Properties

Label 45.2.j.a.34.3
Level $45$
Weight $2$
Character 45.34
Analytic conductor $0.359$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 45.j (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.359326809096\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Defining polynomial: \(x^{8} - x^{4} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 34.3
Root \(0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 45.34
Dual form 45.2.j.a.4.3

$q$-expansion

\(f(q)\) \(=\) \(q+(0.448288 + 0.258819i) q^{2} +(-0.448288 + 1.67303i) q^{3} +(-0.866025 - 1.50000i) q^{4} +(2.09077 + 0.792893i) q^{5} +(-0.633975 + 0.633975i) q^{6} +(-2.89778 - 1.67303i) q^{7} -1.93185i q^{8} +(-2.59808 - 1.50000i) q^{9} +O(q^{10})\) \(q+(0.448288 + 0.258819i) q^{2} +(-0.448288 + 1.67303i) q^{3} +(-0.866025 - 1.50000i) q^{4} +(2.09077 + 0.792893i) q^{5} +(-0.633975 + 0.633975i) q^{6} +(-2.89778 - 1.67303i) q^{7} -1.93185i q^{8} +(-2.59808 - 1.50000i) q^{9} +(0.732051 + 0.896575i) q^{10} +(-0.633975 + 1.09808i) q^{11} +(2.89778 - 0.776457i) q^{12} +(2.12132 - 1.22474i) q^{13} +(-0.866025 - 1.50000i) q^{14} +(-2.26380 + 3.14248i) q^{15} +(-1.23205 + 2.13397i) q^{16} +5.27792i q^{17} +(-0.776457 - 1.34486i) q^{18} +0.732051 q^{19} +(-0.621320 - 3.82282i) q^{20} +(4.09808 - 4.09808i) q^{21} +(-0.568406 + 0.328169i) q^{22} +(-0.448288 + 0.258819i) q^{23} +(3.23205 + 0.866025i) q^{24} +(3.74264 + 3.31552i) q^{25} +1.26795 q^{26} +(3.67423 - 3.67423i) q^{27} +5.79555i q^{28} +(-0.232051 + 0.401924i) q^{29} +(-1.82817 + 0.822821i) q^{30} +(-0.366025 - 0.633975i) q^{31} +(-4.45069 + 2.56961i) q^{32} +(-1.55291 - 1.55291i) q^{33} +(-1.36603 + 2.36603i) q^{34} +(-4.73205 - 5.79555i) q^{35} +5.19615i q^{36} -4.24264i q^{37} +(0.328169 + 0.189469i) q^{38} +(1.09808 + 4.09808i) q^{39} +(1.53175 - 4.03906i) q^{40} +(-3.86603 - 6.69615i) q^{41} +(2.89778 - 0.776457i) q^{42} +(-0.568406 - 0.328169i) q^{43} +2.19615 q^{44} +(-4.24264 - 5.19615i) q^{45} -0.267949 q^{46} +(2.56961 + 1.48356i) q^{47} +(-3.01790 - 3.01790i) q^{48} +(2.09808 + 3.63397i) q^{49} +(0.819661 + 2.45497i) q^{50} +(-8.83013 - 2.36603i) q^{51} +(-3.67423 - 2.12132i) q^{52} +1.03528i q^{53} +(2.59808 - 0.696152i) q^{54} +(-2.19615 + 1.79315i) q^{55} +(-3.23205 + 5.59808i) q^{56} +(-0.328169 + 1.22474i) q^{57} +(-0.208051 + 0.120118i) q^{58} +(4.73205 + 8.19615i) q^{59} +(6.67423 + 0.674235i) q^{60} +(3.33013 - 5.76795i) q^{61} -0.378937i q^{62} +(5.01910 + 8.69333i) q^{63} +2.26795 q^{64} +(5.40629 - 0.878680i) q^{65} +(-0.294229 - 1.09808i) q^{66} +(-6.57201 + 3.79435i) q^{67} +(7.91688 - 4.57081i) q^{68} +(-0.232051 - 0.866025i) q^{69} +(-0.621320 - 3.82282i) q^{70} +14.1962 q^{71} +(-2.89778 + 5.01910i) q^{72} -8.48528i q^{73} +(1.09808 - 1.90192i) q^{74} +(-7.22474 + 4.77526i) q^{75} +(-0.633975 - 1.09808i) q^{76} +(3.67423 - 2.12132i) q^{77} +(-0.568406 + 2.12132i) q^{78} +(3.73205 - 6.46410i) q^{79} +(-4.26795 + 3.48477i) q^{80} +(4.50000 + 7.79423i) q^{81} -4.00240i q^{82} +(-6.90018 - 3.98382i) q^{83} +(-9.69615 - 2.59808i) q^{84} +(-4.18482 + 11.0349i) q^{85} +(-0.169873 - 0.294229i) q^{86} +(-0.568406 - 0.568406i) q^{87} +(2.12132 + 1.22474i) q^{88} -13.3923 q^{89} +(-0.557061 - 3.42745i) q^{90} -8.19615 q^{91} +(0.776457 + 0.448288i) q^{92} +(1.22474 - 0.328169i) q^{93} +(0.767949 + 1.33013i) q^{94} +(1.53055 + 0.580438i) q^{95} +(-2.30385 - 8.59808i) q^{96} +(13.1440 + 7.58871i) q^{97} +2.17209i q^{98} +(3.29423 - 1.90192i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{6} + O(q^{10}) \) \( 8 q - 12 q^{6} - 8 q^{10} - 12 q^{11} + 12 q^{15} + 4 q^{16} - 8 q^{19} + 12 q^{20} + 12 q^{21} + 12 q^{24} - 4 q^{25} + 24 q^{26} + 12 q^{29} - 12 q^{30} + 4 q^{31} - 4 q^{34} - 24 q^{35} - 12 q^{39} - 4 q^{40} - 24 q^{41} - 24 q^{44} - 16 q^{46} - 4 q^{49} + 24 q^{50} - 36 q^{51} + 24 q^{55} - 12 q^{56} + 24 q^{59} + 24 q^{60} - 8 q^{61} + 32 q^{64} + 60 q^{66} + 12 q^{69} + 12 q^{70} + 72 q^{71} - 12 q^{74} - 48 q^{75} - 12 q^{76} + 16 q^{79} - 48 q^{80} + 36 q^{81} - 36 q^{84} + 16 q^{85} - 36 q^{86} - 24 q^{89} - 36 q^{90} - 24 q^{91} + 20 q^{94} + 12 q^{95} - 60 q^{96} - 36 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.448288 + 0.258819i 0.316987 + 0.183013i 0.650049 0.759892i \(-0.274748\pi\)
−0.333062 + 0.942905i \(0.608082\pi\)
\(3\) −0.448288 + 1.67303i −0.258819 + 0.965926i
\(4\) −0.866025 1.50000i −0.433013 0.750000i
\(5\) 2.09077 + 0.792893i 0.935021 + 0.354593i
\(6\) −0.633975 + 0.633975i −0.258819 + 0.258819i
\(7\) −2.89778 1.67303i −1.09526 0.632347i −0.160286 0.987071i \(-0.551242\pi\)
−0.934971 + 0.354724i \(0.884575\pi\)
\(8\) 1.93185i 0.683013i
\(9\) −2.59808 1.50000i −0.866025 0.500000i
\(10\) 0.732051 + 0.896575i 0.231495 + 0.283522i
\(11\) −0.633975 + 1.09808i −0.191151 + 0.331082i −0.945632 0.325239i \(-0.894555\pi\)
0.754481 + 0.656322i \(0.227889\pi\)
\(12\) 2.89778 0.776457i 0.836516 0.224144i
\(13\) 2.12132 1.22474i 0.588348 0.339683i −0.176096 0.984373i \(-0.556347\pi\)
0.764444 + 0.644690i \(0.223014\pi\)
\(14\) −0.866025 1.50000i −0.231455 0.400892i
\(15\) −2.26380 + 3.14248i −0.584511 + 0.811386i
\(16\) −1.23205 + 2.13397i −0.308013 + 0.533494i
\(17\) 5.27792i 1.28008i 0.768340 + 0.640041i \(0.221083\pi\)
−0.768340 + 0.640041i \(0.778917\pi\)
\(18\) −0.776457 1.34486i −0.183013 0.316987i
\(19\) 0.732051 0.167944 0.0839720 0.996468i \(-0.473239\pi\)
0.0839720 + 0.996468i \(0.473239\pi\)
\(20\) −0.621320 3.82282i −0.138931 0.854809i
\(21\) 4.09808 4.09808i 0.894274 0.894274i
\(22\) −0.568406 + 0.328169i −0.121185 + 0.0699660i
\(23\) −0.448288 + 0.258819i −0.0934745 + 0.0539675i −0.546009 0.837780i \(-0.683853\pi\)
0.452534 + 0.891747i \(0.350520\pi\)
\(24\) 3.23205 + 0.866025i 0.659740 + 0.176777i
\(25\) 3.74264 + 3.31552i 0.748528 + 0.663103i
\(26\) 1.26795 0.248665
\(27\) 3.67423 3.67423i 0.707107 0.707107i
\(28\) 5.79555i 1.09526i
\(29\) −0.232051 + 0.401924i −0.0430908 + 0.0746354i −0.886766 0.462218i \(-0.847054\pi\)
0.843676 + 0.536853i \(0.180387\pi\)
\(30\) −1.82817 + 0.822821i −0.333777 + 0.150226i
\(31\) −0.366025 0.633975i −0.0657401 0.113865i 0.831282 0.555851i \(-0.187607\pi\)
−0.897022 + 0.441986i \(0.854274\pi\)
\(32\) −4.45069 + 2.56961i −0.786779 + 0.454247i
\(33\) −1.55291 1.55291i −0.270328 0.270328i
\(34\) −1.36603 + 2.36603i −0.234271 + 0.405770i
\(35\) −4.73205 5.79555i −0.799863 0.979628i
\(36\) 5.19615i 0.866025i
\(37\) 4.24264i 0.697486i −0.937218 0.348743i \(-0.886609\pi\)
0.937218 0.348743i \(-0.113391\pi\)
\(38\) 0.328169 + 0.189469i 0.0532361 + 0.0307359i
\(39\) 1.09808 + 4.09808i 0.175833 + 0.656217i
\(40\) 1.53175 4.03906i 0.242191 0.638631i
\(41\) −3.86603 6.69615i −0.603772 1.04576i −0.992244 0.124303i \(-0.960331\pi\)
0.388473 0.921460i \(-0.373003\pi\)
\(42\) 2.89778 0.776457i 0.447137 0.119810i
\(43\) −0.568406 0.328169i −0.0866811 0.0500454i 0.456033 0.889963i \(-0.349270\pi\)
−0.542714 + 0.839918i \(0.682603\pi\)
\(44\) 2.19615 0.331082
\(45\) −4.24264 5.19615i −0.632456 0.774597i
\(46\) −0.267949 −0.0395070
\(47\) 2.56961 + 1.48356i 0.374816 + 0.216400i 0.675560 0.737305i \(-0.263902\pi\)
−0.300744 + 0.953705i \(0.597235\pi\)
\(48\) −3.01790 3.01790i −0.435596 0.435596i
\(49\) 2.09808 + 3.63397i 0.299725 + 0.519139i
\(50\) 0.819661 + 2.45497i 0.115918 + 0.347185i
\(51\) −8.83013 2.36603i −1.23647 0.331310i
\(52\) −3.67423 2.12132i −0.509525 0.294174i
\(53\) 1.03528i 0.142206i 0.997469 + 0.0711031i \(0.0226519\pi\)
−0.997469 + 0.0711031i \(0.977348\pi\)
\(54\) 2.59808 0.696152i 0.353553 0.0947343i
\(55\) −2.19615 + 1.79315i −0.296129 + 0.241788i
\(56\) −3.23205 + 5.59808i −0.431901 + 0.748074i
\(57\) −0.328169 + 1.22474i −0.0434671 + 0.162221i
\(58\) −0.208051 + 0.120118i −0.0273184 + 0.0157723i
\(59\) 4.73205 + 8.19615i 0.616061 + 1.06705i 0.990197 + 0.139675i \(0.0446057\pi\)
−0.374137 + 0.927373i \(0.622061\pi\)
\(60\) 6.67423 + 0.674235i 0.861640 + 0.0870433i
\(61\) 3.33013 5.76795i 0.426379 0.738510i −0.570169 0.821527i \(-0.693122\pi\)
0.996548 + 0.0830172i \(0.0264556\pi\)
\(62\) 0.378937i 0.0481251i
\(63\) 5.01910 + 8.69333i 0.632347 + 1.09526i
\(64\) 2.26795 0.283494
\(65\) 5.40629 0.878680i 0.670567 0.108987i
\(66\) −0.294229 1.09808i −0.0362170 0.135164i
\(67\) −6.57201 + 3.79435i −0.802899 + 0.463554i −0.844484 0.535581i \(-0.820093\pi\)
0.0415848 + 0.999135i \(0.486759\pi\)
\(68\) 7.91688 4.57081i 0.960062 0.554292i
\(69\) −0.232051 0.866025i −0.0279356 0.104257i
\(70\) −0.621320 3.82282i −0.0742620 0.456915i
\(71\) 14.1962 1.68477 0.842387 0.538874i \(-0.181150\pi\)
0.842387 + 0.538874i \(0.181150\pi\)
\(72\) −2.89778 + 5.01910i −0.341506 + 0.591506i
\(73\) 8.48528i 0.993127i −0.868000 0.496564i \(-0.834595\pi\)
0.868000 0.496564i \(-0.165405\pi\)
\(74\) 1.09808 1.90192i 0.127649 0.221094i
\(75\) −7.22474 + 4.77526i −0.834242 + 0.551399i
\(76\) −0.633975 1.09808i −0.0727219 0.125958i
\(77\) 3.67423 2.12132i 0.418718 0.241747i
\(78\) −0.568406 + 2.12132i −0.0643593 + 0.240192i
\(79\) 3.73205 6.46410i 0.419889 0.727268i −0.576039 0.817422i \(-0.695403\pi\)
0.995928 + 0.0901537i \(0.0287358\pi\)
\(80\) −4.26795 + 3.48477i −0.477171 + 0.389609i
\(81\) 4.50000 + 7.79423i 0.500000 + 0.866025i
\(82\) 4.00240i 0.441992i
\(83\) −6.90018 3.98382i −0.757393 0.437281i 0.0709657 0.997479i \(-0.477392\pi\)
−0.828359 + 0.560198i \(0.810725\pi\)
\(84\) −9.69615 2.59808i −1.05794 0.283473i
\(85\) −4.18482 + 11.0349i −0.453908 + 1.19690i
\(86\) −0.169873 0.294229i −0.0183179 0.0317275i
\(87\) −0.568406 0.568406i −0.0609395 0.0609395i
\(88\) 2.12132 + 1.22474i 0.226134 + 0.130558i
\(89\) −13.3923 −1.41958 −0.709791 0.704413i \(-0.751211\pi\)
−0.709791 + 0.704413i \(0.751211\pi\)
\(90\) −0.557061 3.42745i −0.0587193 0.361285i
\(91\) −8.19615 −0.859190
\(92\) 0.776457 + 0.448288i 0.0809513 + 0.0467372i
\(93\) 1.22474 0.328169i 0.127000 0.0340296i
\(94\) 0.767949 + 1.33013i 0.0792079 + 0.137192i
\(95\) 1.53055 + 0.580438i 0.157031 + 0.0595517i
\(96\) −2.30385 8.59808i −0.235135 0.877537i
\(97\) 13.1440 + 7.58871i 1.33457 + 0.770516i 0.985997 0.166764i \(-0.0533318\pi\)
0.348577 + 0.937280i \(0.386665\pi\)
\(98\) 2.17209i 0.219414i
\(99\) 3.29423 1.90192i 0.331082 0.191151i
\(100\) 1.73205 8.48528i 0.173205 0.848528i
\(101\) −4.73205 + 8.19615i −0.470857 + 0.815548i −0.999444 0.0333310i \(-0.989388\pi\)
0.528588 + 0.848879i \(0.322722\pi\)
\(102\) −3.34607 3.34607i −0.331310 0.331310i
\(103\) −0.568406 + 0.328169i −0.0560067 + 0.0323355i −0.527742 0.849405i \(-0.676961\pi\)
0.471735 + 0.881740i \(0.343628\pi\)
\(104\) −2.36603 4.09808i −0.232008 0.401849i
\(105\) 11.8175 5.31880i 1.15327 0.519062i
\(106\) −0.267949 + 0.464102i −0.0260255 + 0.0450775i
\(107\) 10.3156i 0.997246i −0.866819 0.498623i \(-0.833839\pi\)
0.866819 0.498623i \(-0.166161\pi\)
\(108\) −8.69333 2.32937i −0.836516 0.224144i
\(109\) −12.6603 −1.21263 −0.606316 0.795224i \(-0.707353\pi\)
−0.606316 + 0.795224i \(0.707353\pi\)
\(110\) −1.44861 + 0.235442i −0.138120 + 0.0224485i
\(111\) 7.09808 + 1.90192i 0.673720 + 0.180523i
\(112\) 7.14042 4.12252i 0.674706 0.389542i
\(113\) −14.9372 + 8.62398i −1.40517 + 0.811276i −0.994917 0.100695i \(-0.967893\pi\)
−0.410254 + 0.911971i \(0.634560\pi\)
\(114\) −0.464102 + 0.464102i −0.0434671 + 0.0434671i
\(115\) −1.14248 + 0.185687i −0.106537 + 0.0173154i
\(116\) 0.803848 0.0746354
\(117\) −7.34847 −0.679366
\(118\) 4.89898i 0.450988i
\(119\) 8.83013 15.2942i 0.809456 1.40202i
\(120\) 6.07081 + 4.37333i 0.554187 + 0.399229i
\(121\) 4.69615 + 8.13397i 0.426923 + 0.739452i
\(122\) 2.98571 1.72380i 0.270314 0.156066i
\(123\) 12.9360 3.46618i 1.16640 0.312535i
\(124\) −0.633975 + 1.09808i −0.0569326 + 0.0986102i
\(125\) 5.19615 + 9.89949i 0.464758 + 0.885438i
\(126\) 5.19615i 0.462910i
\(127\) 17.3867i 1.54282i 0.636340 + 0.771409i \(0.280447\pi\)
−0.636340 + 0.771409i \(0.719553\pi\)
\(128\) 9.91808 + 5.72620i 0.876642 + 0.506130i
\(129\) 0.803848 0.803848i 0.0707748 0.0707748i
\(130\) 2.65099 + 1.00535i 0.232507 + 0.0881749i
\(131\) −6.46410 11.1962i −0.564771 0.978212i −0.997071 0.0764824i \(-0.975631\pi\)
0.432300 0.901730i \(-0.357702\pi\)
\(132\) −0.984508 + 3.67423i −0.0856904 + 0.319801i
\(133\) −2.12132 1.22474i −0.183942 0.106199i
\(134\) −3.92820 −0.339345
\(135\) 10.5953 4.76870i 0.911894 0.410425i
\(136\) 10.1962 0.874313
\(137\) −13.6245 7.86611i −1.16402 0.672047i −0.211755 0.977323i \(-0.567918\pi\)
−0.952264 + 0.305276i \(0.901251\pi\)
\(138\) 0.120118 0.448288i 0.0102252 0.0381608i
\(139\) −4.00000 6.92820i −0.339276 0.587643i 0.645021 0.764165i \(-0.276849\pi\)
−0.984297 + 0.176522i \(0.943515\pi\)
\(140\) −4.59526 + 12.1172i −0.388370 + 1.02409i
\(141\) −3.63397 + 3.63397i −0.306036 + 0.306036i
\(142\) 6.36396 + 3.67423i 0.534052 + 0.308335i
\(143\) 3.10583i 0.259722i
\(144\) 6.40192 3.69615i 0.533494 0.308013i
\(145\) −0.803848 + 0.656339i −0.0667559 + 0.0545060i
\(146\) 2.19615 3.80385i 0.181755 0.314809i
\(147\) −7.02030 + 1.88108i −0.579025 + 0.155149i
\(148\) −6.36396 + 3.67423i −0.523114 + 0.302020i
\(149\) 2.13397 + 3.69615i 0.174822 + 0.302801i 0.940100 0.340900i \(-0.110732\pi\)
−0.765278 + 0.643700i \(0.777398\pi\)
\(150\) −4.47469 + 0.270787i −0.365357 + 0.0221096i
\(151\) −4.29423 + 7.43782i −0.349459 + 0.605281i −0.986154 0.165835i \(-0.946968\pi\)
0.636694 + 0.771116i \(0.280301\pi\)
\(152\) 1.41421i 0.114708i
\(153\) 7.91688 13.7124i 0.640041 1.10858i
\(154\) 2.19615 0.176971
\(155\) −0.262601 1.61571i −0.0210926 0.129777i
\(156\) 5.19615 5.19615i 0.416025 0.416025i
\(157\) 11.1750 6.45189i 0.891863 0.514917i 0.0173114 0.999850i \(-0.494489\pi\)
0.874551 + 0.484933i \(0.161156\pi\)
\(158\) 3.34607 1.93185i 0.266199 0.153690i
\(159\) −1.73205 0.464102i −0.137361 0.0368057i
\(160\) −11.3428 + 1.84354i −0.896727 + 0.145744i
\(161\) 1.73205 0.136505
\(162\) 4.65874i 0.366025i
\(163\) 10.4543i 0.818844i −0.912345 0.409422i \(-0.865730\pi\)
0.912345 0.409422i \(-0.134270\pi\)
\(164\) −6.69615 + 11.5981i −0.522882 + 0.905658i
\(165\) −2.01549 4.47808i −0.156906 0.348618i
\(166\) −2.06218 3.57180i −0.160056 0.277225i
\(167\) 8.60540 4.96833i 0.665906 0.384461i −0.128618 0.991694i \(-0.541054\pi\)
0.794524 + 0.607233i \(0.207721\pi\)
\(168\) −7.91688 7.91688i −0.610800 0.610800i
\(169\) −3.50000 + 6.06218i −0.269231 + 0.466321i
\(170\) −4.73205 + 3.86370i −0.362932 + 0.296333i
\(171\) −1.90192 1.09808i −0.145444 0.0839720i
\(172\) 1.13681i 0.0866811i
\(173\) 9.14162 + 5.27792i 0.695025 + 0.401273i 0.805492 0.592607i \(-0.201901\pi\)
−0.110467 + 0.993880i \(0.535235\pi\)
\(174\) −0.107695 0.401924i −0.00816435 0.0304698i
\(175\) −5.29837 15.8692i −0.400519 1.19960i
\(176\) −1.56218 2.70577i −0.117754 0.203955i
\(177\) −15.8338 + 4.24264i −1.19014 + 0.318896i
\(178\) −6.00361 3.46618i −0.449989 0.259801i
\(179\) 6.58846 0.492444 0.246222 0.969213i \(-0.420811\pi\)
0.246222 + 0.969213i \(0.420811\pi\)
\(180\) −4.11999 + 10.8640i −0.307086 + 0.809752i
\(181\) 1.53590 0.114162 0.0570812 0.998370i \(-0.481821\pi\)
0.0570812 + 0.998370i \(0.481821\pi\)
\(182\) −3.67423 2.12132i −0.272352 0.157243i
\(183\) 8.15711 + 8.15711i 0.602991 + 0.602991i
\(184\) 0.500000 + 0.866025i 0.0368605 + 0.0638442i
\(185\) 3.36396 8.87039i 0.247323 0.652164i
\(186\) 0.633975 + 0.169873i 0.0464853 + 0.0124557i
\(187\) −5.79555 3.34607i −0.423813 0.244689i
\(188\) 5.13922i 0.374816i
\(189\) −16.7942 + 4.50000i −1.22160 + 0.327327i
\(190\) 0.535898 + 0.656339i 0.0388782 + 0.0476158i
\(191\) −8.83013 + 15.2942i −0.638926 + 1.10665i 0.346743 + 0.937960i \(0.387287\pi\)
−0.985669 + 0.168691i \(0.946046\pi\)
\(192\) −1.01669 + 3.79435i −0.0733736 + 0.273834i
\(193\) −3.25813 + 1.88108i −0.234526 + 0.135403i −0.612658 0.790348i \(-0.709900\pi\)
0.378133 + 0.925751i \(0.376566\pi\)
\(194\) 3.92820 + 6.80385i 0.282029 + 0.488488i
\(195\) −0.953512 + 9.43879i −0.0682824 + 0.675926i
\(196\) 3.63397 6.29423i 0.259570 0.449588i
\(197\) 15.9353i 1.13534i −0.823255 0.567671i \(-0.807845\pi\)
0.823255 0.567671i \(-0.192155\pi\)
\(198\) 1.96902 0.139932
\(199\) 26.5885 1.88481 0.942403 0.334480i \(-0.108561\pi\)
0.942403 + 0.334480i \(0.108561\pi\)
\(200\) 6.40508 7.23023i 0.452908 0.511254i
\(201\) −3.40192 12.6962i −0.239953 0.895518i
\(202\) −4.24264 + 2.44949i −0.298511 + 0.172345i
\(203\) 1.34486 0.776457i 0.0943909 0.0544966i
\(204\) 4.09808 + 15.2942i 0.286923 + 1.07081i
\(205\) −2.77364 17.0655i −0.193719 1.19190i
\(206\) −0.339746 −0.0236712
\(207\) 1.55291 0.107935
\(208\) 6.03579i 0.418507i
\(209\) −0.464102 + 0.803848i −0.0321026 + 0.0556033i
\(210\) 6.67423 + 0.674235i 0.460566 + 0.0465266i
\(211\) −5.56218 9.63397i −0.382916 0.663230i 0.608562 0.793507i \(-0.291747\pi\)
−0.991478 + 0.130276i \(0.958414\pi\)
\(212\) 1.55291 0.896575i 0.106655 0.0615771i
\(213\) −6.36396 + 23.7506i −0.436051 + 1.62737i
\(214\) 2.66987 4.62436i 0.182509 0.316114i
\(215\) −0.928203 1.13681i −0.0633029 0.0775299i
\(216\) −7.09808 7.09808i −0.482963 0.482963i
\(217\) 2.44949i 0.166282i
\(218\) −5.67544 3.27671i −0.384389 0.221927i
\(219\) 14.1962 + 3.80385i 0.959287 + 0.257040i
\(220\) 4.59165 + 1.74131i 0.309569 + 0.117399i
\(221\) 6.46410 + 11.1962i 0.434823 + 0.753135i
\(222\) 2.68973 + 2.68973i 0.180523 + 0.180523i
\(223\) −3.88229 2.24144i −0.259977 0.150098i 0.364347 0.931263i \(-0.381292\pi\)
−0.624324 + 0.781165i \(0.714626\pi\)
\(224\) 17.1962 1.14897
\(225\) −4.75039 14.2279i −0.316693 0.948528i
\(226\) −8.92820 −0.593895
\(227\) 22.8541 + 13.1948i 1.51688 + 0.875769i 0.999803 + 0.0198279i \(0.00631184\pi\)
0.517073 + 0.855941i \(0.327021\pi\)
\(228\) 2.12132 0.568406i 0.140488 0.0376436i
\(229\) 3.03590 + 5.25833i 0.200618 + 0.347480i 0.948728 0.316095i \(-0.102372\pi\)
−0.748110 + 0.663575i \(0.769038\pi\)
\(230\) −0.560220 0.212455i −0.0369398 0.0140089i
\(231\) 1.90192 + 7.09808i 0.125137 + 0.467019i
\(232\) 0.776457 + 0.448288i 0.0509769 + 0.0294315i
\(233\) 7.07107i 0.463241i 0.972806 + 0.231621i \(0.0744028\pi\)
−0.972806 + 0.231621i \(0.925597\pi\)
\(234\) −3.29423 1.90192i −0.215350 0.124333i
\(235\) 4.19615 + 5.13922i 0.273727 + 0.335245i
\(236\) 8.19615 14.1962i 0.533524 0.924091i
\(237\) 9.14162 + 9.14162i 0.593812 + 0.593812i
\(238\) 7.91688 4.57081i 0.513175 0.296282i
\(239\) −0.464102 0.803848i −0.0300202 0.0519966i 0.850625 0.525773i \(-0.176224\pi\)
−0.880645 + 0.473776i \(0.842891\pi\)
\(240\) −3.91686 8.70260i −0.252832 0.561750i
\(241\) −4.86603 + 8.42820i −0.313448 + 0.542908i −0.979106 0.203348i \(-0.934818\pi\)
0.665658 + 0.746257i \(0.268151\pi\)
\(242\) 4.86181i 0.312529i
\(243\) −15.0573 + 4.03459i −0.965926 + 0.258819i
\(244\) −11.5359 −0.738510
\(245\) 1.50524 + 9.26136i 0.0961664 + 0.591686i
\(246\) 6.69615 + 1.79423i 0.426931 + 0.114396i
\(247\) 1.55291 0.896575i 0.0988096 0.0570477i
\(248\) −1.22474 + 0.707107i −0.0777714 + 0.0449013i
\(249\) 9.75833 9.75833i 0.618409 0.618409i
\(250\) −0.232806 + 5.78269i −0.0147240 + 0.365729i
\(251\) −12.5885 −0.794576 −0.397288 0.917694i \(-0.630049\pi\)
−0.397288 + 0.917694i \(0.630049\pi\)
\(252\) 8.69333 15.0573i 0.547628 0.948520i
\(253\) 0.656339i 0.0412637i
\(254\) −4.50000 + 7.79423i −0.282355 + 0.489053i
\(255\) −16.5858 11.9482i −1.03864 0.748223i
\(256\) 0.696152 + 1.20577i 0.0435095 + 0.0753607i
\(257\) −14.5211 + 8.38375i −0.905800 + 0.522964i −0.879077 0.476679i \(-0.841840\pi\)
−0.0267223 + 0.999643i \(0.508507\pi\)
\(258\) 0.568406 0.152304i 0.0353874 0.00948203i
\(259\) −7.09808 + 12.2942i −0.441053 + 0.763926i
\(260\) −6.00000 7.34847i −0.372104 0.455733i
\(261\) 1.20577 0.696152i 0.0746354 0.0430908i
\(262\) 6.69213i 0.413441i
\(263\) −18.8516 10.8840i −1.16244 0.671136i −0.210554 0.977582i \(-0.567527\pi\)
−0.951888 + 0.306446i \(0.900860\pi\)
\(264\) −3.00000 + 3.00000i −0.184637 + 0.184637i
\(265\) −0.820863 + 2.16452i −0.0504252 + 0.132966i
\(266\) −0.633975 1.09808i −0.0388715 0.0673274i
\(267\) 6.00361 22.4058i 0.367415 1.37121i
\(268\) 11.3831 + 6.57201i 0.695331 + 0.401450i
\(269\) −6.80385 −0.414838 −0.207419 0.978252i \(-0.566506\pi\)
−0.207419 + 0.978252i \(0.566506\pi\)
\(270\) 5.98396 + 0.604502i 0.364172 + 0.0367888i
\(271\) 21.5167 1.30704 0.653522 0.756908i \(-0.273291\pi\)
0.653522 + 0.756908i \(0.273291\pi\)
\(272\) −11.2629 6.50266i −0.682916 0.394282i
\(273\) 3.67423 13.7124i 0.222375 0.829914i
\(274\) −4.07180 7.05256i −0.245986 0.426061i
\(275\) −6.01343 + 2.00775i −0.362623 + 0.121072i
\(276\) −1.09808 + 1.09808i −0.0660964 + 0.0660964i
\(277\) −10.6066 6.12372i −0.637289 0.367939i 0.146281 0.989243i \(-0.453270\pi\)
−0.783569 + 0.621304i \(0.786603\pi\)
\(278\) 4.14110i 0.248367i
\(279\) 2.19615i 0.131480i
\(280\) −11.1962 + 9.14162i −0.669098 + 0.546316i
\(281\) 9.86603 17.0885i 0.588558 1.01941i −0.405864 0.913934i \(-0.633029\pi\)
0.994422 0.105478i \(-0.0336374\pi\)
\(282\) −2.56961 + 0.688524i −0.153018 + 0.0410010i
\(283\) 14.4889 8.36516i 0.861275 0.497257i −0.00316407 0.999995i \(-0.501007\pi\)
0.864439 + 0.502738i \(0.167674\pi\)
\(284\) −12.2942 21.2942i −0.729528 1.26358i
\(285\) −1.65722 + 2.30046i −0.0981652 + 0.136267i
\(286\) −0.803848 + 1.39230i −0.0475325 + 0.0823287i
\(287\) 25.8719i 1.52717i
\(288\) 15.4176 0.908494
\(289\) −10.8564 −0.638612
\(290\) −0.530228 + 0.0861776i −0.0311361 + 0.00506052i
\(291\) −18.5885 + 18.5885i −1.08967 + 1.08967i
\(292\) −12.7279 + 7.34847i −0.744845 + 0.430037i
\(293\) 11.9193 6.88160i 0.696332 0.402027i −0.109648 0.993970i \(-0.534972\pi\)
0.805980 + 0.591943i \(0.201639\pi\)
\(294\) −3.63397 0.973721i −0.211938 0.0567885i
\(295\) 3.39496 + 20.8883i 0.197662 + 1.21616i
\(296\) −8.19615 −0.476392
\(297\) 1.70522 + 6.36396i 0.0989468 + 0.369274i
\(298\) 2.20925i 0.127979i
\(299\) −0.633975 + 1.09808i −0.0366637 + 0.0635034i
\(300\) 13.4197 + 6.70163i 0.774786 + 0.386919i
\(301\) 1.09808 + 1.90192i 0.0632921 + 0.109625i
\(302\) −3.85010 + 2.22286i −0.221548 + 0.127911i
\(303\) −11.5911 11.5911i −0.665892 0.665892i
\(304\) −0.901924 + 1.56218i −0.0517289 + 0.0895970i
\(305\) 11.5359 9.41902i 0.660544 0.539332i
\(306\) 7.09808 4.09808i 0.405770 0.234271i
\(307\) 3.82654i 0.218392i −0.994020 0.109196i \(-0.965172\pi\)
0.994020 0.109196i \(-0.0348276\pi\)
\(308\) −6.36396 3.67423i −0.362620 0.209359i
\(309\) −0.294229 1.09808i −0.0167381 0.0624674i
\(310\) 0.300457 0.792271i 0.0170648 0.0449980i
\(311\) 5.02628 + 8.70577i 0.285014 + 0.493659i 0.972613 0.232432i \(-0.0746684\pi\)
−0.687598 + 0.726091i \(0.741335\pi\)
\(312\) 7.91688 2.12132i 0.448205 0.120096i
\(313\) 12.1595 + 7.02030i 0.687296 + 0.396811i 0.802598 0.596520i \(-0.203450\pi\)
−0.115302 + 0.993330i \(0.536784\pi\)
\(314\) 6.67949 0.376946
\(315\) 3.60090 + 22.1554i 0.202888 + 1.24831i
\(316\) −12.9282 −0.727268
\(317\) 3.49837 + 2.01978i 0.196488 + 0.113442i 0.595016 0.803714i \(-0.297146\pi\)
−0.398528 + 0.917156i \(0.630479\pi\)
\(318\) −0.656339 0.656339i −0.0368057 0.0368057i
\(319\) −0.294229 0.509619i −0.0164736 0.0285332i
\(320\) 4.74176 + 1.79824i 0.265072 + 0.100525i
\(321\) 17.2583 + 4.62436i 0.963266 + 0.258106i
\(322\) 0.776457 + 0.448288i 0.0432703 + 0.0249821i
\(323\) 3.86370i 0.214982i
\(324\) 7.79423 13.5000i 0.433013 0.750000i
\(325\) 12.0000 + 2.44949i 0.665640 + 0.135873i
\(326\) 2.70577 4.68653i 0.149859 0.259563i
\(327\) 5.67544 21.1810i 0.313852 1.17131i
\(328\) −12.9360 + 7.46859i −0.714270 + 0.412384i
\(329\) −4.96410 8.59808i −0.273680 0.474027i
\(330\) 0.255493 2.52912i 0.0140644 0.139223i
\(331\) 4.19615 7.26795i 0.230641 0.399483i −0.727356 0.686261i \(-0.759251\pi\)
0.957997 + 0.286778i \(0.0925842\pi\)
\(332\) 13.8004i 0.757393i
\(333\) −6.36396 + 11.0227i −0.348743 + 0.604040i
\(334\) 5.14359 0.281445
\(335\) −16.7491 + 2.72222i −0.915100 + 0.148731i
\(336\) 3.69615 + 13.7942i 0.201642 + 0.752537i
\(337\) 5.79555 3.34607i 0.315704 0.182272i −0.333772 0.942654i \(-0.608322\pi\)
0.649476 + 0.760382i \(0.274988\pi\)
\(338\) −3.13801 + 1.81173i −0.170685 + 0.0985453i
\(339\) −7.73205 28.8564i −0.419947 1.56726i
\(340\) 20.1765 3.27928i 1.09423 0.177844i
\(341\) 0.928203 0.0502650
\(342\) −0.568406 0.984508i −0.0307359 0.0532361i
\(343\) 9.38186i 0.506573i
\(344\) −0.633975 + 1.09808i −0.0341816 + 0.0592043i
\(345\) 0.201501 1.99465i 0.0108484 0.107388i
\(346\) 2.73205 + 4.73205i 0.146876 + 0.254397i
\(347\) −8.57321 + 4.94975i −0.460234 + 0.265716i −0.712143 0.702035i \(-0.752275\pi\)
0.251909 + 0.967751i \(0.418942\pi\)
\(348\) −0.360355 + 1.34486i −0.0193171 + 0.0720922i
\(349\) 14.2321 24.6506i 0.761824 1.31952i −0.180085 0.983651i \(-0.557637\pi\)
0.941909 0.335867i \(-0.109029\pi\)
\(350\) 1.73205 8.48528i 0.0925820 0.453557i
\(351\) 3.29423 12.2942i 0.175833 0.656217i
\(352\) 6.51626i 0.347318i
\(353\) 17.6269 + 10.1769i 0.938185 + 0.541662i 0.889391 0.457147i \(-0.151129\pi\)
0.0487943 + 0.998809i \(0.484462\pi\)
\(354\) −8.19615 2.19615i −0.435621 0.116724i
\(355\) 29.6809 + 11.2560i 1.57530 + 0.597408i
\(356\) 11.5981 + 20.0885i 0.614697 + 1.06469i
\(357\) 21.6293 + 21.6293i 1.14474 + 1.14474i
\(358\) 2.95352 + 1.70522i 0.156099 + 0.0901236i
\(359\) −20.1962 −1.06591 −0.532956 0.846143i \(-0.678919\pi\)
−0.532956 + 0.846143i \(0.678919\pi\)
\(360\) −10.0382 + 8.19615i −0.529059 + 0.431975i
\(361\) −18.4641 −0.971795
\(362\) 0.688524 + 0.397520i 0.0361880 + 0.0208932i
\(363\) −15.7136 + 4.21046i −0.824752 + 0.220992i
\(364\) 7.09808 + 12.2942i 0.372040 + 0.644393i
\(365\) 6.72792 17.7408i 0.352156 0.928595i
\(366\) 1.54552 + 5.76795i 0.0807855 + 0.301496i
\(367\) −29.9623 17.2987i −1.56402 0.902986i −0.996844 0.0793890i \(-0.974703\pi\)
−0.567175 0.823597i \(-0.691964\pi\)
\(368\) 1.27551i 0.0664907i
\(369\) 23.1962i 1.20754i
\(370\) 3.80385 3.10583i 0.197753 0.161464i
\(371\) 1.73205 3.00000i 0.0899236 0.155752i
\(372\) −1.55291 1.55291i −0.0805149 0.0805149i
\(373\) −23.5983 + 13.6245i −1.22187 + 0.705450i −0.965317 0.261079i \(-0.915922\pi\)
−0.256557 + 0.966529i \(0.582588\pi\)
\(374\) −1.73205 3.00000i −0.0895622 0.155126i
\(375\) −18.8915 + 4.25551i −0.975555 + 0.219754i
\(376\) 2.86603 4.96410i 0.147804 0.256004i
\(377\) 1.13681i 0.0585488i
\(378\) −8.69333 2.32937i −0.447137 0.119810i
\(379\) −19.4641 −0.999804 −0.499902 0.866082i \(-0.666631\pi\)
−0.499902 + 0.866082i \(0.666631\pi\)
\(380\) −0.454838 2.79850i −0.0233327 0.143560i
\(381\) −29.0885 7.79423i −1.49025 0.399310i
\(382\) −7.91688 + 4.57081i −0.405063 + 0.233863i
\(383\) 9.22955 5.32868i 0.471608 0.272283i −0.245305 0.969446i \(-0.578888\pi\)
0.716913 + 0.697163i \(0.245555\pi\)
\(384\) −14.0263 + 14.0263i −0.715776 + 0.715776i
\(385\) 9.36396 1.52192i 0.477232 0.0775641i
\(386\) −1.94744 −0.0991221
\(387\) 0.984508 + 1.70522i 0.0500454 + 0.0866811i
\(388\) 26.2880i 1.33457i
\(389\) 0.0621778 0.107695i 0.00315254 0.00546036i −0.864445 0.502728i \(-0.832330\pi\)
0.867597 + 0.497267i \(0.165663\pi\)
\(390\) −2.87039 + 3.98451i −0.145348 + 0.201763i
\(391\) −1.36603 2.36603i −0.0690829 0.119655i
\(392\) 7.02030 4.05317i 0.354579 0.204716i
\(393\) 21.6293 5.79555i 1.09105 0.292347i
\(394\) 4.12436 7.14359i 0.207782 0.359889i
\(395\) 12.9282 10.5558i 0.650488 0.531122i
\(396\) −5.70577 3.29423i −0.286726 0.165541i
\(397\) 29.3939i 1.47524i −0.675218 0.737618i \(-0.735950\pi\)
0.675218 0.737618i \(-0.264050\pi\)
\(398\) 11.9193 + 6.88160i 0.597459 + 0.344943i
\(399\) 3.00000 3.00000i 0.150188 0.150188i
\(400\) −11.6863 + 3.90182i −0.584317 + 0.195091i
\(401\) 8.53590 + 14.7846i 0.426262 + 0.738308i 0.996537 0.0831457i \(-0.0264967\pi\)
−0.570275 + 0.821454i \(0.693163\pi\)
\(402\) 1.76097 6.57201i 0.0878290 0.327782i
\(403\) −1.55291 0.896575i −0.0773562 0.0446616i
\(404\) 16.3923 0.815548
\(405\) 3.22848 + 19.8640i 0.160424 + 0.987048i
\(406\) 0.803848 0.0398943
\(407\) 4.65874 + 2.68973i 0.230925 + 0.133325i
\(408\) −4.57081 + 17.0585i −0.226289 + 0.844521i
\(409\) −8.26795 14.3205i −0.408824 0.708104i 0.585934 0.810358i \(-0.300728\pi\)
−0.994758 + 0.102255i \(0.967394\pi\)
\(410\) 3.17348 8.36811i 0.156727 0.413271i
\(411\) 19.2679 19.2679i 0.950418 0.950418i
\(412\) 0.984508 + 0.568406i 0.0485032 + 0.0280034i
\(413\) 31.6675i 1.55826i
\(414\) 0.696152 + 0.401924i 0.0342140 + 0.0197535i
\(415\) −11.2679 13.8004i −0.553122 0.677433i
\(416\) −6.29423 + 10.9019i −0.308600 + 0.534511i
\(417\) 13.3843 3.58630i 0.655430 0.175622i
\(418\) −0.416102 + 0.240237i −0.0203522 + 0.0117504i
\(419\) 11.0263 + 19.0981i 0.538669 + 0.933002i 0.998976 + 0.0452423i \(0.0144060\pi\)
−0.460307 + 0.887760i \(0.652261\pi\)
\(420\) −18.2124 13.1200i −0.888676 0.640190i
\(421\) 9.73205 16.8564i 0.474311 0.821531i −0.525256 0.850944i \(-0.676031\pi\)
0.999567 + 0.0294132i \(0.00936385\pi\)
\(422\) 5.75839i 0.280314i
\(423\) −4.45069 7.70882i −0.216400 0.374816i
\(424\) 2.00000 0.0971286
\(425\) −17.4990 + 19.7533i −0.848827 + 0.958178i
\(426\) −9.00000 + 9.00000i −0.436051 + 0.436051i
\(427\) −19.2999 + 11.1428i −0.933989 + 0.539239i
\(428\) −15.4734 + 8.93357i −0.747935 + 0.431820i
\(429\) −5.19615 1.39230i −0.250873 0.0672211i
\(430\) −0.121873 0.749856i −0.00587726 0.0361612i
\(431\) −6.00000 −0.289010 −0.144505 0.989504i \(-0.546159\pi\)
−0.144505 + 0.989504i \(0.546159\pi\)
\(432\) 3.31388 + 12.3676i 0.159439 + 0.595035i
\(433\) 13.5601i 0.651658i 0.945429 + 0.325829i \(0.105643\pi\)
−0.945429 + 0.325829i \(0.894357\pi\)
\(434\) −0.633975 + 1.09808i −0.0304318 + 0.0527093i
\(435\) −0.737721 1.63909i −0.0353710 0.0785884i
\(436\) 10.9641 + 18.9904i 0.525085 + 0.909474i
\(437\) −0.328169 + 0.189469i −0.0156985 + 0.00906352i
\(438\) 5.37945 + 5.37945i 0.257040 + 0.257040i
\(439\) −12.6603 + 21.9282i −0.604241 + 1.04658i 0.387930 + 0.921689i \(0.373190\pi\)
−0.992171 + 0.124887i \(0.960143\pi\)
\(440\) 3.46410 + 4.24264i 0.165145 + 0.202260i
\(441\) 12.5885i 0.599450i
\(442\) 6.69213i 0.318312i
\(443\) 1.43280 + 0.827225i 0.0680742 + 0.0393027i 0.533651 0.845705i \(-0.320820\pi\)
−0.465577 + 0.885008i \(0.654153\pi\)
\(444\) −3.29423 12.2942i −0.156337 0.583458i
\(445\) −28.0002 10.6187i −1.32734 0.503373i
\(446\) −1.16025 2.00962i −0.0549396 0.0951582i
\(447\) −7.14042 + 1.91327i −0.337730 + 0.0904945i
\(448\) −6.57201 3.79435i −0.310498 0.179266i
\(449\) 12.0000 0.566315 0.283158 0.959073i \(-0.408618\pi\)
0.283158 + 0.959073i \(0.408618\pi\)
\(450\) 1.55291 7.60770i 0.0732051 0.358630i
\(451\) 9.80385 0.461645
\(452\) 25.8719 + 14.9372i 1.21691 + 0.702586i
\(453\) −10.5187 10.5187i −0.494210 0.494210i
\(454\) 6.83013 + 11.8301i 0.320554 + 0.555215i
\(455\) −17.1363 6.49867i −0.803361 0.304663i
\(456\) 2.36603 + 0.633975i 0.110799 + 0.0296886i
\(457\) 21.4770 + 12.3998i 1.00465 + 0.580036i 0.909621 0.415438i \(-0.136372\pi\)
0.0950304 + 0.995474i \(0.469705\pi\)
\(458\) 3.14299i 0.146862i
\(459\) 19.3923 + 19.3923i 0.905155 + 0.905155i
\(460\) 1.26795 + 1.55291i 0.0591184 + 0.0724050i
\(461\) 18.3564 31.7942i 0.854943 1.48080i −0.0217547 0.999763i \(-0.506925\pi\)
0.876698 0.481042i \(-0.159741\pi\)
\(462\) −0.984508 + 3.67423i −0.0458035 + 0.170941i
\(463\) 29.5462 17.0585i 1.37313 0.792776i 0.381807 0.924242i \(-0.375302\pi\)
0.991321 + 0.131467i \(0.0419686\pi\)
\(464\) −0.571797 0.990381i −0.0265450 0.0459773i
\(465\) 2.82086 + 0.284965i 0.130814 + 0.0132149i
\(466\) −1.83013 + 3.16987i −0.0847790 + 0.146842i
\(467\) 25.3543i 1.17326i 0.809856 + 0.586629i \(0.199545\pi\)
−0.809856 + 0.586629i \(0.800455\pi\)
\(468\) 6.36396 + 11.0227i 0.294174 + 0.509525i
\(469\) 25.3923 1.17251
\(470\) 0.550957 + 3.38989i 0.0254137 + 0.156364i
\(471\) 5.78461 + 21.5885i 0.266541 + 0.994744i
\(472\) 15.8338 9.14162i 0.728807 0.420777i
\(473\) 0.720710 0.416102i 0.0331383 0.0191324i
\(474\) 1.73205 + 6.46410i 0.0795557 + 0.296906i
\(475\) 2.73980 + 2.42713i 0.125711 + 0.111364i
\(476\) −30.5885 −1.40202
\(477\) 1.55291 2.68973i 0.0711031 0.123154i
\(478\) 0.480473i 0.0219763i
\(479\) 2.07180 3.58846i 0.0946628 0.163961i −0.814805 0.579735i \(-0.803156\pi\)
0.909468 + 0.415774i \(0.136489\pi\)
\(480\) 2.00054 19.8033i 0.0913118 0.903893i
\(481\) −5.19615 9.00000i −0.236924 0.410365i
\(482\) −4.36276 + 2.51884i −0.198718 + 0.114730i
\(483\) −0.776457 + 2.89778i −0.0353300 + 0.131853i
\(484\) 8.13397 14.0885i 0.369726 0.640384i
\(485\) 21.4641 + 26.2880i 0.974635 + 1.19368i
\(486\) −7.79423 2.08846i −0.353553 0.0947343i
\(487\) 15.8338i 0.717496i 0.933435 + 0.358748i \(0.116796\pi\)
−0.933435 + 0.358748i \(0.883204\pi\)
\(488\) −11.1428 6.43331i −0.504412 0.291222i
\(489\) 17.4904 + 4.68653i 0.790942 + 0.211932i
\(490\) −1.72223 + 4.54134i −0.0778026 + 0.205157i
\(491\) −16.8564 29.1962i −0.760719 1.31760i −0.942480 0.334261i \(-0.891513\pi\)
0.181761 0.983343i \(-0.441820\pi\)
\(492\) −16.4022 16.4022i −0.739466 0.739466i
\(493\) −2.12132 1.22474i −0.0955395 0.0551597i
\(494\) 0.928203 0.0417618
\(495\) 8.39550 1.36451i 0.377350 0.0613304i
\(496\) 1.80385 0.0809951
\(497\) −41.1373 23.7506i −1.84526 1.06536i
\(498\) 6.90018 1.84890i 0.309205 0.0828511i
\(499\) 11.9282 + 20.6603i 0.533980 + 0.924880i 0.999212 + 0.0396914i \(0.0126375\pi\)
−0.465232 + 0.885189i \(0.654029\pi\)
\(500\) 10.3492 16.3674i 0.462832 0.731974i
\(501\) 4.45448 + 16.6244i 0.199012 + 0.742721i
\(502\) −5.64325 3.25813i −0.251871 0.145418i
\(503\) 2.48665i 0.110874i −0.998462 0.0554372i \(-0.982345\pi\)
0.998462 0.0554372i \(-0.0176553\pi\)
\(504\) 16.7942 9.69615i 0.748074 0.431901i
\(505\) −16.3923 + 13.3843i −0.729448 + 0.595592i
\(506\) 0.169873 0.294229i 0.00755178 0.0130801i
\(507\) −8.57321 8.57321i −0.380750 0.380750i
\(508\) 26.0800 15.0573i 1.15711 0.668059i
\(509\) 8.42820 + 14.5981i 0.373574 + 0.647048i 0.990112 0.140276i \(-0.0447990\pi\)
−0.616539 + 0.787324i \(0.711466\pi\)
\(510\) −4.34278 9.64893i −0.192302 0.427262i
\(511\) −14.1962 + 24.5885i −0.628001 + 1.08773i
\(512\) 22.1841i 0.980408i
\(513\) 2.68973 2.68973i 0.118754 0.118754i
\(514\) −8.67949 −0.382836
\(515\) −1.44861 + 0.235442i −0.0638334 + 0.0103748i
\(516\) −1.90192 0.509619i −0.0837275 0.0224347i
\(517\) −3.25813 + 1.88108i −0.143293 + 0.0827300i
\(518\) −6.36396 + 3.67423i −0.279616 + 0.161437i
\(519\) −12.9282 + 12.9282i −0.567485 + 0.567485i
\(520\) −1.69748 10.4441i −0.0744394 0.458006i
\(521\) −19.3923 −0.849592 −0.424796 0.905289i \(-0.639654\pi\)
−0.424796 + 0.905289i \(0.639654\pi\)
\(522\) 0.720710 0.0315446
\(523\) 35.1894i 1.53873i 0.638812 + 0.769363i \(0.279426\pi\)
−0.638812 + 0.769363i \(0.720574\pi\)
\(524\) −11.1962 + 19.3923i −0.489106 + 0.847157i
\(525\) 28.9249 1.75039i 1.26238 0.0763934i
\(526\) −5.63397 9.75833i −0.245653 0.425483i
\(527\) 3.34607 1.93185i 0.145757 0.0841528i
\(528\) 5.22715 1.40061i 0.227482 0.0609537i
\(529\) −11.3660 + 19.6865i −0.494175 + 0.855936i
\(530\) −0.928203 + 0.757875i −0.0403186 + 0.0329200i
\(531\) 28.3923i 1.23212i
\(532\) 4.24264i 0.183942i
\(533\) −16.4022 9.46979i −0.710456 0.410182i
\(534\) 8.49038 8.49038i 0.367415 0.367415i
\(535\) 8.17917 21.5675i 0.353616 0.932446i
\(536\) 7.33013 + 12.6962i 0.316613 + 0.548390i
\(537\) −2.95352 + 11.0227i −0.127454 + 0.475665i
\(538\) −3.05008 1.76097i −0.131498 0.0759206i
\(539\) −5.32051 −0.229171
\(540\) −16.3288 11.7631i −0.702680 0.506202i
\(541\) 0.607695 0.0261269 0.0130634 0.999915i \(-0.495842\pi\)
0.0130634 + 0.999915i \(0.495842\pi\)
\(542\) 9.64566 + 5.56892i 0.414316 + 0.239206i
\(543\) −0.688524 + 2.56961i −0.0295474 + 0.110272i
\(544\) −13.5622 23.4904i −0.581474 1.00714i
\(545\) −26.4697 10.0382i −1.13384 0.429991i
\(546\) 5.19615 5.19615i 0.222375 0.222375i
\(547\) 22.5581 + 13.0239i 0.964513 + 0.556862i 0.897559 0.440894i \(-0.145339\pi\)
0.0669541 + 0.997756i \(0.478672\pi\)
\(548\) 27.2490i 1.16402i
\(549\) −17.3038 + 9.99038i −0.738510 + 0.426379i
\(550\) −3.21539 0.656339i −0.137105 0.0279864i
\(551\) −0.169873 + 0.294229i −0.00723683 + 0.0125346i
\(552\) −1.67303 + 0.448288i −0.0712090 + 0.0190804i
\(553\) −21.6293 + 12.4877i −0.919772 + 0.531030i
\(554\) −3.16987 5.49038i −0.134675 0.233264i
\(555\) 13.3324 + 9.60450i 0.565930 + 0.407688i
\(556\) −6.92820 + 12.0000i −0.293821 + 0.508913i
\(557\) 31.1127i 1.31829i −0.752017 0.659144i \(-0.770919\pi\)
0.752017 0.659144i \(-0.229081\pi\)
\(558\) −0.568406 + 0.984508i −0.0240625 + 0.0416776i
\(559\) −1.60770 −0.0679983
\(560\) 18.1977 2.95766i 0.768993 0.124984i
\(561\) 8.19615 8.19615i 0.346042 0.346042i
\(562\) 8.84564 5.10703i 0.373131 0.215427i
\(563\) −7.94906 + 4.58939i −0.335013 + 0.193420i −0.658065 0.752962i \(-0.728625\pi\)
0.323052 + 0.946381i \(0.395291\pi\)
\(564\) 8.59808 + 2.30385i 0.362044 + 0.0970095i
\(565\) −38.0681 + 6.18718i −1.60154 + 0.260297i
\(566\) 8.66025 0.364018
\(567\) 30.1146i 1.26469i
\(568\) 27.4249i 1.15072i
\(569\) 14.6603 25.3923i 0.614590 1.06450i −0.375867 0.926674i \(-0.622655\pi\)
0.990456 0.137827i \(-0.0440118\pi\)
\(570\) −1.33831 + 0.602347i −0.0560558 + 0.0252295i
\(571\) 0.732051 + 1.26795i 0.0306354 + 0.0530620i 0.880937 0.473234i \(-0.156914\pi\)
−0.850301 + 0.526296i \(0.823580\pi\)
\(572\) 4.65874 2.68973i 0.194792 0.112463i
\(573\) −21.6293 21.6293i −0.903577 0.903577i
\(574\) −6.69615 + 11.5981i −0.279492 + 0.484094i
\(575\) −2.53590 0.517638i −0.105754 0.0215870i
\(576\) −5.89230 3.40192i −0.245513 0.141747i
\(577\) 13.8647i 0.577196i 0.957450 + 0.288598i \(0.0931892\pi\)
−0.957450 + 0.288598i \(0.906811\pi\)
\(578\) −4.86679 2.80984i −0.202432 0.116874i
\(579\) −1.68653 6.29423i −0.0700899 0.261579i
\(580\) 1.68066 + 0.637365i 0.0697856 + 0.0264652i
\(581\) 13.3301 + 23.0885i 0.553027 + 0.957871i
\(582\) −13.1440 + 3.52193i −0.544837 + 0.145989i
\(583\) −1.13681 0.656339i −0.0470819 0.0271828i
\(584\) −16.3923 −0.678318
\(585\) −15.3640 5.82655i −0.635222 0.240898i
\(586\) 7.12436 0.294304
\(587\) −4.21046 2.43091i −0.173784 0.100334i 0.410585 0.911822i \(-0.365325\pi\)
−0.584369 + 0.811488i \(0.698658\pi\)
\(588\) 8.90138 + 8.90138i 0.367087 + 0.367087i
\(589\) −0.267949 0.464102i −0.0110407 0.0191230i
\(590\) −3.88437 + 10.2426i −0.159917 + 0.421683i
\(591\) 26.6603 + 7.14359i 1.09666 + 0.293848i
\(592\) 9.05369 + 5.22715i 0.372104 + 0.214834i
\(593\) 19.1427i 0.786094i 0.919518 + 0.393047i \(0.128579\pi\)
−0.919518 + 0.393047i \(0.871421\pi\)
\(594\) −0.882686 + 3.29423i −0.0362170 + 0.135164i
\(595\) 30.5885 24.9754i 1.25400 1.02389i
\(596\) 3.69615 6.40192i 0.151400 0.262233i
\(597\) −11.9193 + 44.4834i −0.487824 + 1.82058i
\(598\) −0.568406 + 0.328169i −0.0232439 + 0.0134198i
\(599\) −10.8564 18.8038i −0.443581 0.768304i 0.554371 0.832269i \(-0.312959\pi\)
−0.997952 + 0.0639650i \(0.979625\pi\)
\(600\) 9.22508 + 13.9571i 0.376612 + 0.569798i
\(601\) 1.53590 2.66025i 0.0626506 0.108514i −0.832999 0.553275i \(-0.813378\pi\)
0.895649 + 0.444761i \(0.146711\pi\)
\(602\) 1.13681i 0.0463330i
\(603\) 22.7661 0.927108
\(604\) 14.8756 0.605281
\(605\) 3.36920 + 20.7298i 0.136978 + 0.842787i
\(606\) −2.19615 8.19615i −0.0892126 0.332946i
\(607\) 18.1631 10.4865i 0.737218 0.425633i −0.0838387 0.996479i \(-0.526718\pi\)
0.821057 + 0.570846i \(0.193385\pi\)
\(608\) −3.25813 + 1.88108i −0.132135 + 0.0762880i
\(609\) 0.696152 + 2.59808i 0.0282095 + 0.105279i
\(610\) 7.60922 1.23672i 0.308088 0.0500734i
\(611\) 7.26795 0.294030
\(612\) −27.4249 −1.10858
\(613\) 9.62209i 0.388633i 0.980939 + 0.194316i \(0.0622488\pi\)
−0.980939 + 0.194316i \(0.937751\pi\)
\(614\) 0.990381 1.71539i 0.0399685 0.0692275i
\(615\) 29.7945 + 3.00985i 1.20143 + 0.121369i
\(616\) −4.09808 7.09808i −0.165116 0.285990i
\(617\) 15.5935 9.00292i 0.627771 0.362444i −0.152117 0.988362i \(-0.548609\pi\)
0.779888 + 0.625919i \(0.215276\pi\)
\(618\) 0.152304 0.568406i 0.00612656 0.0228646i
\(619\) 15.0981 26.1506i 0.606843 1.05108i −0.384914 0.922952i \(-0.625769\pi\)
0.991757 0.128130i \(-0.0408976\pi\)
\(620\) −2.19615 + 1.79315i −0.0881996 + 0.0720147i
\(621\) −0.696152 + 2.59808i −0.0279356 + 0.104257i
\(622\) 5.20359i 0.208645i
\(623\) 38.8079 + 22.4058i 1.55481 + 0.897668i
\(624\) −10.0981 2.70577i −0.404247 0.108318i
\(625\) 3.01472 + 24.8176i 0.120589 + 0.992703i
\(626\) 3.63397 + 6.29423i 0.145243 + 0.251568i
\(627\) −1.13681 1.13681i −0.0453999 0.0453999i
\(628\) −19.3557 11.1750i −0.772376 0.445931i
\(629\) 22.3923 0.892840
\(630\) −4.11999 + 10.8640i −0.164144 + 0.432831i
\(631\) 1.32051 0.0525686 0.0262843 0.999655i \(-0.491632\pi\)
0.0262843 + 0.999655i \(0.491632\pi\)
\(632\) −12.4877 7.20977i −0.496733 0.286789i
\(633\) 18.6114 4.98691i 0.739737 0.198212i
\(634\) 1.04552 + 1.81089i 0.0415228 + 0.0719196i
\(635\) −13.7858 + 36.3515i −0.547072 + 1.44257i
\(636\) 0.803848 + 3.00000i 0.0318746 + 0.118958i
\(637\) 8.90138 + 5.13922i 0.352686 + 0.203623i
\(638\) 0.304608i 0.0120595i
\(639\) −36.8827 21.2942i −1.45906 0.842387i
\(640\) 16.1962 + 19.8362i 0.640209 + 0.784093i
\(641\) −6.52628 + 11.3038i −0.257773 + 0.446475i −0.965645 0.259865i \(-0.916322\pi\)
0.707872 + 0.706340i \(0.249655\pi\)
\(642\) 6.53983 + 6.53983i 0.258106 + 0.258106i
\(643\) −11.2308 + 6.48408i −0.442898 + 0.255707i −0.704826 0.709380i \(-0.748975\pi\)
0.261928 + 0.965087i \(0.415642\pi\)
\(644\) −1.50000 2.59808i −0.0591083 0.102379i
\(645\) 2.31803 1.04330i 0.0912722 0.0410797i
\(646\) −1.00000 + 1.73205i −0.0393445 + 0.0681466i
\(647\) 19.4572i 0.764942i −0.923967 0.382471i \(-0.875073\pi\)
0.923967 0.382471i \(-0.124927\pi\)
\(648\) 15.0573 8.69333i 0.591506 0.341506i
\(649\) −12.0000 −0.471041
\(650\) 4.74548 + 4.20390i 0.186133 + 0.164891i
\(651\) −4.09808 1.09808i −0.160616 0.0430370i
\(652\) −15.6814 + 9.05369i −0.614133 + 0.354570i
\(653\) 42.0339 24.2683i 1.64491 0.949691i 0.665861 0.746076i \(-0.268064\pi\)
0.979051 0.203615i \(-0.0652691\pi\)
\(654\) 8.02628 8.02628i 0.313852 0.313852i
\(655\) −4.63760 28.5339i −0.181206 1.11491i
\(656\) 19.0526 0.743877
\(657\) −12.7279 + 22.0454i −0.496564 + 0.860073i
\(658\) 5.13922i 0.200348i
\(659\) −6.12436 + 10.6077i −0.238571 + 0.413217i −0.960304 0.278954i \(-0.910012\pi\)
0.721733 + 0.692171i \(0.243346\pi\)
\(660\) −4.97166 + 6.90137i −0.193521 + 0.268635i
\(661\) −5.39230 9.33975i −0.209736 0.363274i 0.741895 0.670516i \(-0.233927\pi\)
−0.951631 + 0.307242i \(0.900594\pi\)
\(662\) 3.76217 2.17209i 0.146221 0.0844206i
\(663\) −21.6293 + 5.79555i −0.840013 + 0.225081i
\(664\) −7.69615 + 13.3301i −0.298669 + 0.517309i
\(665\) −3.46410 4.24264i −0.134332 0.164523i
\(666\) −5.70577 + 3.29423i −0.221094 + 0.127649i
\(667\) 0.240237i 0.00930200i
\(668\) −14.9050 8.60540i −0.576691 0.332953i
\(669\) 5.49038 5.49038i 0.212270 0.212270i
\(670\) −8.21297 3.11465i −0.317295 0.120329i
\(671\) 4.22243 + 7.31347i 0.163005 + 0.282333i
\(672\) −7.70882 + 28.7697i −0.297374 + 1.10982i
\(673\) −35.3417 20.4046i −1.36232 0.786538i −0.372391 0.928076i \(-0.621462\pi\)
−0.989933 + 0.141538i \(0.954795\pi\)
\(674\) 3.46410 0.133432
\(675\) 25.9333 1.56936i 0.998174 0.0604047i
\(676\) 12.1244 0.466321
\(677\) 3.19376 + 1.84392i 0.122746 + 0.0708676i 0.560116 0.828414i \(-0.310757\pi\)
−0.437370 + 0.899282i \(0.644090\pi\)
\(678\) 4.00240 14.9372i 0.153711 0.573659i
\(679\) −25.3923 43.9808i −0.974467 1.68783i
\(680\) 21.3178 + 8.08446i 0.817501 + 0.310025i
\(681\) −32.3205 + 32.3205i −1.23852 + 1.23852i
\(682\) 0.416102 + 0.240237i 0.0159334 + 0.00919914i
\(683\) 0.101536i 0.00388517i −0.999998 0.00194258i \(-0.999382\pi\)
0.999998 0.00194258i \(-0.000618344\pi\)
\(684\) 3.80385i 0.145444i
\(685\) −22.2487 27.2490i −0.850080 1.04113i
\(686\) −2.42820 + 4.20577i −0.0927092 + 0.160577i
\(687\) −10.1583 + 2.72191i −0.387564 + 0.103847i
\(688\) 1.40061 0.808643i 0.0533978 0.0308292i
\(689\) 1.26795 + 2.19615i 0.0483050 + 0.0836667i
\(690\) 0.606584 0.842026i 0.0230923 0.0320554i
\(691\) 14.1244 24.4641i 0.537316 0.930658i −0.461732 0.887020i \(-0.652772\pi\)
0.999047 0.0436386i \(-0.0138950\pi\)
\(692\) 18.2832i 0.695025i
\(693\) −12.7279 −0.483494
\(694\) −5.12436 −0.194518
\(695\) −2.86976 17.6569i −0.108856 0.669763i
\(696\) −1.09808 + 1.09808i −0.0416225 + 0.0416225i
\(697\) 35.3417 20.4046i 1.33866 0.772878i
\(698\) 12.7601 7.36705i 0.482977 0.278847i
\(699\) −11.8301 3.16987i −0.447456 0.119896i
\(700\) −19.2153 + 21.6907i −0.726268 + 0.819831i
\(701\) −12.8038 −0.483595 −0.241797 0.970327i \(-0.577737\pi\)
−0.241797 + 0.970327i \(0.577737\pi\)
\(702\) 4.65874 4.65874i 0.175833 0.175833i
\(703\) 3.10583i 0.117139i
\(704\) −1.43782 + 2.49038i −0.0541900 + 0.0938598i
\(705\) −10.4792 + 4.71645i −0.394668 + 0.177632i
\(706\) 5.26795 + 9.12436i 0.198262 + 0.343400i
\(707\) 27.4249 15.8338i 1.03142 0.595489i
\(708\) 20.0764 + 20.0764i 0.754517 + 0.754517i
\(709\) 4.89230 8.47372i 0.183734 0.318237i −0.759415 0.650607i \(-0.774515\pi\)
0.943149 + 0.332369i \(0.107848\pi\)
\(710\) 10.3923 + 12.7279i 0.390016 + 0.477670i
\(711\) −19.3923 + 11.1962i −0.727268 + 0.419889i
\(712\) 25.8719i 0.969592i
\(713\) 0.328169 + 0.189469i 0.0122900 + 0.00709566i
\(714\) 4.09808 + 15.2942i 0.153367 + 0.572372i
\(715\) −2.46259 + 6.49357i −0.0920957 + 0.242846i
\(716\) −5.70577 9.88269i −0.213235 0.369333i
\(717\) 1.55291 0.416102i 0.0579946 0.0155396i
\(718\) −9.05369 5.22715i −0.337881 0.195075i
\(719\) −40.3923 −1.50638 −0.753189 0.657804i \(-0.771486\pi\)
−0.753189 + 0.657804i \(0.771486\pi\)
\(720\) 16.3156 2.65176i 0.608047 0.0988254i
\(721\) 2.19615 0.0817890
\(722\) −8.27723 4.77886i −0.308047 0.177851i
\(723\) −11.9193 11.9193i −0.443283 0.443283i
\(724\) −1.33013 2.30385i −0.0494338 0.0856218i
\(725\) −2.20107 + 0.734888i −0.0817456 + 0.0272931i
\(726\) −8.13397 2.17949i −0.301880 0.0808885i
\(727\) −1.19256 0.688524i −0.0442296 0.0255360i 0.477722 0.878511i \(-0.341463\pi\)
−0.521952 + 0.852975i \(0.674796\pi\)
\(728\) 15.8338i 0.586838i
\(729\) 27.0000i 1.00000i
\(730\) 7.60770 6.21166i 0.281573 0.229904i
\(731\) 1.73205 3.00000i 0.0640622 0.110959i
\(732\) 5.17140 19.2999i 0.191141 0.713346i
\(733\) 6.51626 3.76217i 0.240684 0.138959i −0.374807 0.927103i \(-0.622291\pi\)
0.615491 + 0.788144i \(0.288958\pi\)
\(734\) −8.95448 15.5096i −0.330516 0.572470i
\(735\) −16.1693 1.63343i −0.596415 0.0602501i
\(736\) 1.33013 2.30385i 0.0490291 0.0849209i
\(737\) 9.62209i 0.354434i
\(738\) −6.00361 + 10.3986i −0.220996 + 0.382776i
\(739\) 18.1436 0.667423 0.333711 0.942675i \(-0.391699\pi\)
0.333711 + 0.942675i \(0.391699\pi\)
\(740\) −16.2189 + 2.63604i −0.596217 + 0.0969027i
\(741\) 0.803848 + 3.00000i 0.0295301 + 0.110208i
\(742\) 1.55291 0.896575i 0.0570093 0.0329143i
\(743\) −28.2893 + 16.3328i −1.03783 + 0.599193i −0.919218 0.393748i \(-0.871178\pi\)
−0.118613 + 0.992941i \(0.537845\pi\)
\(744\) −0.633975 2.36603i −0.0232426 0.0867427i
\(745\) 1.53100 + 9.41982i 0.0560914 + 0.345115i
\(746\) −14.1051 −0.516425
\(747\) 11.9515 + 20.7005i 0.437281 + 0.757393i
\(748\) 11.5911i 0.423813i
\(749\) −17.2583 + 29.8923i −0.630606 + 1.09224i
\(750\) −9.57026 2.98180i −0.349456 0.108880i
\(751\) 12.2224 + 21.1699i 0.446003 + 0.772500i 0.998121 0.0612659i \(-0.0195138\pi\)
−0.552119 + 0.833766i \(0.686180\pi\)
\(752\) −6.33178 + 3.65565i −0.230896 + 0.133308i
\(753\) 5.64325 21.0609i 0.205651 0.767502i
\(754\) −0.294229 + 0.509619i −0.0107152 + 0.0185592i
\(755\) −14.8756 + 12.1459i −0.541380 + 0.442035i
\(756\) 21.2942 + 21.2942i 0.774464 + 0.774464i
\(757\) 7.34847i 0.267085i −0.991043 0.133542i \(-0.957365\pi\)
0.991043 0.133542i \(-0.0426352\pi\)
\(758\) −8.72552 5.03768i −0.316925 0.182977i
\(759\) 1.09808 + 0.294229i 0.0398576 + 0.0106798i
\(760\) 1.12132 2.95680i 0.0406746 0.107254i
\(761\) −7.96410 13.7942i −0.288698 0.500040i 0.684801 0.728730i \(-0.259889\pi\)
−0.973499 + 0.228690i \(0.926556\pi\)
\(762\) −11.0227 11.0227i −0.399310 0.399310i
\(763\) 36.6866 + 21.1810i 1.32814 + 0.766804i
\(764\) 30.5885 1.10665
\(765\) 27.4249 22.3923i 0.991548 0.809595i
\(766\) 5.51666 0.199325
\(767\) 20.0764 + 11.5911i 0.724916 + 0.418531i
\(768\) −2.32937 + 0.624153i −0.0840540 + 0.0225222i
\(769\) 20.8205 + 36.0622i 0.750807 + 1.30044i 0.947432 + 0.319957i \(0.103668\pi\)
−0.196625 + 0.980479i \(0.562998\pi\)
\(770\) 4.59165 + 1.74131i 0.165472 + 0.0627526i
\(771\) −7.51666 28.0526i −0.270706 1.01029i
\(772\) 5.64325 + 3.25813i 0.203105 + 0.117263i
\(773\) 2.07055i