406 + 0.328169i) q^{68} +(3.23205 + 0.866025i) q^{69} +(-0.621320 + 3.82282i) q^{70} +3.80385 q^{71} +(0.776457 + 1.34486i) q^{72} -8.48528i q^{73} +(-4.09808 - 7.09808i) q^{74} +(-4.77526 + 7.22474i) q^{75} +(-2.36603 + 4.09808i) q^{76} +(-3.67423 - 2.12132i) q^{77} +(-7.91688 + 2.12132i) q^{78} +(0.267949 + 0.464102i) q^{79} +(-7.73205 - 6.31319i) q^{80} +(4.50000 - 7.79423i) q^{81} +8.24504i q^{82} +(9.02150 - 5.20857i) q^{83} +(0.696152 + 2.59808i) q^{84} +(-0.300457 - 0.792271i) q^{85} +(-8.83013 + 15.2942i) q^{86} +(-7.91688 - 7.91688i) q^{87} +(2.12132 - 1.22474i) q^{88} +7.39230 q^{89} +(-2.07898 + 12.7914i) q^{90} +2.19615 q^{91} +(-2.89778 + 1.67303i) q^{92} +(-1.22474 + 4.57081i) q^{93} +(4.23205 - 7.33013i) q^{94} +(5.71209 - 2.16622i) q^{95} +(-12.6962 - 3.40192i) q^{96} +(-8.90138 + 5.13922i) q^{97} +11.9700i q^{98} +(-12.2942 - 7.09808i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 12 q^{6} - 8 q^{10} - 12 q^{11} + 12 q^{15} + 4 q^{16} - 8 q^{19} + 12 q^{20} + 12 q^{21} + 12 q^{24} - 4 q^{25} + 24 q^{26} + 12 q^{29} - 12 q^{30} + 4 q^{31} - 4 q^{34} - 24 q^{35} - 12 q^{39} - 4 q^{40} - 24 q^{41} - 24 q^{44} - 16 q^{46} - 4 q^{49} + 24 q^{50} - 36 q^{51} + 24 q^{55} - 12 q^{56} + 24 q^{59} + 24 q^{60} - 8 q^{61} + 32 q^{64} + 60 q^{66} + 12 q^{69} + 12 q^{70} + 72 q^{71} - 12 q^{74} - 48 q^{75} - 12 q^{76} + 16 q^{79} - 48 q^{80} + 36 q^{81} - 36 q^{84} + 16 q^{85} - 36 q^{86} - 24 q^{89} - 36 q^{90} - 24 q^{91} + 20 q^{94} + 12 q^{95} - 60 q^{96} - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.67303 0.965926i 1.18301 0.683013i 0.226303 0.974057i \(-0.427336\pi\)
0.956710 + 0.291044i \(0.0940027\pi\)
\(3\) −1.67303 + 0.448288i −0.965926 + 0.258819i
\(4\) 0.866025 1.50000i 0.433013 0.750000i
\(5\) −2.09077 + 0.792893i −0.935021 + 0.354593i
\(6\) −2.36603 + 2.36603i −0.965926 + 0.965926i
\(7\) 0.776457 0.448288i 0.293473 0.169437i −0.346034 0.938222i \(-0.612472\pi\)
0.639507 + 0.768785i \(0.279138\pi\)
\(8\) 0.517638i 0.183013i
\(9\) 2.59808 1.50000i 0.866025 0.500000i
\(10\) −2.73205 + 3.34607i −0.863950 + 1.05812i
\(11\) −2.36603 4.09808i −0.713384 1.23562i −0.963580 0.267421i \(-0.913828\pi\)
0.250196 0.968195i \(-0.419505\pi\)
\(12\) −0.776457 + 2.89778i −0.224144 + 0.836516i
\(13\) 2.12132 + 1.22474i 0.588348 + 0.339683i 0.764444 0.644690i \(-0.223014\pi\)
−0.176096 + 0.984373i \(0.556347\pi\)
\(14\) 0.866025 1.50000i 0.231455 0.400892i
\(15\) 3.14248 2.26380i 0.811386 0.584511i
\(16\) 2.23205 + 3.86603i 0.558013 + 0.966506i
\(17\) 0.378937i 0.0919058i 0.998944 + 0.0459529i \(0.0146324\pi\)
−0.998944 + 0.0459529i \(0.985368\pi\)
\(18\) 2.89778 5.01910i 0.683013 1.18301i
\(19\) −2.73205 −0.626775 −0.313388 0.949625i \(-0.601464\pi\)
−0.313388 + 0.949625i \(0.601464\pi\)
\(20\) −0.621320 + 3.82282i −0.138931 + 0.854809i
\(21\) −1.09808 + 1.09808i −0.239620 + 0.239620i
\(22\) −7.91688 4.57081i −1.68788 0.974500i
\(23\) −1.67303 0.965926i −0.348851 0.201409i 0.315328 0.948983i \(-0.397886\pi\)
−0.664179 + 0.747573i \(0.731219\pi\)
\(24\) −0.232051 0.866025i −0.0473672 0.176777i
\(25\) 3.74264 3.31552i 0.748528 0.663103i
\(26\) 4.73205 0.928032
\(27\) −3.67423 + 3.67423i −0.707107 + 0.707107i
\(28\) 1.55291i 0.293473i
\(29\) 3.23205 + 5.59808i 0.600177 + 1.03954i 0.992794 + 0.119835i \(0.0382364\pi\)
−0.392617 + 0.919702i \(0.628430\pi\)
\(30\) 3.07081 6.82282i 0.560651 1.24567i
\(31\) 1.36603 2.36603i 0.245345 0.424951i −0.716883 0.697193i \(-0.754432\pi\)
0.962229 + 0.272243i \(0.0877653\pi\)
\(32\) 6.57201 + 3.79435i 1.16178 + 0.670753i
\(33\) 5.79555 + 5.79555i 1.00888 + 1.00888i
\(34\) 0.366025 + 0.633975i 0.0627728 + 0.108726i
\(35\) −1.26795 + 1.55291i −0.214323 + 0.262490i
\(36\) 5.19615i 0.866025i
\(37\) 4.24264i 0.697486i −0.937218 0.348743i \(-0.886609\pi\)
0.937218 0.348743i \(-0.113391\pi\)
\(38\) −4.57081 + 2.63896i −0.741483 + 0.428096i
\(39\) −4.09808 1.09808i −0.656217 0.175833i
\(40\) −0.410432 1.08226i −0.0648950 0.171121i
\(41\) −2.13397 + 3.69615i −0.333271 + 0.577242i −0.983151 0.182795i \(-0.941486\pi\)
0.649880 + 0.760037i \(0.274819\pi\)
\(42\) −0.776457 + 2.89778i −0.119810 + 0.447137i
\(43\) −7.91688 + 4.57081i −1.20731 + 0.697042i −0.962171 0.272445i \(-0.912168\pi\)
−0.245141 + 0.969487i \(0.578834\pi\)
\(44\) −8.19615 −1.23562
\(45\) −4.24264 + 5.19615i −0.632456 + 0.774597i
\(46\) −3.73205 −0.550261
\(47\) 3.79435 2.19067i 0.553463 0.319542i −0.197054 0.980393i \(-0.563138\pi\)
0.750518 + 0.660850i \(0.229804\pi\)
\(48\) −5.46739 5.46739i −0.789149 0.789149i
\(49\) −3.09808 + 5.36603i −0.442582 + 0.766575i
\(50\) 3.05902 9.16208i 0.432611 1.29571i
\(51\) −0.169873 0.633975i −0.0237870 0.0887742i
\(52\) 3.67423 2.12132i 0.509525 0.294174i
\(53\) 3.86370i 0.530720i −0.964149 0.265360i \(-0.914509\pi\)
0.964149 0.265360i \(-0.0854909\pi\)
\(54\) −2.59808 + 9.69615i −0.353553 + 1.31948i
\(55\) 8.19615 + 6.69213i 1.10517 + 0.902367i
\(56\) 0.232051 + 0.401924i 0.0310091 + 0.0537093i
\(57\) 4.57081 1.22474i 0.605419 0.162221i
\(58\) 10.8147 + 6.24384i 1.42003 + 0.819857i
\(59\) 1.26795 2.19615i 0.165073 0.285915i −0.771608 0.636098i \(-0.780547\pi\)
0.936681 + 0.350183i \(0.113881\pi\)
\(60\) −0.674235 6.67423i −0.0870433 0.861640i
\(61\) −5.33013 9.23205i −0.682453 1.18204i −0.974230 0.225557i \(-0.927580\pi\)
0.291777 0.956486i \(-0.405753\pi\)
\(62\) 5.27792i 0.670296i
\(63\) 1.34486 2.32937i 0.169437 0.293473i
\(64\) 5.73205 0.716506
\(65\) −5.40629 0.878680i −0.670567 0.108987i
\(66\) 15.2942 + 4.09808i 1.88259 + 0.504438i
\(67\) 4.45069 + 2.56961i 0.543739 + 0.313928i 0.746593 0.665281i \(-0.231688\pi\)
−0.202854 + 0.979209i \(0.565022\pi\)
\(68\) 0.568406 + 0.328169i 0.0689294 + 0.0397964i
\(69\) 3.23205 + 0.866025i 0.389093 + 0.104257i
\(70\) −0.621320 + 3.82282i −0.0742620 + 0.456915i
\(71\) 3.80385 0.451434 0.225717 0.974193i \(-0.427528\pi\)
0.225717 + 0.974193i \(0.427528\pi\)
\(72\) 0.776457 + 1.34486i 0.0915064 + 0.158494i
\(73\) 8.48528i 0.993127i −0.868000 0.496564i \(-0.834595\pi\)
0.868000 0.496564i \(-0.165405\pi\)
\(74\) −4.09808 7.09808i −0.476392 0.825135i
\(75\) −4.77526 + 7.22474i −0.551399 + 0.834242i
\(76\) −2.36603 + 4.09808i −0.271402 + 0.470082i
\(77\) −3.67423 2.12132i −0.418718 0.241747i
\(78\) −7.91688 + 2.12132i −0.896410 + 0.240192i
\(79\) 0.267949 + 0.464102i 0.0301466 + 0.0522155i 0.880705 0.473665i \(-0.157069\pi\)
−0.850558 + 0.525880i \(0.823736\pi\)
\(80\) −7.73205 6.31319i −0.864470 0.705836i
\(81\) 4.50000 7.79423i 0.500000 0.866025i
\(82\) 8.24504i 0.910513i
\(83\) 9.02150 5.20857i 0.990238 0.571714i 0.0848929 0.996390i \(-0.472945\pi\)
0.905346 + 0.424676i \(0.139612\pi\)
\(84\) 0.696152 + 2.59808i 0.0759565 + 0.283473i
\(85\) −0.300457 0.792271i −0.0325891 0.0859339i
\(86\) −8.83013 + 15.2942i −0.952177 + 1.64922i
\(87\) −7.91688 7.91688i −0.848778 0.848778i
\(88\) 2.12132 1.22474i 0.226134 0.130558i
\(89\) 7.39230 0.783583 0.391791 0.920054i \(-0.371856\pi\)
0.391791 + 0.920054i \(0.371856\pi\)
\(90\) −2.07898 + 12.7914i −0.219144 + 1.34833i
\(91\) 2.19615 0.230219
\(92\) −2.89778 + 1.67303i −0.302114 + 0.174426i
\(93\) −1.22474 + 4.57081i −0.127000 + 0.473971i
\(94\) 4.23205 7.33013i 0.436503 0.756045i
\(95\) 5.71209 2.16622i 0.586048 0.222250i
\(96\) −12.6962 3.40192i −1.29580 0.347207i
\(97\) −8.90138 + 5.13922i −0.903799 + 0.521808i −0.878431 0.477870i \(-0.841409\pi\)
−0.0253679 + 0.999678i \(0.508076\pi\)
\(98\) 11.9700i 1.20916i
\(99\) −12.2942 7.09808i −1.23562 0.713384i
\(100\) −1.73205 8.48528i −0.173205 0.848528i
\(101\) −1.26795 2.19615i −0.126166 0.218525i 0.796022 0.605267i \(-0.206934\pi\)
−0.922188 + 0.386742i \(0.873600\pi\)
\(102\) −0.896575 0.896575i −0.0887742 0.0887742i
\(103\) −7.91688 4.57081i −0.780073 0.450375i 0.0563832 0.998409i \(-0.482043\pi\)
−0.836456 + 0.548034i \(0.815376\pi\)
\(104\) −0.633975 + 1.09808i −0.0621663 + 0.107675i
\(105\) 1.42517 3.16648i 0.139082 0.309017i
\(106\) −3.73205 6.46410i −0.362489 0.627849i
\(107\) 11.7298i 1.13396i 0.823730 + 0.566982i \(0.191889\pi\)
−0.823730 + 0.566982i \(0.808111\pi\)
\(108\) 2.32937 + 8.69333i 0.224144 + 0.836516i
\(109\) 4.66025 0.446371 0.223186 0.974776i \(-0.428354\pi\)
0.223186 + 0.974776i \(0.428354\pi\)
\(110\) 20.1765 + 3.27928i 1.92376 + 0.312667i
\(111\) 1.90192 + 7.09808i 0.180523 + 0.673720i
\(112\) 3.46618 + 2.00120i 0.327524 + 0.189096i
\(113\) 2.20925 + 1.27551i 0.207829 + 0.119990i 0.600302 0.799773i \(-0.295047\pi\)
−0.392473 + 0.919764i \(0.628380\pi\)
\(114\) 6.46410 6.46410i 0.605419 0.605419i
\(115\) 4.26380 + 0.692993i 0.397602 + 0.0646219i
\(116\) 11.1962 1.03954
\(117\) 7.34847 0.679366
\(118\) 4.89898i 0.450988i
\(119\) 0.169873 + 0.294229i 0.0155722 + 0.0269719i
\(120\) 1.17183 + 1.62667i 0.106973 + 0.148494i
\(121\) −5.69615 + 9.86603i −0.517832 + 0.896911i
\(122\) −17.8350 10.2970i −1.61470 0.932248i
\(123\) 1.91327 7.14042i 0.172514 0.643830i
\(124\) −2.36603 4.09808i −0.212475 0.368018i
\(125\) −5.19615 + 9.89949i −0.464758 + 0.885438i
\(126\) 5.19615i 0.462910i
\(127\) 4.65874i 0.413397i −0.978405 0.206698i \(-0.933728\pi\)
0.978405 0.206698i \(-0.0662719\pi\)
\(128\) −3.55412 + 2.05197i −0.314142 + 0.181370i
\(129\) 11.1962 11.1962i 0.985766 0.985766i
\(130\) −9.89363 + 3.75201i −0.867729 + 0.329073i
\(131\) 0.464102 0.803848i 0.0405487 0.0702325i −0.845039 0.534705i \(-0.820423\pi\)
0.885588 + 0.464473i \(0.153756\pi\)
\(132\) 13.7124 3.67423i 1.19351 0.319801i
\(133\) −2.12132 + 1.22474i −0.183942 + 0.106199i
\(134\) 9.92820 0.857666
\(135\) 4.76870 10.5953i 0.410425 0.911894i
\(136\) −0.196152 −0.0168199
\(137\) −16.0740 + 9.28032i −1.37329 + 0.792871i −0.991341 0.131311i \(-0.958081\pi\)
−0.381952 + 0.924182i \(0.624748\pi\)
\(138\) 6.24384 1.67303i 0.531511 0.142418i
\(139\) −4.00000 + 6.92820i −0.339276 + 0.587643i −0.984297 0.176522i \(-0.943515\pi\)
0.645021 + 0.764165i \(0.276849\pi\)
\(140\) 1.23130 + 3.24679i 0.104063 + 0.274404i
\(141\) −5.36603 + 5.36603i −0.451901 + 0.451901i
\(142\) 6.36396 3.67423i 0.534052 0.308335i
\(143\) 11.5911i 0.969297i
\(144\) 11.5981 + 6.69615i 0.966506 + 0.558013i
\(145\) −11.1962 9.14162i −0.929790 0.759170i
\(146\) −8.19615 14.1962i −0.678318 1.17488i
\(147\) 2.77766 10.3664i 0.229097 0.855003i
\(148\) −6.36396 3.67423i −0.523114 0.302020i
\(149\) 3.86603 6.69615i 0.316717 0.548570i −0.663084 0.748545i \(-0.730753\pi\)
0.979801 + 0.199975i \(0.0640861\pi\)
\(150\) −1.01059 + 16.6998i −0.0825143 + 1.36353i
\(151\) 11.2942 + 19.5622i 0.919111 + 1.59195i 0.800768 + 0.598975i \(0.204425\pi\)
0.118343 + 0.992973i \(0.462242\pi\)
\(152\) 1.41421i 0.114708i
\(153\) 0.568406 + 0.984508i 0.0459529 + 0.0795928i
\(154\) −8.19615 −0.660465
\(155\) −0.980040 + 6.02993i −0.0787187 + 0.484335i
\(156\) −5.19615 + 5.19615i −0.416025 + 0.416025i
\(157\) 18.5235 + 10.6945i 1.47833 + 0.853517i 0.999700 0.0244975i \(-0.00779857\pi\)
0.478635 + 0.878014i \(0.341132\pi\)
\(158\) 0.896575 + 0.517638i 0.0713277 + 0.0411811i
\(159\) 1.73205 + 6.46410i 0.137361 + 0.512637i
\(160\) −16.7491 2.72222i −1.32413 0.215210i
\(161\) −1.73205 −0.136505
\(162\) 17.3867i 1.36603i
\(163\) 18.9396i 1.48346i 0.670697 + 0.741731i \(0.265995\pi\)
−0.670697 + 0.741731i \(0.734005\pi\)
\(164\) 3.69615 + 6.40192i 0.288621 + 0.499906i
\(165\) −16.7124 7.52192i −1.30106 0.585581i
\(166\) 10.0622 17.4282i 0.780976 1.35269i
\(167\) 14.7291 + 8.50386i 1.13977 + 0.658049i 0.946375 0.323071i \(-0.104715\pi\)
0.193399 + 0.981120i \(0.438049\pi\)
\(168\) −0.568406 0.568406i −0.0438535 0.0438535i
\(169\) −3.50000 6.06218i −0.269231 0.466321i
\(170\) −1.26795 1.03528i −0.0972473 0.0794021i
\(171\) −7.09808 + 4.09808i −0.542803 + 0.313388i
\(172\) 15.8338i 1.20731i
\(173\) −0.656339 + 0.378937i −0.0499005 + 0.0288101i −0.524743 0.851261i \(-0.675838\pi\)
0.474842 + 0.880071i \(0.342505\pi\)
\(174\) −20.8923 5.59808i −1.58384 0.424389i
\(175\) 1.41970 4.25214i 0.107319 0.321431i
\(176\) 10.5622 18.2942i 0.796154 1.37898i
\(177\) −1.13681 + 4.24264i −0.0854480 + 0.318896i
\(178\) 12.3676 7.14042i 0.926988 0.535197i
\(179\) −24.5885 −1.83783 −0.918914 0.394458i \(-0.870932\pi\)
−0.918914 + 0.394458i \(0.870932\pi\)
\(180\) 4.11999 + 10.8640i 0.307086 + 0.809752i
\(181\) 8.46410 0.629132 0.314566 0.949236i \(-0.398141\pi\)
0.314566 + 0.949236i \(0.398141\pi\)
\(182\) 3.67423 2.12132i 0.272352 0.157243i
\(183\) 13.0561 + 13.0561i 0.965134 + 0.965134i
\(184\) 0.500000 0.866025i 0.0368605 0.0638442i
\(185\) 3.36396 + 8.87039i 0.247323 + 0.652164i
\(186\) 2.36603 + 8.83013i 0.173485 + 0.647456i
\(187\) 1.55291 0.896575i 0.113560 0.0655641i
\(188\) 7.58871i 0.553463i
\(189\) −1.20577 + 4.50000i −0.0877070 + 0.327327i
\(190\) 7.46410 9.14162i 0.541503 0.663203i
\(191\) −0.169873 0.294229i −0.0122916 0.0212896i 0.859814 0.510607i \(-0.170579\pi\)
−0.872106 + 0.489317i \(0.837246\pi\)
\(192\) −9.58991 + 2.56961i −0.692092 + 0.185445i
\(193\) −17.9551 10.3664i −1.29243 0.746187i −0.313349 0.949638i \(-0.601451\pi\)
−0.979085 + 0.203451i \(0.934784\pi\)
\(194\) −9.92820 + 17.1962i −0.712803 + 1.23461i
\(195\) 9.43879 0.953512i 0.675926 0.0682824i
\(196\) 5.36603 + 9.29423i 0.383288 + 0.663873i
\(197\) 20.8343i 1.48438i −0.670190 0.742190i \(-0.733787\pi\)
0.670190 0.742190i \(-0.266213\pi\)
\(198\) −27.4249 −1.94900
\(199\) −4.58846 −0.325267 −0.162634 0.986687i \(-0.551999\pi\)
−0.162634 + 0.986687i \(0.551999\pi\)
\(200\) 1.71624 + 1.93733i 0.121356 + 0.136990i
\(201\) −8.59808 2.30385i −0.606462 0.162501i
\(202\) −4.24264 2.44949i −0.298511 0.172345i
\(203\) 5.01910 + 2.89778i 0.352272 + 0.203384i
\(204\) −1.09808 0.294229i −0.0768807 0.0206001i
\(205\) 1.53100 9.41982i 0.106929 0.657909i
\(206\) −17.6603 −1.23045
\(207\) −5.79555 −0.402819
\(208\) 10.9348i 0.758190i
\(209\) 6.46410 + 11.1962i 0.447131 + 0.774454i
\(210\) −0.674235 6.67423i −0.0465266 0.460566i
\(211\) 6.56218 11.3660i 0.451759 0.782469i −0.546736 0.837305i \(-0.684130\pi\)
0.998495 + 0.0548353i \(0.0174634\pi\)
\(212\) −5.79555 3.34607i −0.398040 0.229809i
\(213\) −6.36396 + 1.70522i −0.436051 + 0.116840i
\(214\) 11.3301 + 19.6244i 0.774512 + 1.34149i
\(215\) 12.9282 15.8338i 0.881696 1.07985i
\(216\) −1.90192 1.90192i −0.129410 0.129410i
\(217\) 2.44949i 0.166282i
\(218\) 7.79676 4.50146i 0.528063 0.304877i
\(219\) 3.80385 + 14.1962i 0.257040 + 0.959287i
\(220\) 17.1363 6.49867i 1.15533 0.438140i
\(221\) −0.464102 + 0.803848i −0.0312189 + 0.0540726i
\(222\) 10.0382 + 10.0382i 0.673720 + 0.673720i
\(223\) 14.4889 8.36516i 0.970248 0.560173i 0.0709359 0.997481i \(-0.477401\pi\)
0.899312 + 0.437308i \(0.144068\pi\)
\(224\) 6.80385 0.454601
\(225\) 4.75039 14.2279i 0.316693 0.948528i
\(226\) 4.92820 0.327819
\(227\) −1.64085 + 0.947343i −0.108907 + 0.0628774i −0.553464 0.832873i \(-0.686694\pi\)
0.444557 + 0.895750i \(0.353361\pi\)
\(228\) 2.12132 7.91688i 0.140488 0.524308i
\(229\) 9.96410 17.2583i 0.658446 1.14046i −0.322571 0.946545i \(-0.604547\pi\)
0.981018 0.193917i \(-0.0621194\pi\)
\(230\) 7.80286 2.95912i 0.514505 0.195118i
\(231\) 7.09808 + 1.90192i 0.467019 + 0.125137i
\(232\) −2.89778 + 1.67303i −0.190248 + 0.109840i
\(233\) 7.07107i 0.463241i 0.972806 + 0.231621i \(0.0744028\pi\)
−0.972806 + 0.231621i \(0.925597\pi\)
\(234\) 12.2942 7.09808i 0.803699 0.464016i
\(235\) −6.19615 + 7.58871i −0.404192 + 0.495033i
\(236\) −2.19615 3.80385i −0.142957 0.247609i
\(237\) −0.656339 0.656339i −0.0426338 0.0426338i
\(238\) 0.568406 + 0.328169i 0.0368443 + 0.0212721i
\(239\) 6.46410 11.1962i 0.418128 0.724219i −0.577623 0.816304i \(-0.696020\pi\)
0.995751 + 0.0920846i \(0.0293530\pi\)
\(240\) 15.7661 + 7.09599i 1.01770 + 0.458044i
\(241\) −3.13397 5.42820i −0.201877 0.349661i 0.747256 0.664536i \(-0.231371\pi\)
−0.949133 + 0.314875i \(0.898037\pi\)
\(242\) 22.0082i 1.41474i
\(243\) −4.03459 + 15.0573i −0.258819 + 0.965926i
\(244\) −18.4641 −1.18204
\(245\) 2.22268 13.6756i 0.142002 0.873700i
\(246\) −3.69615 13.7942i −0.235658 0.879488i
\(247\) −5.79555 3.34607i −0.368762 0.212905i
\(248\) 1.22474 + 0.707107i 0.0777714 + 0.0449013i
\(249\) −12.7583 + 12.7583i −0.808526 + 0.808526i
\(250\) 0.868845 + 21.5813i 0.0549506 + 1.36492i
\(251\) 18.5885 1.17329 0.586647 0.809843i \(-0.300448\pi\)
0.586647 + 0.809843i \(0.300448\pi\)
\(252\) −2.32937 4.03459i −0.146737 0.254155i
\(253\) 9.14162i 0.574729i
\(254\) −4.50000 7.79423i −0.282355 0.489053i
\(255\) 0.857840 + 1.19080i 0.0537200 + 0.0745710i
\(256\) −9.69615 + 16.7942i −0.606010 + 1.04964i
\(257\) −19.4201 11.2122i −1.21139 0.699396i −0.248328 0.968676i \(-0.579881\pi\)
−0.963062 + 0.269280i \(0.913214\pi\)
\(258\) 7.91688 29.5462i 0.492883 1.83946i
\(259\) −1.90192 3.29423i −0.118180 0.204693i
\(260\) −6.00000 + 7.34847i −0.372104 + 0.455733i
\(261\) 16.7942 + 9.69615i 1.03954 + 0.600177i
\(262\) 1.79315i 0.110781i
\(263\) −6.60420 + 3.81294i −0.407232 + 0.235116i −0.689600 0.724191i \(-0.742214\pi\)
0.282368 + 0.959306i \(0.408880\pi\)
\(264\) −3.00000 + 3.00000i −0.184637 + 0.184637i
\(265\) 3.06350 + 8.07812i 0.188190 + 0.496235i
\(266\) −2.36603 + 4.09808i −0.145070 + 0.251269i
\(267\) −12.3676 + 3.31388i −0.756883 + 0.202806i
\(268\) 7.70882 4.45069i 0.470891 0.271869i
\(269\) −17.1962 −1.04847 −0.524234 0.851574i \(-0.675648\pi\)
−0.524234 + 0.851574i \(0.675648\pi\)
\(270\) −2.25603 22.3324i −0.137298 1.35911i
\(271\) −23.5167 −1.42854 −0.714268 0.699873i \(-0.753240\pi\)
−0.714268 + 0.699873i \(0.753240\pi\)
\(272\) −1.46498 + 0.845807i −0.0888276 + 0.0512846i
\(273\) −3.67423 + 0.984508i −0.222375 + 0.0595851i
\(274\) −17.9282 + 31.0526i −1.08308 + 1.87595i
\(275\) −22.4424 7.49303i −1.35333 0.451847i
\(276\) 4.09808 4.09808i 0.246675 0.246675i
\(277\) −10.6066 + 6.12372i −0.637289 + 0.367939i −0.783569 0.621304i \(-0.786603\pi\)
0.146281 + 0.989243i \(0.453270\pi\)
\(278\) 15.4548i 0.926918i
\(279\) 8.19615i 0.490691i
\(280\) −0.803848 0.656339i −0.0480391 0.0392237i
\(281\) 8.13397 + 14.0885i 0.485232 + 0.840447i 0.999856 0.0169692i \(-0.00540173\pi\)
−0.514624 + 0.857416i \(0.672068\pi\)
\(282\) −3.79435 + 14.1607i −0.225950 + 0.843258i
\(283\) −3.88229 2.24144i −0.230778 0.133240i 0.380153 0.924924i \(-0.375871\pi\)
−0.610931 + 0.791684i \(0.709205\pi\)
\(284\) 3.29423 5.70577i 0.195477 0.338575i
\(285\) −8.58542 + 6.18482i −0.508557 + 0.366357i
\(286\) −11.1962 19.3923i −0.662042 1.14669i
\(287\) 3.82654i 0.225873i
\(288\) 22.7661 1.34151
\(289\) 16.8564 0.991553
\(290\) −27.5617 4.47958i −1.61848 0.263050i
\(291\) 12.5885 12.5885i 0.737948 0.737948i
\(292\) −12.7279 7.34847i −0.744845 0.430037i
\(293\) −7.67664 4.43211i −0.448474 0.258927i 0.258711 0.965955i \(-0.416702\pi\)
−0.707186 + 0.707028i \(0.750035\pi\)
\(294\) −5.36603 20.0263i −0.312953 1.16796i
\(295\) −0.909676 + 5.59700i −0.0529634 + 0.325870i
\(296\) 2.19615 0.127649
\(297\) 23.7506 + 6.36396i 1.37815 + 0.369274i
\(298\) 14.9372i 0.865287i
\(299\) −2.36603 4.09808i −0.136831 0.236998i
\(300\) 6.70163 + 13.4197i 0.386919 + 0.774786i
\(301\) −4.09808 + 7.09808i −0.236209 + 0.409126i
\(302\) 37.7912 + 21.8188i 2.17464 + 1.25553i
\(303\) 3.10583 + 3.10583i 0.178425 + 0.178425i
\(304\) −6.09808 10.5622i −0.349749 0.605782i
\(305\) 18.4641 + 15.0759i 1.05725 + 0.863242i
\(306\) 1.90192 + 1.09808i 0.108726 + 0.0627728i
\(307\) 25.8719i 1.47659i −0.674478 0.738295i \(-0.735631\pi\)
0.674478 0.738295i \(-0.264369\pi\)
\(308\) −6.36396 + 3.67423i −0.362620 + 0.209359i
\(309\) 15.2942 + 4.09808i 0.870058 + 0.233131i
\(310\) 4.18482 + 11.0349i 0.237682 + 0.626741i
\(311\) −14.0263 + 24.2942i −0.795357 + 1.37760i 0.127255 + 0.991870i \(0.459383\pi\)
−0.922612 + 0.385729i \(0.873950\pi\)
\(312\) 0.568406 2.12132i 0.0321797 0.120096i
\(313\) 4.81105 2.77766i 0.271936 0.157003i −0.357831 0.933786i \(-0.616484\pi\)
0.629767 + 0.776784i \(0.283150\pi\)
\(314\) 41.3205 2.33185
\(315\) −0.964857 + 5.93651i −0.0543635 + 0.334485i
\(316\) 0.928203 0.0522155
\(317\) 30.4428 17.5761i 1.70984 0.987174i 0.775094 0.631846i \(-0.217703\pi\)
0.934742 0.355328i \(-0.115631\pi\)
\(318\) 9.14162 + 9.14162i 0.512637 + 0.512637i
\(319\) 15.2942 26.4904i 0.856312 1.48318i
\(320\) −11.9844 + 4.54490i −0.669948 + 0.254068i
\(321\) −5.25833 19.6244i −0.293491 1.09532i
\(322\) −2.89778 + 1.67303i −0.161487 + 0.0932345i
\(323\) 1.03528i 0.0576043i
\(324\) −7.79423 13.5000i −0.433013 0.750000i
\(325\) 12.0000 2.44949i 0.665640 0.135873i
\(326\) 18.2942 + 31.6865i 1.01322 + 1.75495i
\(327\) −7.79676 + 2.08913i −0.431162 + 0.115529i
\(328\) −1.91327 1.10463i −0.105643 0.0609928i
\(329\) 1.96410 3.40192i 0.108284 0.187554i
\(330\) −35.2261 + 3.55855i −1.93913 + 0.195892i
\(331\) −6.19615 10.7321i −0.340571 0.589887i 0.643968 0.765053i \(-0.277287\pi\)
−0.984539 + 0.175166i \(0.943954\pi\)
\(332\) 18.0430i 0.990238i
\(333\) −6.36396 11.0227i −0.348743 0.604040i
\(334\) 32.8564 1.79782
\(335\) −11.3428 1.84354i −0.619723 0.100723i
\(336\) −6.69615 1.79423i −0.365305 0.0978832i
\(337\) −1.55291 0.896575i −0.0845926 0.0488396i 0.457107 0.889412i \(-0.348886\pi\)
−0.541700 + 0.840572i \(0.682219\pi\)
\(338\) −11.7112 6.76148i −0.637007 0.367776i
\(339\) −4.26795 1.14359i −0.231803 0.0621115i
\(340\) −1.44861 0.235442i −0.0785619 0.0127686i
\(341\) −12.9282 −0.700101
\(342\) −7.91688 + 13.7124i −0.428096 + 0.741483i
\(343\) 11.8313i 0.638833i
\(344\) −2.36603 4.09808i −0.127568 0.220953i
\(345\) −7.44414 + 0.752011i −0.400779 + 0.0404869i
\(346\) −0.732051 + 1.26795i −0.0393553 + 0.0681654i
\(347\) 8.57321 + 4.94975i 0.460234 + 0.265716i 0.712143 0.702035i \(-0.247725\pi\)
−0.251909 + 0.967751i \(0.581058\pi\)
\(348\) −18.7315 + 5.01910i −1.00412 + 0.269052i
\(349\) 10.7679 + 18.6506i 0.576395 + 0.998346i 0.995889 + 0.0905872i \(0.0288744\pi\)
−0.419493 + 0.907758i \(0.637792\pi\)
\(350\) −1.73205 8.48528i −0.0925820 0.453557i
\(351\) −12.2942 + 3.29423i −0.656217 + 0.175833i
\(352\) 35.9101i 1.91402i
\(353\) 7.82894 4.52004i 0.416693 0.240578i −0.276969 0.960879i \(-0.589330\pi\)
0.693661 + 0.720301i \(0.255996\pi\)
\(354\) 2.19615 + 8.19615i 0.116724 + 0.435621i
\(355\) −7.95297 + 3.01604i −0.422100 + 0.160075i
\(356\) 6.40192 11.0885i 0.339301 0.587687i
\(357\) −0.416102 0.416102i −0.0220225 0.0220225i
\(358\) −41.1373 + 23.7506i −2.17417 + 1.25526i
\(359\) −9.80385 −0.517427 −0.258714 0.965954i \(-0.583299\pi\)
−0.258714 + 0.965954i \(0.583299\pi\)
\(360\) −2.68973 2.19615i −0.141761 0.115747i
\(361\) −11.5359 −0.607153
\(362\) 14.1607 8.17569i 0.744271 0.429705i
\(363\) 5.10703 19.0597i 0.268050 1.00037i
\(364\) 1.90192 3.29423i 0.0996879 0.172664i
\(365\) 6.72792 + 17.7408i 0.352156 + 0.928595i
\(366\) 34.4545 + 9.23205i 1.80096 + 0.482567i
\(367\) 21.4770 12.3998i 1.12109 0.647262i 0.179411 0.983774i \(-0.442581\pi\)
0.941679 + 0.336512i \(0.109247\pi\)
\(368\) 8.62398i 0.449556i
\(369\) 12.8038i 0.666542i
\(370\) 14.1962 + 11.5911i 0.738023 + 0.602593i
\(371\) −1.73205 3.00000i −0.0899236 0.155752i
\(372\) 5.79555 + 5.79555i 0.300486 + 0.300486i
\(373\) 27.8410 + 16.0740i 1.44155 + 0.832280i 0.997953 0.0639468i \(-0.0203688\pi\)
0.443597 + 0.896226i \(0.353702\pi\)
\(374\) 1.73205 3.00000i 0.0895622 0.155126i
\(375\) 4.25551 18.8915i 0.219754 0.975555i
\(376\) 1.13397 + 1.96410i 0.0584803 + 0.101291i
\(377\) 15.8338i 0.815480i
\(378\) 2.32937 + 8.69333i 0.119810 + 0.447137i
\(379\) −12.5359 −0.643926 −0.321963 0.946752i \(-0.604343\pi\)
−0.321963 + 0.946752i \(0.604343\pi\)
\(380\) 1.69748 10.4441i 0.0870788 0.535773i
\(381\) 2.08846 + 7.79423i 0.106995 + 0.399310i
\(382\) −0.568406 0.328169i −0.0290822 0.0167906i
\(383\) −17.7148 10.2277i −0.905186 0.522609i −0.0263067 0.999654i \(-0.508375\pi\)
−0.878879 + 0.477045i \(0.841708\pi\)
\(384\) 5.02628 5.02628i 0.256496 0.256496i
\(385\) 9.36396 + 1.52192i 0.477232 + 0.0775641i
\(386\) −40.0526 −2.03862
\(387\) −13.7124 + 23.7506i −0.697042 + 1.20731i
\(388\) 17.8028i 0.903799i
\(389\) −12.0622 20.8923i −0.611577 1.05928i −0.990975 0.134048i \(-0.957202\pi\)
0.379398 0.925234i \(-0.376131\pi\)
\(390\) 14.8704 10.7124i 0.752991 0.542445i
\(391\) 0.366025 0.633975i 0.0185107 0.0320615i
\(392\) −2.77766 1.60368i −0.140293 0.0809982i
\(393\) −0.416102 + 1.55291i −0.0209896 + 0.0783342i
\(394\) −20.1244 34.8564i −1.01385 1.75604i
\(395\) −0.928203 0.757875i −0.0467030 0.0381328i
\(396\) −21.2942 + 12.2942i −1.07008 + 0.617808i
\(397\) 29.3939i 1.47524i 0.675218 + 0.737618i \(0.264050\pi\)
−0.675218 + 0.737618i \(0.735950\pi\)
\(398\) −7.67664 + 4.43211i −0.384795 + 0.222162i
\(399\) 3.00000 3.00000i 0.150188 0.150188i
\(400\) 21.1716 + 7.06875i 1.05858 + 0.353437i
\(401\) 15.4641 26.7846i 0.772240 1.33756i −0.164092 0.986445i \(-0.552469\pi\)
0.936333 0.351115i \(-0.114197\pi\)
\(402\) −16.6102 + 4.45069i −0.828442 + 0.221980i
\(403\) 5.79555 3.34607i 0.288697 0.166679i
\(404\) −4.39230 −0.218525
\(405\) −3.22848 + 19.8640i −0.160424 + 0.987048i
\(406\) 11.1962 0.555656
\(407\) −17.3867 + 10.0382i −0.861825 + 0.497575i
\(408\) 0.328169 0.0879327i 0.0162468 0.00435332i
\(409\) −11.7321 + 20.3205i −0.580113 + 1.00478i 0.415353 + 0.909660i \(0.363658\pi\)
−0.995465 + 0.0951241i \(0.969675\pi\)
\(410\) −6.53744 17.2385i −0.322861 0.851349i
\(411\) 22.7321 22.7321i 1.12129 1.12129i
\(412\) −13.7124 + 7.91688i −0.675563 + 0.390036i
\(413\) 2.27362i 0.111878i
\(414\) −9.69615 + 5.59808i −0.476540 + 0.275130i
\(415\) −14.7321 + 18.0430i −0.723168 + 0.885696i
\(416\) 9.29423 + 16.0981i 0.455687 + 0.789273i
\(417\) 3.58630 13.3843i 0.175622 0.655430i
\(418\) 21.6293 + 12.4877i 1.05792 + 0.610793i
\(419\) −8.02628 + 13.9019i −0.392109 + 0.679153i −0.992728 0.120383i \(-0.961588\pi\)
0.600618 + 0.799536i \(0.294921\pi\)
\(420\) −3.51549 4.88001i −0.171538 0.238120i
\(421\) 6.26795 + 10.8564i 0.305481 + 0.529109i 0.977368 0.211545i \(-0.0678494\pi\)
−0.671887 + 0.740653i \(0.734516\pi\)
\(422\) 25.3543i 1.23423i
\(423\) 6.57201 11.3831i 0.319542 0.553463i
\(424\) 2.00000 0.0971286
\(425\) 1.25637 + 1.41823i 0.0609430 + 0.0687941i
\(426\) −9.00000 + 9.00000i −0.436051 + 0.436051i
\(427\) −8.27723 4.77886i −0.400563 0.231265i
\(428\) 17.5947 + 10.1583i 0.850473 + 0.491021i
\(429\) 5.19615 + 19.3923i 0.250873 + 0.936269i
\(430\) 6.33508 38.9781i 0.305505 1.87969i
\(431\) −6.00000 −0.289010 −0.144505 0.989504i \(-0.546159\pi\)
−0.144505 + 0.989504i \(0.546159\pi\)
\(432\) −22.4058 6.00361i −1.07800 0.288849i
\(433\) 30.5307i 1.46721i −0.679575 0.733606i \(-0.737836\pi\)
0.679575 0.733606i \(-0.262164\pi\)
\(434\) −2.36603 4.09808i −0.113573 0.196714i
\(435\) 22.8296 + 10.2751i 1.09460 + 0.492655i
\(436\) 4.03590 6.99038i 0.193284 0.334779i
\(437\) 4.57081 + 2.63896i 0.218651 + 0.126239i
\(438\) 20.0764 + 20.0764i 0.959287 + 0.959287i
\(439\) 4.66025 + 8.07180i 0.222422 + 0.385246i 0.955543 0.294852i \(-0.0952705\pi\)
−0.733121 + 0.680098i \(0.761937\pi\)
\(440\) −3.46410 + 4.24264i −0.165145 + 0.202260i
\(441\) 18.5885i 0.885165i
\(442\) 1.79315i 0.0852915i
\(443\) −12.0394 + 6.95095i −0.572009 + 0.330250i −0.757951 0.652311i \(-0.773800\pi\)
0.185942 + 0.982561i \(0.440466\pi\)
\(444\) 12.2942 + 3.29423i 0.583458 + 0.156337i
\(445\) −15.4556 + 5.86131i −0.732666 + 0.277853i
\(446\) 16.1603 27.9904i 0.765210 1.32538i
\(447\) −3.46618 + 12.9360i −0.163945 + 0.611851i
\(448\) 4.45069 2.56961i 0.210275 0.121403i
\(449\) 12.0000 0.566315 0.283158 0.959073i \(-0.408618\pi\)
0.283158 + 0.959073i \(0.408618\pi\)
\(450\) −5.79555 28.3923i −0.273205 1.33843i
\(451\) 20.1962 0.951000
\(452\) 3.82654 2.20925i 0.179985 0.103915i
\(453\) −27.6651 27.6651i −1.29982 1.29982i
\(454\) −1.83013 + 3.16987i −0.0858921 + 0.148770i
\(455\) −4.59165 + 1.74131i −0.215260 + 0.0816341i
\(456\) 0.633975 + 2.36603i 0.0296886 + 0.110799i
\(457\) −29.9623 + 17.2987i −1.40158 + 0.809201i −0.994554 0.104218i \(-0.966766\pi\)
−0.407022 + 0.913418i \(0.633433\pi\)
\(458\) 38.4983i 1.79891i
\(459\) −1.39230 1.39230i −0.0649872 0.0649872i
\(460\) 4.73205 5.79555i 0.220633 0.270219i
\(461\) −9.35641 16.2058i −0.435771 0.754778i 0.561587 0.827418i \(-0.310191\pi\)
−0.997358 + 0.0726397i \(0.976858\pi\)
\(462\) 13.7124 3.67423i 0.637960 0.170941i
\(463\) 0.152304 + 0.0879327i 0.00707816 + 0.00408658i 0.503535 0.863975i \(-0.332033\pi\)
−0.496457 + 0.868061i \(0.665366\pi\)
\(464\) −14.4282 + 24.9904i −0.669813 + 1.16015i
\(465\) −1.06350 10.5276i −0.0493188 0.488206i
\(466\) 6.83013 + 11.8301i 0.316400 + 0.548020i
\(467\) 5.75839i 0.266467i 0.991085 + 0.133233i \(0.0425359\pi\)
−0.991085 + 0.133233i \(0.957464\pi\)
\(468\) 6.36396 11.0227i 0.294174 0.509525i
\(469\) 4.60770 0.212764
\(470\) −3.03624 + 18.6812i −0.140051 + 0.861698i
\(471\) −35.7846 9.58846i −1.64887 0.441813i
\(472\) 1.13681 + 0.656339i 0.0523260 + 0.0302104i
\(473\) 37.4631 + 21.6293i 1.72255 + 0.994517i
\(474\) −1.73205 0.464102i −0.0795557 0.0213169i
\(475\) −10.2251 + 9.05816i −0.469159 + 0.415617i
\(476\) 0.588457 0.0269719
\(477\) −5.79555 10.0382i −0.265360 0.459617i
\(478\) 24.9754i 1.14235i
\(479\) 15.9282 + 27.5885i 0.727778 + 1.26055i 0.957820 + 0.287368i \(0.0927803\pi\)
−0.230042 + 0.973181i \(0.573886\pi\)
\(480\) 29.2421 2.95405i 1.33471 0.134833i
\(481\) 5.19615 9.00000i 0.236924 0.410365i
\(482\) −10.4865 6.05437i −0.477646 0.275769i
\(483\) 2.89778 0.776457i 0.131853 0.0353300i
\(484\) 9.86603 + 17.0885i 0.448456 + 0.776748i
\(485\) 14.5359 17.8028i 0.660041 0.808382i
\(486\) 7.79423 + 29.0885i 0.353553 + 1.31948i
\(487\) 1.13681i 0.0515139i 0.999668 + 0.0257569i \(0.00819959\pi\)
−0.999668 + 0.0257569i \(0.991800\pi\)
\(488\) 4.77886 2.75908i 0.216329 0.124898i
\(489\) −8.49038 31.6865i −0.383948 1.43291i
\(490\) −9.49097 25.0266i −0.428758 1.13059i
\(491\) 10.8564 18.8038i 0.489943 0.848606i −0.509990 0.860180i \(-0.670351\pi\)
0.999933 + 0.0115744i \(0.00368433\pi\)
\(492\) −9.05369 9.05369i −0.408172 0.408172i
\(493\) −2.12132 + 1.22474i −0.0955395 + 0.0551597i
\(494\) −12.9282 −0.581667
\(495\) 31.3324 + 5.09244i 1.40829 + 0.228888i
\(496\) 12.1962 0.547623
\(497\) 2.95352 1.70522i 0.132484 0.0764895i
\(498\) −9.02150 + 33.6687i −0.404263 + 1.50873i
\(499\) −1.92820 + 3.33975i −0.0863182 + 0.149508i −0.905952 0.423380i \(-0.860844\pi\)
0.819634 + 0.572888i \(0.194177\pi\)
\(500\) 10.3492 + 16.3674i 0.462832 + 0.731974i
\(501\) −28.4545 7.62436i −1.27125 0.340631i
\(502\) 31.0991 17.9551i 1.38802 0.801374i
\(503\) 29.3567i 1.30895i 0.756083 + 0.654476i \(0.227111\pi\)
−0.756083 + 0.654476i \(0.772889\pi\)
\(504\) 1.20577 + 0.696152i 0.0537093 + 0.0310091i
\(505\) 4.39230 + 3.58630i 0.195455 + 0.159588i
\(506\) 8.83013 + 15.2942i 0.392547 + 0.679911i
\(507\) 8.57321 + 8.57321i 0.380750 + 0.380750i
\(508\) −6.98811 4.03459i −0.310047 0.179006i
\(509\) −5.42820 + 9.40192i −0.240601 + 0.416733i −0.960886 0.276946i \(-0.910678\pi\)
0.720285 + 0.693679i \(0.244011\pi\)
\(510\) 2.58542 + 1.16364i 0.114484 + 0.0515271i
\(511\) −3.80385 6.58846i −0.168272 0.291456i
\(512\) 29.2552i 1.29291i
\(513\) 10.0382 10.0382i 0.443197 0.443197i
\(514\) −43.3205 −1.91079
\(515\) 20.1765 + 3.27928i 0.889084 + 0.144502i
\(516\) −7.09808 26.4904i −0.312475 1.16617i
\(517\) −17.9551 10.3664i −0.789663 0.455912i
\(518\) −6.36396 3.67423i −0.279616 0.161437i
\(519\) 0.928203 0.928203i 0.0407436 0.0407436i
\(520\) 0.454838 2.79850i 0.0199460 0.122722i
\(521\) 1.39230 0.0609980 0.0304990 0.999535i \(-0.490290\pi\)
0.0304990 + 0.999535i \(0.490290\pi\)
\(522\) 37.4631 1.63971
\(523\) 30.9468i 1.35321i −0.736347 0.676604i \(-0.763451\pi\)
0.736347 0.676604i \(-0.236549\pi\)
\(524\) −0.803848 1.39230i −0.0351162 0.0608231i
\(525\) −0.469016 + 7.75039i −0.0204696 + 0.338255i
\(526\) −7.36603 + 12.7583i −0.321174 + 0.556290i
\(527\) 0.896575 + 0.517638i 0.0390554 + 0.0225487i
\(528\) −9.46979 + 35.3417i −0.412120 + 1.53805i
\(529\) −9.63397 16.6865i −0.418868 0.725501i
\(530\) 12.9282 + 10.5558i 0.561565 + 0.458516i
\(531\) 7.60770i 0.330146i
\(532\) 4.24264i 0.183942i
\(533\) −9.05369 + 5.22715i −0.392159 + 0.226413i
\(534\) −17.4904 + 17.4904i −0.756883 + 0.756883i
\(535\) −9.30049 24.5243i −0.402095 1.06028i
\(536\) −1.33013 + 2.30385i −0.0574527 + 0.0995111i
\(537\) 41.1373 11.0227i 1.77521 0.475665i
\(538\) −28.7697 + 16.6102i −1.24035 + 0.716117i
\(539\) 29.3205 1.26292
\(540\) −11.7631 16.3288i −0.506202 0.702680i
\(541\) 21.3923 0.919727 0.459864 0.887990i \(-0.347898\pi\)
0.459864 + 0.887990i \(0.347898\pi\)
\(542\) −39.3441 + 22.7153i −1.68998 + 0.975708i
\(543\) −14.1607 + 3.79435i −0.607695 + 0.162831i
\(544\) −1.43782 + 2.49038i −0.0616461 + 0.106774i
\(545\) −9.74352 + 3.69508i −0.417367 + 0.158280i
\(546\) −5.19615 + 5.19615i −0.222375 + 0.222375i
\(547\) 26.2323 15.1452i 1.12161 0.647563i 0.179800 0.983703i \(-0.442455\pi\)
0.941812 + 0.336140i \(0.109122\pi\)
\(548\) 32.1480i 1.37329i
\(549\) −27.6962 15.9904i −1.18204 0.682453i
\(550\) −44.7846 + 9.14162i −1.90962 + 0.389800i
\(551\) −8.83013 15.2942i −0.376176 0.651556i
\(552\) −0.448288 + 1.67303i −0.0190804 + 0.0712090i
\(553\) 0.416102 + 0.240237i 0.0176945 + 0.0102159i
\(554\) −11.8301 + 20.4904i −0.502614 + 0.870553i
\(555\) −9.60450 13.3324i −0.407688 0.565930i
\(556\) 6.92820 + 12.0000i 0.293821 + 0.508913i
\(557\) 31.1127i 1.31829i −0.752017 0.659144i \(-0.770919\pi\)
0.752017 0.659144i \(-0.229081\pi\)
\(558\) −7.91688 13.7124i −0.335148 0.580493i
\(559\) −22.3923 −0.947094
\(560\) −8.83373 1.43574i −0.373293 0.0606711i
\(561\) −2.19615 + 2.19615i −0.0927216 + 0.0927216i
\(562\) 27.2168 + 15.7136i 1.14807 + 0.662840i
\(563\) −23.8707 13.7818i −1.00603 0.580833i −0.0960045 0.995381i \(-0.530606\pi\)
−0.910027 + 0.414548i \(0.863940\pi\)
\(564\) 3.40192 + 12.6962i 0.143247 + 0.534604i
\(565\) −5.63039 0.915103i −0.236872 0.0384987i
\(566\) −8.66025 −0.364018
\(567\) 8.06918i 0.338874i
\(568\) 1.96902i 0.0826181i
\(569\) −2.66025 4.60770i −0.111524 0.193165i 0.804861 0.593463i \(-0.202240\pi\)
−0.916385 + 0.400299i \(0.868906\pi\)
\(570\) −8.38961 + 18.6403i −0.351402 + 0.780756i
\(571\) −2.73205 + 4.73205i −0.114333 + 0.198030i −0.917513 0.397706i \(-0.869806\pi\)
0.803180 + 0.595736i \(0.203140\pi\)
\(572\) −17.3867 10.0382i −0.726973 0.419718i
\(573\) 0.416102 + 0.416102i 0.0173829 + 0.0173829i
\(574\) 3.69615 + 6.40192i 0.154274 + 0.267211i
\(575\) −9.46410 + 1.93185i −0.394680 + 0.0805638i
\(576\) 14.8923 8.59808i 0.620513 0.358253i
\(577\) 28.5617i 1.18904i 0.804082 + 0.594519i \(0.202657\pi\)
−0.804082 + 0.594519i \(0.797343\pi\)
\(578\) 28.2013 16.2820i 1.17302 0.677244i
\(579\) 34.6865 + 9.29423i 1.44152 + 0.386255i
\(580\) −23.4086 + 8.87735i −0.971988 + 0.368612i
\(581\) 4.66987 8.08846i 0.193739 0.335566i
\(582\) 8.90138 33.2204i 0.368974 1.37703i
\(583\) −15.8338 + 9.14162i −0.655767 + 0.378607i
\(584\) 4.39230 0.181755
\(585\) −15.3640 + 5.82655i −0.635222 + 0.240898i
\(586\) −17.1244 −0.707401
\(587\) 19.0597 11.0041i 0.786678 0.454189i −0.0521138 0.998641i \(-0.516596\pi\)
0.838792 + 0.544452i \(0.183263\pi\)
\(588\) −13.1440 13.1440i −0.542050 0.542050i
\(589\) −3.73205 + 6.46410i −0.153776 + 0.266349i
\(590\) 3.88437 + 10.2426i 0.159917 + 0.421683i
\(591\) 9.33975 + 34.8564i 0.384186 + 1.43380i
\(592\) 16.4022 9.46979i 0.674124 0.389206i
\(593\) 28.9406i 1.18845i 0.804299 + 0.594224i \(0.202541\pi\)
−0.804299 + 0.594224i \(0.797459\pi\)
\(594\) 45.8827 12.2942i 1.88259 0.504438i
\(595\) −0.588457 0.480473i −0.0241244 0.0196975i
\(596\) −6.69615 11.5981i −0.274285 0.475076i
\(597\) 7.67664 2.05695i 0.314184 0.0841853i
\(598\) −7.91688 4.57081i −0.323745 0.186914i
\(599\) 16.8564 29.1962i 0.688734 1.19292i −0.283514 0.958968i \(-0.591500\pi\)
0.972248 0.233954i \(-0.0751666\pi\)
\(600\) −3.73980 2.47185i −0.152677 0.100913i
\(601\) 8.46410 + 14.6603i 0.345258 + 0.598004i 0.985401 0.170252i \(-0.0544581\pi\)
−0.640143 + 0.768256i \(0.721125\pi\)
\(602\) 15.8338i 0.645335i
\(603\) 15.4176 0.627855
\(604\) 39.1244 1.59195
\(605\) 4.08664 25.1440i 0.166146 1.02225i
\(606\) 8.19615 + 2.19615i 0.332946 + 0.0892126i
\(607\) −7.55652 4.36276i −0.306710 0.177079i 0.338743 0.940879i \(-0.389998\pi\)
−0.645453 + 0.763800i \(0.723331\pi\)
\(608\) −17.9551 10.3664i −0.728174 0.420412i
\(609\) −9.69615 2.59808i −0.392908 0.105279i
\(610\) 45.4532 + 7.38748i 1.84035 + 0.299110i
\(611\) 10.7321 0.434172
\(612\) 1.96902 0.0795928
\(613\) 24.3190i 0.982236i 0.871093 + 0.491118i \(0.163412\pi\)
−0.871093 + 0.491118i \(0.836588\pi\)
\(614\) −24.9904 43.2846i −1.00853 1.74682i
\(615\) 1.66138 + 16.4460i 0.0669934 + 0.663166i
\(616\) 1.09808 1.90192i 0.0442428 0.0766307i
\(617\) −11.3509 6.55343i −0.456969 0.263831i 0.253800 0.967257i \(-0.418320\pi\)
−0.710769 + 0.703426i \(0.751653\pi\)
\(618\) 29.5462 7.91688i 1.18852 0.318463i
\(619\) 9.90192 + 17.1506i 0.397992 + 0.689342i 0.993478 0.114023i \(-0.0363739\pi\)
−0.595486 + 0.803366i \(0.703041\pi\)
\(620\) 8.19615 + 6.69213i 0.329165 + 0.268762i
\(621\) 9.69615 2.59808i 0.389093 0.104257i
\(622\) 54.1934i 2.17296i
\(623\) 5.73981 3.31388i 0.229961 0.132768i
\(624\) −4.90192 18.2942i −0.196234 0.732355i
\(625\) 3.01472 24.8176i 0.120589 0.992703i
\(626\) 5.36603 9.29423i 0.214470 0.371472i
\(627\) −15.8338 15.8338i −0.632339 0.632339i
\(628\) 32.0836 18.5235i 1.28028 0.739167i
\(629\) 1.60770 0.0641030
\(630\) 4.11999 + 10.8640i 0.164144 + 0.432831i
\(631\) −33.3205 −1.32647 −0.663234 0.748412i \(-0.730817\pi\)
−0.663234 + 0.748412i \(0.730817\pi\)
\(632\) −0.240237 + 0.138701i −0.00955610 + 0.00551722i
\(633\) −5.88349 + 21.9575i −0.233848 + 0.872731i
\(634\) 33.9545 58.8109i 1.34850 2.33568i
\(635\) 3.69389 + 9.74036i 0.146587 + 0.386534i
\(636\) 11.1962 + 3.00000i 0.443956 + 0.118958i
\(637\) −13.1440 + 7.58871i −0.520785 + 0.300675i
\(638\) 59.0924i 2.33949i
\(639\) 9.88269 5.70577i 0.390953 0.225717i
\(640\) 5.80385 7.10823i 0.229417 0.280978i
\(641\) 12.5263 + 21.6962i 0.494758 + 0.856946i 0.999982 0.00604207i \(-0.00192326\pi\)
−0.505223 + 0.862989i \(0.668590\pi\)
\(642\) −27.7530 27.7530i −1.09532 1.09532i
\(643\) 21.8374 + 12.6078i 0.861181 + 0.497203i 0.864408 0.502792i \(-0.167694\pi\)
−0.00322641 + 0.999995i \(0.501027\pi\)
\(644\) −1.50000 + 2.59808i −0.0591083 + 0.102379i
\(645\) −14.5312 + 32.2859i −0.572167 + 1.27126i
\(646\) −1.00000 1.73205i −0.0393445 0.0681466i
\(647\) 12.3861i 0.486950i 0.969907 + 0.243475i \(0.0782873\pi\)
−0.969907 + 0.243475i \(0.921713\pi\)
\(648\) 4.03459 + 2.32937i 0.158494 + 0.0915064i
\(649\) −12.0000 −0.471041
\(650\) 17.7104 15.6892i 0.694658 0.615381i
\(651\) 1.09808 + 4.09808i 0.0430370 + 0.160616i
\(652\) 28.4094 + 16.4022i 1.11260 + 0.642358i
\(653\) 0.392541 + 0.226633i 0.0153613 + 0.00886885i 0.507661 0.861557i \(-0.330510\pi\)
−0.492300 + 0.870426i \(0.663844\pi\)
\(654\) −11.0263 + 11.0263i −0.431162 + 0.431162i
\(655\) −0.332965 + 2.04864i −0.0130100 + 0.0800471i
\(656\) −19.0526 −0.743877
\(657\) −12.7279 22.0454i −0.496564 0.860073i
\(658\) 7.58871i 0.295839i
\(659\) 18.1244 + 31.3923i 0.706025 + 1.22287i 0.966320 + 0.257342i \(0.0828466\pi\)
−0.260296 + 0.965529i \(0.583820\pi\)
\(660\) −25.7563 + 18.5545i −1.00256 + 0.722232i
\(661\) 15.3923 26.6603i 0.598691 1.03696i −0.394323 0.918972i \(-0.629021\pi\)
0.993015 0.117992i \(-0.0376457\pi\)
\(662\) −20.7327 11.9700i −0.805800 0.465229i
\(663\) 0.416102 1.55291i 0.0161601 0.0603102i
\(664\) 2.69615 + 4.66987i 0.104631 + 0.181226i
\(665\) 3.46410 4.24264i 0.134332 0.164523i
\(666\) −21.2942 12.2942i −0.825135 0.476392i
\(667\) 12.4877i 0.483525i
\(668\) 25.5116 14.7291i 0.987073 0.569887i
\(669\) −20.4904 + 20.4904i −0.792204 + 0.792204i
\(670\) −20.7576 + 7.87201i −0.801936 + 0.304122i
\(671\) −25.2224 + 43.6865i −0.973701 + 1.68650i
\(672\) −11.3831 + 3.05008i −0.439111 + 0.117659i
\(673\) 1.40061 0.808643i 0.0539896 0.0311709i −0.472762 0.881190i \(-0.656743\pi\)
0.526752 + 0.850019i \(0.323410\pi\)
\(674\) −3.46410 −0.133432
\(675\) −1.56936 + 25.9333i −0.0604047 + 0.998174i
\(676\) −12.1244 −0.466321
\(677\) −28.6496 + 16.5409i −1.10109 + 0.635717i −0.936508 0.350646i \(-0.885962\pi\)
−0.164586 + 0.986363i \(0.552629\pi\)
\(678\) −8.24504 + 2.20925i −0.316649 + 0.0848459i
\(679\) −4.60770 + 7.98076i −0.176827 + 0.306274i
\(680\) 0.410110 0.155528i 0.0157270 0.00596422i
\(681\) 2.32051 2.32051i 0.0889221 0.0889221i
\(682\) −21.6293 + 12.4877i −0.828229 + 0.478178i
\(683\) 19.6975i 0.753702i −0.926274 0.376851i \(-0.877007\pi\)
0.926274 0.376851i \(-0.122993\pi\)
\(684\) 14.1962i 0.542803i
\(685\) 26.2487 32.1480i 1.00291 1.22831i
\(686\) 11.4282 + 19.7942i 0.436331 + 0.755747i
\(687\) −8.93357 + 33.3405i −0.340837 + 1.27202i
\(688\) −35.3417 20.4046i −1.34739 0.777917i
\(689\) 4.73205 8.19615i 0.180277 0.312249i
\(690\) −11.7279 + 8.44863i −0.446474 + 0.321634i
\(691\) −10.1244 17.5359i −0.385149 0.667097i 0.606641 0.794976i \(-0.292516\pi\)
−0.991790 + 0.127879i \(0.959183\pi\)
\(692\) 1.31268i 0.0499005i
\(693\) −12.7279 −0.483494
\(694\) 19.1244 0.725951
\(695\) 2.86976 17.6569i 0.108856 0.669763i
\(696\) 4.09808 4.09808i 0.155337 0.155337i
\(697\) −1.40061 0.808643i −0.0530519 0.0306295i
\(698\) 36.0303 + 20.8021i 1.36377 + 0.787370i
\(699\) −3.16987 11.8301i −0.119896 0.447456i
\(700\) −5.14871 5.81200i −0.194603 0.219673i
\(701\) −23.1962 −0.876107 −0.438053 0.898949i \(-0.644332\pi\)
−0.438053 + 0.898949i \(0.644332\pi\)
\(702\) −17.3867 + 17.3867i −0.656217 + 0.656217i
\(703\) 11.5911i 0.437167i
\(704\) −13.5622 23.4904i −0.511144 0.885327i
\(705\) 6.96444 15.4738i 0.262296 0.582777i
\(706\) 8.73205 15.1244i 0.328635 0.569213i
\(707\) −1.96902 1.13681i −0.0740525 0.0427542i
\(708\) 5.37945 + 5.37945i 0.202172 + 0.202172i
\(709\) −15.8923 27.5263i −0.596848 1.03377i −0.993283 0.115708i \(-0.963086\pi\)
0.396435 0.918063i \(-0.370247\pi\)
\(710\) −10.3923 + 12.7279i −0.390016 + 0.477670i
\(711\) 1.39230 + 0.803848i 0.0522155 + 0.0301466i
\(712\) 3.82654i 0.143406i
\(713\) −4.57081 + 2.63896i −0.171178 + 0.0988298i
\(714\) −1.09808 0.294229i −0.0410945 0.0110112i
\(715\) 9.19051 + 24.2343i 0.343706 + 0.906313i
\(716\) −21.2942 + 36.8827i −0.795803 + 1.37837i
\(717\) −5.79555 + 21.6293i −0.216439 + 0.807761i
\(718\) −16.4022 + 9.46979i −0.612123 + 0.353409i
\(719\) −19.6077 −0.731244 −0.365622 0.930763i \(-0.619144\pi\)
−0.365622 + 0.930763i \(0.619144\pi\)
\(720\) −29.5582 4.80408i −1.10157 0.179038i
\(721\) −8.19615 −0.305241
\(722\) −19.2999 + 11.1428i −0.718269 + 0.414693i
\(723\) 7.67664 + 7.67664i 0.285497 + 0.285497i
\(724\) 7.33013 12.6962i 0.272422 0.471849i
\(725\) 30.6569 + 10.2357i 1.13857 + 0.380143i
\(726\) −9.86603 36.8205i −0.366163 1.36654i
\(727\) 24.5271 14.1607i 0.909659 0.525192i 0.0293377 0.999570i \(-0.490660\pi\)
0.880321 + 0.474378i \(0.157327\pi\)
\(728\) 1.13681i 0.0421331i
\(729\) 27.0000i 1.00000i
\(730\) 28.3923 + 23.1822i 1.05085 + 0.858012i
\(731\) −1.73205 3.00000i −0.0640622 0.110959i
\(732\) 30.8910 8.27723i 1.14177 0.305935i
\(733\) 35.9101 + 20.7327i 1.32637 + 0.765781i 0.984736 0.174052i \(-0.0556861\pi\)
0.341635 + 0.939833i \(0.389019\pi\)
\(734\) 23.9545 41.4904i 0.884176 1.53144i
\(735\) 2.41197 + 23.8761i 0.0889670 + 0.880682i
\(736\) −7.33013 12.6962i −0.270192 0.467986i
\(737\) 24.3190i 0.895803i
\(738\) 12.3676 + 21.4213i 0.455256 + 0.788527i
\(739\) 45.8564 1.68686 0.843428 0.537243i \(-0.180534\pi\)
0.843428 + 0.537243i \(0.180534\pi\)
\(740\) 16.2189 + 2.63604i 0.596217 + 0.0969027i
\(741\) 11.1962 + 3.00000i 0.411301 + 0.110208i
\(742\) −5.79555 3.34607i −0.212762 0.122838i
\(743\) 21.9253 + 12.6586i 0.804361 + 0.464398i 0.844994 0.534776i \(-0.179604\pi\)
−0.0406329 + 0.999174i \(0.512937\pi\)
\(744\) −2.36603 0.633975i −0.0867427 0.0232426i
\(745\) −2.77364 + 17.0655i −0.101618 + 0.625230i
\(746\) 62.1051 2.27383
\(747\) 15.6257 27.0645i 0.571714 0.990238i
\(748\) 3.10583i 0.113560i
\(749\) 5.25833 + 9.10770i 0.192135 + 0.332788i
\(750\) −11.1282 35.7167i −0.406345 1.30419i
\(751\) −17.2224 + 29.8301i −0.628455 + 1.08852i 0.359406 + 0.933181i \(0.382979\pi\)
−0.987862 + 0.155336i \(0.950354\pi\)
\(752\) 16.9384 + 9.77938i 0.617679 + 0.356617i
\(753\) −31.0991 + 8.33298i −1.13331 + 0.303671i
\(754\) 15.2942 + 26.4904i 0.556983 + 0.964723i
\(755\) −39.1244 31.9449i −1.42388 1.16259i
\(756\) 5.70577 + 5.70577i 0.207517 + 0.207517i
\(757\) 7.34847i 0.267085i 0.991043 + 0.133542i \(0.0426352\pi\)
−0.991043 + 0.133542i \(0.957365\pi\)
\(758\) −20.9730 + 12.1087i −0.761772 + 0.439810i
\(759\) −4.09808 15.2942i −0.148751 0.555145i
\(760\) 1.12132 + 2.95680i 0.0406746 + 0.107254i
\(761\) −1.03590 + 1.79423i −0.0375513 + 0.0650407i −0.884190 0.467127i \(-0.845289\pi\)
0.846639 + 0.532168i \(0.178622\pi\)
\(762\) 11.0227 + 11.0227i 0.399310 + 0.399310i
\(763\) 3.61849 2.08913i 0.130998 0.0756318i
\(764\) −0.588457 −0.0212896
\(765\) −1.96902 1.60770i −0.0711899 0.0581263i
\(766\) −39.5167 −1.42779
\(767\) 5.37945 3.10583i 0.194241 0.112145i
\(768\)