Properties

Label 45.2.f.a.17.1
Level $45$
Weight $2$
Character 45.17
Analytic conductor $0.359$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,2,Mod(8,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.8");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 45.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.359326809096\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 17.1
Root \(-0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 45.17
Dual form 45.2.f.a.8.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} +1.00000i q^{4} +(2.12132 + 0.707107i) q^{5} +(-2.00000 - 2.00000i) q^{7} +(-2.12132 - 2.12132i) q^{8} +O(q^{10})\) \(q+(-0.707107 + 0.707107i) q^{2} +1.00000i q^{4} +(2.12132 + 0.707107i) q^{5} +(-2.00000 - 2.00000i) q^{7} +(-2.12132 - 2.12132i) q^{8} +(-2.00000 + 1.00000i) q^{10} -2.82843i q^{11} +(1.00000 - 1.00000i) q^{13} +2.82843 q^{14} +1.00000 q^{16} +(-2.82843 + 2.82843i) q^{17} +(-0.707107 + 2.12132i) q^{20} +(2.00000 + 2.00000i) q^{22} +(2.82843 + 2.82843i) q^{23} +(4.00000 + 3.00000i) q^{25} +1.41421i q^{26} +(2.00000 - 2.00000i) q^{28} -4.24264 q^{29} -4.00000 q^{31} +(3.53553 - 3.53553i) q^{32} -4.00000i q^{34} +(-2.82843 - 5.65685i) q^{35} +(1.00000 + 1.00000i) q^{37} +(-3.00000 - 6.00000i) q^{40} +1.41421i q^{41} +(-8.00000 + 8.00000i) q^{43} +2.82843 q^{44} -4.00000 q^{46} +(5.65685 - 5.65685i) q^{47} +1.00000i q^{49} +(-4.94975 + 0.707107i) q^{50} +(1.00000 + 1.00000i) q^{52} +(2.82843 + 2.82843i) q^{53} +(2.00000 - 6.00000i) q^{55} +8.48528i q^{56} +(3.00000 - 3.00000i) q^{58} -8.48528 q^{59} +8.00000 q^{61} +(2.82843 - 2.82843i) q^{62} +7.00000i q^{64} +(2.82843 - 1.41421i) q^{65} +(4.00000 + 4.00000i) q^{67} +(-2.82843 - 2.82843i) q^{68} +(6.00000 + 2.00000i) q^{70} +5.65685i q^{71} +(1.00000 - 1.00000i) q^{73} -1.41421 q^{74} +(-5.65685 + 5.65685i) q^{77} -12.0000i q^{79} +(2.12132 + 0.707107i) q^{80} +(-1.00000 - 1.00000i) q^{82} +(2.82843 + 2.82843i) q^{83} +(-8.00000 + 4.00000i) q^{85} -11.3137i q^{86} +(-6.00000 + 6.00000i) q^{88} +12.7279 q^{89} -4.00000 q^{91} +(-2.82843 + 2.82843i) q^{92} +8.00000i q^{94} +(-11.0000 - 11.0000i) q^{97} +(-0.707107 - 0.707107i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 8 q^{7} - 8 q^{10} + 4 q^{13} + 4 q^{16} + 8 q^{22} + 16 q^{25} + 8 q^{28} - 16 q^{31} + 4 q^{37} - 12 q^{40} - 32 q^{43} - 16 q^{46} + 4 q^{52} + 8 q^{55} + 12 q^{58} + 32 q^{61} + 16 q^{67} + 24 q^{70} + 4 q^{73} - 4 q^{82} - 32 q^{85} - 24 q^{88} - 16 q^{91} - 44 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i −0.911438 0.411438i \(-0.865027\pi\)
0.411438 + 0.911438i \(0.365027\pi\)
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) 2.12132 + 0.707107i 0.948683 + 0.316228i
\(6\) 0 0
\(7\) −2.00000 2.00000i −0.755929 0.755929i 0.219650 0.975579i \(-0.429509\pi\)
−0.975579 + 0.219650i \(0.929509\pi\)
\(8\) −2.12132 2.12132i −0.750000 0.750000i
\(9\) 0 0
\(10\) −2.00000 + 1.00000i −0.632456 + 0.316228i
\(11\) 2.82843i 0.852803i −0.904534 0.426401i \(-0.859781\pi\)
0.904534 0.426401i \(-0.140219\pi\)
\(12\) 0 0
\(13\) 1.00000 1.00000i 0.277350 0.277350i −0.554700 0.832050i \(-0.687167\pi\)
0.832050 + 0.554700i \(0.187167\pi\)
\(14\) 2.82843 0.755929
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −2.82843 + 2.82843i −0.685994 + 0.685994i −0.961344 0.275350i \(-0.911206\pi\)
0.275350 + 0.961344i \(0.411206\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) −0.707107 + 2.12132i −0.158114 + 0.474342i
\(21\) 0 0
\(22\) 2.00000 + 2.00000i 0.426401 + 0.426401i
\(23\) 2.82843 + 2.82843i 0.589768 + 0.589768i 0.937568 0.347801i \(-0.113071\pi\)
−0.347801 + 0.937568i \(0.613071\pi\)
\(24\) 0 0
\(25\) 4.00000 + 3.00000i 0.800000 + 0.600000i
\(26\) 1.41421i 0.277350i
\(27\) 0 0
\(28\) 2.00000 2.00000i 0.377964 0.377964i
\(29\) −4.24264 −0.787839 −0.393919 0.919145i \(-0.628881\pi\)
−0.393919 + 0.919145i \(0.628881\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 3.53553 3.53553i 0.625000 0.625000i
\(33\) 0 0
\(34\) 4.00000i 0.685994i
\(35\) −2.82843 5.65685i −0.478091 0.956183i
\(36\) 0 0
\(37\) 1.00000 + 1.00000i 0.164399 + 0.164399i 0.784512 0.620113i \(-0.212913\pi\)
−0.620113 + 0.784512i \(0.712913\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −3.00000 6.00000i −0.474342 0.948683i
\(41\) 1.41421i 0.220863i 0.993884 + 0.110432i \(0.0352233\pi\)
−0.993884 + 0.110432i \(0.964777\pi\)
\(42\) 0 0
\(43\) −8.00000 + 8.00000i −1.21999 + 1.21999i −0.252353 + 0.967635i \(0.581205\pi\)
−0.967635 + 0.252353i \(0.918795\pi\)
\(44\) 2.82843 0.426401
\(45\) 0 0
\(46\) −4.00000 −0.589768
\(47\) 5.65685 5.65685i 0.825137 0.825137i −0.161703 0.986840i \(-0.551699\pi\)
0.986840 + 0.161703i \(0.0516985\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) −4.94975 + 0.707107i −0.700000 + 0.100000i
\(51\) 0 0
\(52\) 1.00000 + 1.00000i 0.138675 + 0.138675i
\(53\) 2.82843 + 2.82843i 0.388514 + 0.388514i 0.874157 0.485643i \(-0.161414\pi\)
−0.485643 + 0.874157i \(0.661414\pi\)
\(54\) 0 0
\(55\) 2.00000 6.00000i 0.269680 0.809040i
\(56\) 8.48528i 1.13389i
\(57\) 0 0
\(58\) 3.00000 3.00000i 0.393919 0.393919i
\(59\) −8.48528 −1.10469 −0.552345 0.833616i \(-0.686267\pi\)
−0.552345 + 0.833616i \(0.686267\pi\)
\(60\) 0 0
\(61\) 8.00000 1.02430 0.512148 0.858898i \(-0.328850\pi\)
0.512148 + 0.858898i \(0.328850\pi\)
\(62\) 2.82843 2.82843i 0.359211 0.359211i
\(63\) 0 0
\(64\) 7.00000i 0.875000i
\(65\) 2.82843 1.41421i 0.350823 0.175412i
\(66\) 0 0
\(67\) 4.00000 + 4.00000i 0.488678 + 0.488678i 0.907889 0.419211i \(-0.137693\pi\)
−0.419211 + 0.907889i \(0.637693\pi\)
\(68\) −2.82843 2.82843i −0.342997 0.342997i
\(69\) 0 0
\(70\) 6.00000 + 2.00000i 0.717137 + 0.239046i
\(71\) 5.65685i 0.671345i 0.941979 + 0.335673i \(0.108964\pi\)
−0.941979 + 0.335673i \(0.891036\pi\)
\(72\) 0 0
\(73\) 1.00000 1.00000i 0.117041 0.117041i −0.646160 0.763202i \(-0.723626\pi\)
0.763202 + 0.646160i \(0.223626\pi\)
\(74\) −1.41421 −0.164399
\(75\) 0 0
\(76\) 0 0
\(77\) −5.65685 + 5.65685i −0.644658 + 0.644658i
\(78\) 0 0
\(79\) 12.0000i 1.35011i −0.737769 0.675053i \(-0.764121\pi\)
0.737769 0.675053i \(-0.235879\pi\)
\(80\) 2.12132 + 0.707107i 0.237171 + 0.0790569i
\(81\) 0 0
\(82\) −1.00000 1.00000i −0.110432 0.110432i
\(83\) 2.82843 + 2.82843i 0.310460 + 0.310460i 0.845088 0.534628i \(-0.179548\pi\)
−0.534628 + 0.845088i \(0.679548\pi\)
\(84\) 0 0
\(85\) −8.00000 + 4.00000i −0.867722 + 0.433861i
\(86\) 11.3137i 1.21999i
\(87\) 0 0
\(88\) −6.00000 + 6.00000i −0.639602 + 0.639602i
\(89\) 12.7279 1.34916 0.674579 0.738203i \(-0.264325\pi\)
0.674579 + 0.738203i \(0.264325\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) −2.82843 + 2.82843i −0.294884 + 0.294884i
\(93\) 0 0
\(94\) 8.00000i 0.825137i
\(95\) 0 0
\(96\) 0 0
\(97\) −11.0000 11.0000i −1.11688 1.11688i −0.992196 0.124684i \(-0.960208\pi\)
−0.124684 0.992196i \(-0.539792\pi\)
\(98\) −0.707107 0.707107i −0.0714286 0.0714286i
\(99\) 0 0
\(100\) −3.00000 + 4.00000i −0.300000 + 0.400000i
\(101\) 15.5563i 1.54791i −0.633238 0.773957i \(-0.718274\pi\)
0.633238 0.773957i \(-0.281726\pi\)
\(102\) 0 0
\(103\) 10.0000 10.0000i 0.985329 0.985329i −0.0145647 0.999894i \(-0.504636\pi\)
0.999894 + 0.0145647i \(0.00463624\pi\)
\(104\) −4.24264 −0.416025
\(105\) 0 0
\(106\) −4.00000 −0.388514
\(107\) −2.82843 + 2.82843i −0.273434 + 0.273434i −0.830481 0.557047i \(-0.811934\pi\)
0.557047 + 0.830481i \(0.311934\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 2.82843 + 5.65685i 0.269680 + 0.539360i
\(111\) 0 0
\(112\) −2.00000 2.00000i −0.188982 0.188982i
\(113\) −9.89949 9.89949i −0.931266 0.931266i 0.0665190 0.997785i \(-0.478811\pi\)
−0.997785 + 0.0665190i \(0.978811\pi\)
\(114\) 0 0
\(115\) 4.00000 + 8.00000i 0.373002 + 0.746004i
\(116\) 4.24264i 0.393919i
\(117\) 0 0
\(118\) 6.00000 6.00000i 0.552345 0.552345i
\(119\) 11.3137 1.03713
\(120\) 0 0
\(121\) 3.00000 0.272727
\(122\) −5.65685 + 5.65685i −0.512148 + 0.512148i
\(123\) 0 0
\(124\) 4.00000i 0.359211i
\(125\) 6.36396 + 9.19239i 0.569210 + 0.822192i
\(126\) 0 0
\(127\) 10.0000 + 10.0000i 0.887357 + 0.887357i 0.994268 0.106912i \(-0.0340963\pi\)
−0.106912 + 0.994268i \(0.534096\pi\)
\(128\) 2.12132 + 2.12132i 0.187500 + 0.187500i
\(129\) 0 0
\(130\) −1.00000 + 3.00000i −0.0877058 + 0.263117i
\(131\) 14.1421i 1.23560i 0.786334 + 0.617802i \(0.211977\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −5.65685 −0.488678
\(135\) 0 0
\(136\) 12.0000 1.02899
\(137\) −7.07107 + 7.07107i −0.604122 + 0.604122i −0.941404 0.337282i \(-0.890493\pi\)
0.337282 + 0.941404i \(0.390493\pi\)
\(138\) 0 0
\(139\) 12.0000i 1.01783i 0.860818 + 0.508913i \(0.169953\pi\)
−0.860818 + 0.508913i \(0.830047\pi\)
\(140\) 5.65685 2.82843i 0.478091 0.239046i
\(141\) 0 0
\(142\) −4.00000 4.00000i −0.335673 0.335673i
\(143\) −2.82843 2.82843i −0.236525 0.236525i
\(144\) 0 0
\(145\) −9.00000 3.00000i −0.747409 0.249136i
\(146\) 1.41421i 0.117041i
\(147\) 0 0
\(148\) −1.00000 + 1.00000i −0.0821995 + 0.0821995i
\(149\) 4.24264 0.347571 0.173785 0.984784i \(-0.444400\pi\)
0.173785 + 0.984784i \(0.444400\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 8.00000i 0.644658i
\(155\) −8.48528 2.82843i −0.681554 0.227185i
\(156\) 0 0
\(157\) −5.00000 5.00000i −0.399043 0.399043i 0.478852 0.877896i \(-0.341053\pi\)
−0.877896 + 0.478852i \(0.841053\pi\)
\(158\) 8.48528 + 8.48528i 0.675053 + 0.675053i
\(159\) 0 0
\(160\) 10.0000 5.00000i 0.790569 0.395285i
\(161\) 11.3137i 0.891645i
\(162\) 0 0
\(163\) −8.00000 + 8.00000i −0.626608 + 0.626608i −0.947213 0.320605i \(-0.896114\pi\)
0.320605 + 0.947213i \(0.396114\pi\)
\(164\) −1.41421 −0.110432
\(165\) 0 0
\(166\) −4.00000 −0.310460
\(167\) 14.1421 14.1421i 1.09435 1.09435i 0.0992931 0.995058i \(-0.468342\pi\)
0.995058 0.0992931i \(-0.0316581\pi\)
\(168\) 0 0
\(169\) 11.0000i 0.846154i
\(170\) 2.82843 8.48528i 0.216930 0.650791i
\(171\) 0 0
\(172\) −8.00000 8.00000i −0.609994 0.609994i
\(173\) −9.89949 9.89949i −0.752645 0.752645i 0.222327 0.974972i \(-0.428635\pi\)
−0.974972 + 0.222327i \(0.928635\pi\)
\(174\) 0 0
\(175\) −2.00000 14.0000i −0.151186 1.05830i
\(176\) 2.82843i 0.213201i
\(177\) 0 0
\(178\) −9.00000 + 9.00000i −0.674579 + 0.674579i
\(179\) −25.4558 −1.90266 −0.951330 0.308175i \(-0.900282\pi\)
−0.951330 + 0.308175i \(0.900282\pi\)
\(180\) 0 0
\(181\) −16.0000 −1.18927 −0.594635 0.803996i \(-0.702704\pi\)
−0.594635 + 0.803996i \(0.702704\pi\)
\(182\) 2.82843 2.82843i 0.209657 0.209657i
\(183\) 0 0
\(184\) 12.0000i 0.884652i
\(185\) 1.41421 + 2.82843i 0.103975 + 0.207950i
\(186\) 0 0
\(187\) 8.00000 + 8.00000i 0.585018 + 0.585018i
\(188\) 5.65685 + 5.65685i 0.412568 + 0.412568i
\(189\) 0 0
\(190\) 0 0
\(191\) 22.6274i 1.63726i 0.574320 + 0.818631i \(0.305267\pi\)
−0.574320 + 0.818631i \(0.694733\pi\)
\(192\) 0 0
\(193\) 1.00000 1.00000i 0.0719816 0.0719816i −0.670199 0.742181i \(-0.733791\pi\)
0.742181 + 0.670199i \(0.233791\pi\)
\(194\) 15.5563 1.11688
\(195\) 0 0
\(196\) −1.00000 −0.0714286
\(197\) 9.89949 9.89949i 0.705310 0.705310i −0.260235 0.965545i \(-0.583800\pi\)
0.965545 + 0.260235i \(0.0838002\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −2.12132 14.8492i −0.150000 1.05000i
\(201\) 0 0
\(202\) 11.0000 + 11.0000i 0.773957 + 0.773957i
\(203\) 8.48528 + 8.48528i 0.595550 + 0.595550i
\(204\) 0 0
\(205\) −1.00000 + 3.00000i −0.0698430 + 0.209529i
\(206\) 14.1421i 0.985329i
\(207\) 0 0
\(208\) 1.00000 1.00000i 0.0693375 0.0693375i
\(209\) 0 0
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) −2.82843 + 2.82843i −0.194257 + 0.194257i
\(213\) 0 0
\(214\) 4.00000i 0.273434i
\(215\) −22.6274 + 11.3137i −1.54318 + 0.771589i
\(216\) 0 0
\(217\) 8.00000 + 8.00000i 0.543075 + 0.543075i
\(218\) 0 0
\(219\) 0 0
\(220\) 6.00000 + 2.00000i 0.404520 + 0.134840i
\(221\) 5.65685i 0.380521i
\(222\) 0 0
\(223\) 10.0000 10.0000i 0.669650 0.669650i −0.287985 0.957635i \(-0.592985\pi\)
0.957635 + 0.287985i \(0.0929854\pi\)
\(224\) −14.1421 −0.944911
\(225\) 0 0
\(226\) 14.0000 0.931266
\(227\) 5.65685 5.65685i 0.375459 0.375459i −0.494002 0.869461i \(-0.664466\pi\)
0.869461 + 0.494002i \(0.164466\pi\)
\(228\) 0 0
\(229\) 6.00000i 0.396491i −0.980152 0.198246i \(-0.936476\pi\)
0.980152 0.198246i \(-0.0635244\pi\)
\(230\) −8.48528 2.82843i −0.559503 0.186501i
\(231\) 0 0
\(232\) 9.00000 + 9.00000i 0.590879 + 0.590879i
\(233\) 2.82843 + 2.82843i 0.185296 + 0.185296i 0.793659 0.608363i \(-0.208173\pi\)
−0.608363 + 0.793659i \(0.708173\pi\)
\(234\) 0 0
\(235\) 16.0000 8.00000i 1.04372 0.521862i
\(236\) 8.48528i 0.552345i
\(237\) 0 0
\(238\) −8.00000 + 8.00000i −0.518563 + 0.518563i
\(239\) 16.9706 1.09773 0.548867 0.835910i \(-0.315059\pi\)
0.548867 + 0.835910i \(0.315059\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) −2.12132 + 2.12132i −0.136364 + 0.136364i
\(243\) 0 0
\(244\) 8.00000i 0.512148i
\(245\) −0.707107 + 2.12132i −0.0451754 + 0.135526i
\(246\) 0 0
\(247\) 0 0
\(248\) 8.48528 + 8.48528i 0.538816 + 0.538816i
\(249\) 0 0
\(250\) −11.0000 2.00000i −0.695701 0.126491i
\(251\) 19.7990i 1.24970i −0.780744 0.624851i \(-0.785160\pi\)
0.780744 0.624851i \(-0.214840\pi\)
\(252\) 0 0
\(253\) 8.00000 8.00000i 0.502956 0.502956i
\(254\) −14.1421 −0.887357
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) 1.41421 1.41421i 0.0882162 0.0882162i −0.661622 0.749838i \(-0.730131\pi\)
0.749838 + 0.661622i \(0.230131\pi\)
\(258\) 0 0
\(259\) 4.00000i 0.248548i
\(260\) 1.41421 + 2.82843i 0.0877058 + 0.175412i
\(261\) 0 0
\(262\) −10.0000 10.0000i −0.617802 0.617802i
\(263\) 2.82843 + 2.82843i 0.174408 + 0.174408i 0.788913 0.614505i \(-0.210644\pi\)
−0.614505 + 0.788913i \(0.710644\pi\)
\(264\) 0 0
\(265\) 4.00000 + 8.00000i 0.245718 + 0.491436i
\(266\) 0 0
\(267\) 0 0
\(268\) −4.00000 + 4.00000i −0.244339 + 0.244339i
\(269\) 12.7279 0.776035 0.388018 0.921652i \(-0.373160\pi\)
0.388018 + 0.921652i \(0.373160\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) −2.82843 + 2.82843i −0.171499 + 0.171499i
\(273\) 0 0
\(274\) 10.0000i 0.604122i
\(275\) 8.48528 11.3137i 0.511682 0.682242i
\(276\) 0 0
\(277\) −11.0000 11.0000i −0.660926 0.660926i 0.294672 0.955598i \(-0.404789\pi\)
−0.955598 + 0.294672i \(0.904789\pi\)
\(278\) −8.48528 8.48528i −0.508913 0.508913i
\(279\) 0 0
\(280\) −6.00000 + 18.0000i −0.358569 + 1.07571i
\(281\) 9.89949i 0.590554i 0.955412 + 0.295277i \(0.0954120\pi\)
−0.955412 + 0.295277i \(0.904588\pi\)
\(282\) 0 0
\(283\) −8.00000 + 8.00000i −0.475551 + 0.475551i −0.903705 0.428155i \(-0.859164\pi\)
0.428155 + 0.903705i \(0.359164\pi\)
\(284\) −5.65685 −0.335673
\(285\) 0 0
\(286\) 4.00000 0.236525
\(287\) 2.82843 2.82843i 0.166957 0.166957i
\(288\) 0 0
\(289\) 1.00000i 0.0588235i
\(290\) 8.48528 4.24264i 0.498273 0.249136i
\(291\) 0 0
\(292\) 1.00000 + 1.00000i 0.0585206 + 0.0585206i
\(293\) −9.89949 9.89949i −0.578335 0.578335i 0.356110 0.934444i \(-0.384103\pi\)
−0.934444 + 0.356110i \(0.884103\pi\)
\(294\) 0 0
\(295\) −18.0000 6.00000i −1.04800 0.349334i
\(296\) 4.24264i 0.246598i
\(297\) 0 0
\(298\) −3.00000 + 3.00000i −0.173785 + 0.173785i
\(299\) 5.65685 0.327144
\(300\) 0 0
\(301\) 32.0000 1.84445
\(302\) −5.65685 + 5.65685i −0.325515 + 0.325515i
\(303\) 0 0
\(304\) 0 0
\(305\) 16.9706 + 5.65685i 0.971732 + 0.323911i
\(306\) 0 0
\(307\) −8.00000 8.00000i −0.456584 0.456584i 0.440948 0.897532i \(-0.354642\pi\)
−0.897532 + 0.440948i \(0.854642\pi\)
\(308\) −5.65685 5.65685i −0.322329 0.322329i
\(309\) 0 0
\(310\) 8.00000 4.00000i 0.454369 0.227185i
\(311\) 11.3137i 0.641542i −0.947157 0.320771i \(-0.896058\pi\)
0.947157 0.320771i \(-0.103942\pi\)
\(312\) 0 0
\(313\) 19.0000 19.0000i 1.07394 1.07394i 0.0769051 0.997038i \(-0.475496\pi\)
0.997038 0.0769051i \(-0.0245038\pi\)
\(314\) 7.07107 0.399043
\(315\) 0 0
\(316\) 12.0000 0.675053
\(317\) −19.7990 + 19.7990i −1.11202 + 1.11202i −0.119145 + 0.992877i \(0.538015\pi\)
−0.992877 + 0.119145i \(0.961985\pi\)
\(318\) 0 0
\(319\) 12.0000i 0.671871i
\(320\) −4.94975 + 14.8492i −0.276699 + 0.830098i
\(321\) 0 0
\(322\) 8.00000 + 8.00000i 0.445823 + 0.445823i
\(323\) 0 0
\(324\) 0 0
\(325\) 7.00000 1.00000i 0.388290 0.0554700i
\(326\) 11.3137i 0.626608i
\(327\) 0 0
\(328\) 3.00000 3.00000i 0.165647 0.165647i
\(329\) −22.6274 −1.24749
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) −2.82843 + 2.82843i −0.155230 + 0.155230i
\(333\) 0 0
\(334\) 20.0000i 1.09435i
\(335\) 5.65685 + 11.3137i 0.309067 + 0.618134i
\(336\) 0 0
\(337\) −5.00000 5.00000i −0.272367 0.272367i 0.557685 0.830053i \(-0.311690\pi\)
−0.830053 + 0.557685i \(0.811690\pi\)
\(338\) −7.77817 7.77817i −0.423077 0.423077i
\(339\) 0 0
\(340\) −4.00000 8.00000i −0.216930 0.433861i
\(341\) 11.3137i 0.612672i
\(342\) 0 0
\(343\) −12.0000 + 12.0000i −0.647939 + 0.647939i
\(344\) 33.9411 1.82998
\(345\) 0 0
\(346\) 14.0000 0.752645
\(347\) −11.3137 + 11.3137i −0.607352 + 0.607352i −0.942253 0.334901i \(-0.891297\pi\)
0.334901 + 0.942253i \(0.391297\pi\)
\(348\) 0 0
\(349\) 24.0000i 1.28469i 0.766415 + 0.642345i \(0.222038\pi\)
−0.766415 + 0.642345i \(0.777962\pi\)
\(350\) 11.3137 + 8.48528i 0.604743 + 0.453557i
\(351\) 0 0
\(352\) −10.0000 10.0000i −0.533002 0.533002i
\(353\) 2.82843 + 2.82843i 0.150542 + 0.150542i 0.778360 0.627818i \(-0.216052\pi\)
−0.627818 + 0.778360i \(0.716052\pi\)
\(354\) 0 0
\(355\) −4.00000 + 12.0000i −0.212298 + 0.636894i
\(356\) 12.7279i 0.674579i
\(357\) 0 0
\(358\) 18.0000 18.0000i 0.951330 0.951330i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 11.3137 11.3137i 0.594635 0.594635i
\(363\) 0 0
\(364\) 4.00000i 0.209657i
\(365\) 2.82843 1.41421i 0.148047 0.0740233i
\(366\) 0 0
\(367\) −2.00000 2.00000i −0.104399 0.104399i 0.652978 0.757377i \(-0.273519\pi\)
−0.757377 + 0.652978i \(0.773519\pi\)
\(368\) 2.82843 + 2.82843i 0.147442 + 0.147442i
\(369\) 0 0
\(370\) −3.00000 1.00000i −0.155963 0.0519875i
\(371\) 11.3137i 0.587378i
\(372\) 0 0
\(373\) −17.0000 + 17.0000i −0.880227 + 0.880227i −0.993557 0.113331i \(-0.963848\pi\)
0.113331 + 0.993557i \(0.463848\pi\)
\(374\) −11.3137 −0.585018
\(375\) 0 0
\(376\) −24.0000 −1.23771
\(377\) −4.24264 + 4.24264i −0.218507 + 0.218507i
\(378\) 0 0
\(379\) 36.0000i 1.84920i −0.380945 0.924598i \(-0.624401\pi\)
0.380945 0.924598i \(-0.375599\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −16.0000 16.0000i −0.818631 0.818631i
\(383\) −22.6274 22.6274i −1.15621 1.15621i −0.985284 0.170923i \(-0.945325\pi\)
−0.170923 0.985284i \(-0.554675\pi\)
\(384\) 0 0
\(385\) −16.0000 + 8.00000i −0.815436 + 0.407718i
\(386\) 1.41421i 0.0719816i
\(387\) 0 0
\(388\) 11.0000 11.0000i 0.558440 0.558440i
\(389\) −4.24264 −0.215110 −0.107555 0.994199i \(-0.534302\pi\)
−0.107555 + 0.994199i \(0.534302\pi\)
\(390\) 0 0
\(391\) −16.0000 −0.809155
\(392\) 2.12132 2.12132i 0.107143 0.107143i
\(393\) 0 0
\(394\) 14.0000i 0.705310i
\(395\) 8.48528 25.4558i 0.426941 1.28082i
\(396\) 0 0
\(397\) 19.0000 + 19.0000i 0.953583 + 0.953583i 0.998969 0.0453868i \(-0.0144520\pi\)
−0.0453868 + 0.998969i \(0.514452\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 4.00000 + 3.00000i 0.200000 + 0.150000i
\(401\) 24.0416i 1.20058i −0.799782 0.600291i \(-0.795051\pi\)
0.799782 0.600291i \(-0.204949\pi\)
\(402\) 0 0
\(403\) −4.00000 + 4.00000i −0.199254 + 0.199254i
\(404\) 15.5563 0.773957
\(405\) 0 0
\(406\) −12.0000 −0.595550
\(407\) 2.82843 2.82843i 0.140200 0.140200i
\(408\) 0 0
\(409\) 24.0000i 1.18672i −0.804936 0.593362i \(-0.797800\pi\)
0.804936 0.593362i \(-0.202200\pi\)
\(410\) −1.41421 2.82843i −0.0698430 0.139686i
\(411\) 0 0
\(412\) 10.0000 + 10.0000i 0.492665 + 0.492665i
\(413\) 16.9706 + 16.9706i 0.835067 + 0.835067i
\(414\) 0 0
\(415\) 4.00000 + 8.00000i 0.196352 + 0.392705i
\(416\) 7.07107i 0.346688i
\(417\) 0 0
\(418\) 0 0
\(419\) −8.48528 −0.414533 −0.207267 0.978285i \(-0.566457\pi\)
−0.207267 + 0.978285i \(0.566457\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 2.82843 2.82843i 0.137686 0.137686i
\(423\) 0 0
\(424\) 12.0000i 0.582772i
\(425\) −19.7990 + 2.82843i −0.960392 + 0.137199i
\(426\) 0 0
\(427\) −16.0000 16.0000i −0.774294 0.774294i
\(428\) −2.82843 2.82843i −0.136717 0.136717i
\(429\) 0 0
\(430\) 8.00000 24.0000i 0.385794 1.15738i
\(431\) 5.65685i 0.272481i 0.990676 + 0.136241i \(0.0435020\pi\)
−0.990676 + 0.136241i \(0.956498\pi\)
\(432\) 0 0
\(433\) −17.0000 + 17.0000i −0.816968 + 0.816968i −0.985668 0.168700i \(-0.946043\pi\)
0.168700 + 0.985668i \(0.446043\pi\)
\(434\) −11.3137 −0.543075
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 24.0000i 1.14546i 0.819745 + 0.572729i \(0.194115\pi\)
−0.819745 + 0.572729i \(0.805885\pi\)
\(440\) −16.9706 + 8.48528i −0.809040 + 0.404520i
\(441\) 0 0
\(442\) −4.00000 4.00000i −0.190261 0.190261i
\(443\) 28.2843 + 28.2843i 1.34383 + 1.34383i 0.892215 + 0.451612i \(0.149151\pi\)
0.451612 + 0.892215i \(0.350849\pi\)
\(444\) 0 0
\(445\) 27.0000 + 9.00000i 1.27992 + 0.426641i
\(446\) 14.1421i 0.669650i
\(447\) 0 0
\(448\) 14.0000 14.0000i 0.661438 0.661438i
\(449\) 12.7279 0.600668 0.300334 0.953834i \(-0.402902\pi\)
0.300334 + 0.953834i \(0.402902\pi\)
\(450\) 0 0
\(451\) 4.00000 0.188353
\(452\) 9.89949 9.89949i 0.465633 0.465633i
\(453\) 0 0
\(454\) 8.00000i 0.375459i
\(455\) −8.48528 2.82843i −0.397796 0.132599i
\(456\) 0 0
\(457\) 25.0000 + 25.0000i 1.16945 + 1.16945i 0.982339 + 0.187112i \(0.0599128\pi\)
0.187112 + 0.982339i \(0.440087\pi\)
\(458\) 4.24264 + 4.24264i 0.198246 + 0.198246i
\(459\) 0 0
\(460\) −8.00000 + 4.00000i −0.373002 + 0.186501i
\(461\) 9.89949i 0.461065i 0.973065 + 0.230533i \(0.0740469\pi\)
−0.973065 + 0.230533i \(0.925953\pi\)
\(462\) 0 0
\(463\) 10.0000 10.0000i 0.464739 0.464739i −0.435466 0.900205i \(-0.643416\pi\)
0.900205 + 0.435466i \(0.143416\pi\)
\(464\) −4.24264 −0.196960
\(465\) 0 0
\(466\) −4.00000 −0.185296
\(467\) −2.82843 + 2.82843i −0.130884 + 0.130884i −0.769514 0.638630i \(-0.779501\pi\)
0.638630 + 0.769514i \(0.279501\pi\)
\(468\) 0 0
\(469\) 16.0000i 0.738811i
\(470\) −5.65685 + 16.9706i −0.260931 + 0.782794i
\(471\) 0 0
\(472\) 18.0000 + 18.0000i 0.828517 + 0.828517i
\(473\) 22.6274 + 22.6274i 1.04041 + 1.04041i
\(474\) 0 0
\(475\) 0 0
\(476\) 11.3137i 0.518563i
\(477\) 0 0
\(478\) −12.0000 + 12.0000i −0.548867 + 0.548867i
\(479\) −16.9706 −0.775405 −0.387702 0.921785i \(-0.626731\pi\)
−0.387702 + 0.921785i \(0.626731\pi\)
\(480\) 0 0
\(481\) 2.00000 0.0911922
\(482\) 7.07107 7.07107i 0.322078 0.322078i
\(483\) 0 0
\(484\) 3.00000i 0.136364i
\(485\) −15.5563 31.1127i −0.706377 1.41275i
\(486\) 0 0
\(487\) 10.0000 + 10.0000i 0.453143 + 0.453143i 0.896396 0.443253i \(-0.146176\pi\)
−0.443253 + 0.896396i \(0.646176\pi\)
\(488\) −16.9706 16.9706i −0.768221 0.768221i
\(489\) 0 0
\(490\) −1.00000 2.00000i −0.0451754 0.0903508i
\(491\) 14.1421i 0.638226i 0.947717 + 0.319113i \(0.103385\pi\)
−0.947717 + 0.319113i \(0.896615\pi\)
\(492\) 0 0
\(493\) 12.0000 12.0000i 0.540453 0.540453i
\(494\) 0 0
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) 11.3137 11.3137i 0.507489 0.507489i
\(498\) 0 0
\(499\) 24.0000i 1.07439i −0.843459 0.537194i \(-0.819484\pi\)
0.843459 0.537194i \(-0.180516\pi\)
\(500\) −9.19239 + 6.36396i −0.411096 + 0.284605i
\(501\) 0 0
\(502\) 14.0000 + 14.0000i 0.624851 + 0.624851i
\(503\) −22.6274 22.6274i −1.00891 1.00891i −0.999960 0.00894668i \(-0.997152\pi\)
−0.00894668 0.999960i \(-0.502848\pi\)
\(504\) 0 0
\(505\) 11.0000 33.0000i 0.489494 1.46848i
\(506\) 11.3137i 0.502956i
\(507\) 0 0
\(508\) −10.0000 + 10.0000i −0.443678 + 0.443678i
\(509\) 4.24264 0.188052 0.0940259 0.995570i \(-0.470026\pi\)
0.0940259 + 0.995570i \(0.470026\pi\)
\(510\) 0 0
\(511\) −4.00000 −0.176950
\(512\) 7.77817 7.77817i 0.343750 0.343750i
\(513\) 0 0
\(514\) 2.00000i 0.0882162i
\(515\) 28.2843 14.1421i 1.24635 0.623177i
\(516\) 0 0
\(517\) −16.0000 16.0000i −0.703679 0.703679i
\(518\) 2.82843 + 2.82843i 0.124274 + 0.124274i
\(519\) 0 0
\(520\) −9.00000 3.00000i −0.394676 0.131559i
\(521\) 18.3848i 0.805452i 0.915321 + 0.402726i \(0.131937\pi\)
−0.915321 + 0.402726i \(0.868063\pi\)
\(522\) 0 0
\(523\) −8.00000 + 8.00000i −0.349816 + 0.349816i −0.860041 0.510225i \(-0.829562\pi\)
0.510225 + 0.860041i \(0.329562\pi\)
\(524\) −14.1421 −0.617802
\(525\) 0 0
\(526\) −4.00000 −0.174408
\(527\) 11.3137 11.3137i 0.492833 0.492833i
\(528\) 0 0
\(529\) 7.00000i 0.304348i
\(530\) −8.48528 2.82843i −0.368577 0.122859i
\(531\) 0 0
\(532\) 0 0
\(533\) 1.41421 + 1.41421i 0.0612564 + 0.0612564i
\(534\) 0 0
\(535\) −8.00000 + 4.00000i −0.345870 + 0.172935i
\(536\) 16.9706i 0.733017i
\(537\) 0 0
\(538\) −9.00000 + 9.00000i −0.388018 + 0.388018i
\(539\) 2.82843 0.121829
\(540\) 0 0
\(541\) −16.0000 −0.687894 −0.343947 0.938989i \(-0.611764\pi\)
−0.343947 + 0.938989i \(0.611764\pi\)
\(542\) 11.3137 11.3137i 0.485965 0.485965i
\(543\) 0 0
\(544\) 20.0000i 0.857493i
\(545\) 0 0
\(546\) 0 0
\(547\) −20.0000 20.0000i −0.855138 0.855138i 0.135622 0.990761i \(-0.456697\pi\)
−0.990761 + 0.135622i \(0.956697\pi\)
\(548\) −7.07107 7.07107i −0.302061 0.302061i
\(549\) 0 0
\(550\) 2.00000 + 14.0000i 0.0852803 + 0.596962i
\(551\) 0 0
\(552\) 0 0
\(553\) −24.0000 + 24.0000i −1.02058 + 1.02058i
\(554\) 15.5563 0.660926
\(555\) 0 0
\(556\) −12.0000 −0.508913
\(557\) −2.82843 + 2.82843i −0.119844 + 0.119844i −0.764485 0.644641i \(-0.777007\pi\)
0.644641 + 0.764485i \(0.277007\pi\)
\(558\) 0 0
\(559\) 16.0000i 0.676728i
\(560\) −2.82843 5.65685i −0.119523 0.239046i
\(561\) 0 0
\(562\) −7.00000 7.00000i −0.295277 0.295277i
\(563\) 28.2843 + 28.2843i 1.19204 + 1.19204i 0.976494 + 0.215546i \(0.0691532\pi\)
0.215546 + 0.976494i \(0.430847\pi\)
\(564\) 0 0
\(565\) −14.0000 28.0000i −0.588984 1.17797i
\(566\) 11.3137i 0.475551i
\(567\) 0 0
\(568\) 12.0000 12.0000i 0.503509 0.503509i
\(569\) −29.6985 −1.24503 −0.622513 0.782610i \(-0.713888\pi\)
−0.622513 + 0.782610i \(0.713888\pi\)
\(570\) 0 0
\(571\) 32.0000 1.33916 0.669579 0.742741i \(-0.266474\pi\)
0.669579 + 0.742741i \(0.266474\pi\)
\(572\) 2.82843 2.82843i 0.118262 0.118262i
\(573\) 0 0
\(574\) 4.00000i 0.166957i
\(575\) 2.82843 + 19.7990i 0.117954 + 0.825675i
\(576\) 0 0
\(577\) −17.0000 17.0000i −0.707719 0.707719i 0.258336 0.966055i \(-0.416826\pi\)
−0.966055 + 0.258336i \(0.916826\pi\)
\(578\) −0.707107 0.707107i −0.0294118 0.0294118i
\(579\) 0 0
\(580\) 3.00000 9.00000i 0.124568 0.373705i
\(581\) 11.3137i 0.469372i
\(582\) 0 0
\(583\) 8.00000 8.00000i 0.331326 0.331326i
\(584\) −4.24264 −0.175562
\(585\) 0 0
\(586\) 14.0000 0.578335
\(587\) −19.7990 + 19.7990i −0.817192 + 0.817192i −0.985700 0.168508i \(-0.946105\pi\)
0.168508 + 0.985700i \(0.446105\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 16.9706 8.48528i 0.698667 0.349334i
\(591\) 0 0
\(592\) 1.00000 + 1.00000i 0.0410997 + 0.0410997i
\(593\) −9.89949 9.89949i −0.406524 0.406524i 0.474001 0.880524i \(-0.342809\pi\)
−0.880524 + 0.474001i \(0.842809\pi\)
\(594\) 0 0
\(595\) 24.0000 + 8.00000i 0.983904 + 0.327968i
\(596\) 4.24264i 0.173785i
\(597\) 0 0
\(598\) −4.00000 + 4.00000i −0.163572 + 0.163572i
\(599\) 16.9706 0.693398 0.346699 0.937976i \(-0.387302\pi\)
0.346699 + 0.937976i \(0.387302\pi\)
\(600\) 0 0
\(601\) 8.00000 0.326327 0.163163 0.986599i \(-0.447830\pi\)
0.163163 + 0.986599i \(0.447830\pi\)
\(602\) −22.6274 + 22.6274i −0.922225 + 0.922225i
\(603\) 0 0
\(604\) 8.00000i 0.325515i
\(605\) 6.36396 + 2.12132i 0.258732 + 0.0862439i
\(606\) 0 0
\(607\) 22.0000 + 22.0000i 0.892952 + 0.892952i 0.994800 0.101848i \(-0.0324754\pi\)
−0.101848 + 0.994800i \(0.532475\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −16.0000 + 8.00000i −0.647821 + 0.323911i
\(611\) 11.3137i 0.457704i
\(612\) 0 0
\(613\) 1.00000 1.00000i 0.0403896 0.0403896i −0.686624 0.727013i \(-0.740908\pi\)
0.727013 + 0.686624i \(0.240908\pi\)
\(614\) 11.3137 0.456584
\(615\) 0 0
\(616\) 24.0000 0.966988
\(617\) 14.1421 14.1421i 0.569341 0.569341i −0.362603 0.931944i \(-0.618112\pi\)
0.931944 + 0.362603i \(0.118112\pi\)
\(618\) 0 0
\(619\) 12.0000i 0.482321i −0.970485 0.241160i \(-0.922472\pi\)
0.970485 0.241160i \(-0.0775280\pi\)
\(620\) 2.82843 8.48528i 0.113592 0.340777i
\(621\) 0 0
\(622\) 8.00000 + 8.00000i 0.320771 + 0.320771i
\(623\) −25.4558 25.4558i −1.01987 1.01987i
\(624\) 0 0
\(625\) 7.00000 + 24.0000i 0.280000 + 0.960000i
\(626\) 26.8701i 1.07394i
\(627\) 0 0
\(628\) 5.00000 5.00000i 0.199522 0.199522i
\(629\) −5.65685 −0.225554
\(630\) 0 0
\(631\) 20.0000 0.796187 0.398094 0.917345i \(-0.369672\pi\)
0.398094 + 0.917345i \(0.369672\pi\)
\(632\) −25.4558 + 25.4558i −1.01258 + 1.01258i
\(633\) 0 0
\(634\) 28.0000i 1.11202i
\(635\) 14.1421 + 28.2843i 0.561214 + 1.12243i
\(636\) 0 0
\(637\) 1.00000 + 1.00000i 0.0396214 + 0.0396214i
\(638\) −8.48528 8.48528i −0.335936 0.335936i
\(639\) 0 0
\(640\) 3.00000 + 6.00000i 0.118585 + 0.237171i
\(641\) 15.5563i 0.614439i −0.951639 0.307219i \(-0.900601\pi\)
0.951639 0.307219i \(-0.0993986\pi\)
\(642\) 0 0
\(643\) 28.0000 28.0000i 1.10421 1.10421i 0.110316 0.993897i \(-0.464814\pi\)
0.993897 0.110316i \(-0.0351862\pi\)
\(644\) 11.3137 0.445823
\(645\) 0 0
\(646\) 0 0
\(647\) −28.2843 + 28.2843i −1.11197 + 1.11197i −0.119085 + 0.992884i \(0.537996\pi\)
−0.992884 + 0.119085i \(0.962004\pi\)
\(648\) 0 0
\(649\) 24.0000i 0.942082i
\(650\) −4.24264 + 5.65685i −0.166410 + 0.221880i
\(651\) 0 0
\(652\) −8.00000 8.00000i −0.313304 0.313304i
\(653\) 2.82843 + 2.82843i 0.110685 + 0.110685i 0.760280 0.649595i \(-0.225062\pi\)
−0.649595 + 0.760280i \(0.725062\pi\)
\(654\) 0 0
\(655\) −10.0000 + 30.0000i −0.390732 + 1.17220i
\(656\) 1.41421i 0.0552158i
\(657\) 0 0
\(658\) 16.0000 16.0000i 0.623745 0.623745i
\(659\) 8.48528 0.330540 0.165270 0.986248i \(-0.447151\pi\)
0.165270 + 0.986248i \(0.447151\pi\)
\(660\) 0 0
\(661\) −40.0000 −1.55582 −0.777910 0.628376i \(-0.783720\pi\)
−0.777910 + 0.628376i \(0.783720\pi\)
\(662\) −5.65685 + 5.65685i −0.219860 + 0.219860i
\(663\) 0 0
\(664\) 12.0000i 0.465690i
\(665\) 0 0
\(666\) 0 0
\(667\) −12.0000 12.0000i −0.464642 0.464642i
\(668\) 14.1421 + 14.1421i 0.547176 + 0.547176i
\(669\) 0 0
\(670\) −12.0000 4.00000i −0.463600 0.154533i
\(671\) 22.6274i 0.873522i
\(672\) 0 0
\(673\) 1.00000 1.00000i 0.0385472 0.0385472i −0.687570 0.726118i \(-0.741323\pi\)
0.726118 + 0.687570i \(0.241323\pi\)
\(674\) 7.07107 0.272367
\(675\) 0 0
\(676\) −11.0000 −0.423077
\(677\) 31.1127 31.1127i 1.19576 1.19576i 0.220334 0.975425i \(-0.429285\pi\)
0.975425 0.220334i \(-0.0707146\pi\)
\(678\) 0 0
\(679\) 44.0000i 1.68857i
\(680\) 25.4558 + 8.48528i 0.976187 + 0.325396i
\(681\) 0 0
\(682\) −8.00000 8.00000i −0.306336 0.306336i
\(683\) 2.82843 + 2.82843i 0.108227 + 0.108227i 0.759147 0.650920i \(-0.225617\pi\)
−0.650920 + 0.759147i \(0.725617\pi\)
\(684\) 0 0
\(685\) −20.0000 + 10.0000i −0.764161 + 0.382080i
\(686\) 16.9706i 0.647939i
\(687\) 0 0
\(688\) −8.00000 + 8.00000i −0.304997 + 0.304997i
\(689\) 5.65685 0.215509
\(690\) 0 0
\(691\) 8.00000 0.304334 0.152167 0.988355i \(-0.451375\pi\)
0.152167 + 0.988355i \(0.451375\pi\)
\(692\) 9.89949 9.89949i 0.376322 0.376322i
\(693\) 0 0
\(694\) 16.0000i 0.607352i
\(695\) −8.48528 + 25.4558i −0.321865 + 0.965595i
\(696\) 0 0
\(697\) −4.00000 4.00000i −0.151511 0.151511i
\(698\) −16.9706 16.9706i −0.642345 0.642345i
\(699\) 0 0
\(700\) 14.0000 2.00000i 0.529150 0.0755929i
\(701\) 7.07107i 0.267071i −0.991044 0.133535i \(-0.957367\pi\)
0.991044 0.133535i \(-0.0426329\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 19.7990 0.746203
\(705\) 0 0
\(706\) −4.00000 −0.150542
\(707\) −31.1127 + 31.1127i −1.17011 + 1.17011i
\(708\) 0 0
\(709\) 6.00000i 0.225335i 0.993633 + 0.112667i \(0.0359394\pi\)
−0.993633 + 0.112667i \(0.964061\pi\)
\(710\) −5.65685 11.3137i −0.212298 0.424596i
\(711\) 0 0
\(712\) −27.0000 27.0000i −1.01187 1.01187i
\(713\) −11.3137 11.3137i −0.423702 0.423702i
\(714\) 0 0
\(715\) −4.00000 8.00000i −0.149592 0.299183i
\(716\) 25.4558i 0.951330i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −40.0000 −1.48968
\(722\) −13.4350 + 13.4350i −0.500000 + 0.500000i
\(723\) 0 0
\(724\) 16.0000i 0.594635i
\(725\) −16.9706 12.7279i −0.630271 0.472703i
\(726\) 0 0
\(727\) −2.00000 2.00000i −0.0741759 0.0741759i 0.669046 0.743221i \(-0.266703\pi\)
−0.743221 + 0.669046i \(0.766703\pi\)
\(728\) 8.48528 + 8.48528i 0.314485 + 0.314485i
\(729\) 0 0
\(730\) −1.00000 + 3.00000i −0.0370117 + 0.111035i
\(731\) 45.2548i 1.67381i
\(732\) 0 0
\(733\) 1.00000 1.00000i 0.0369358 0.0369358i −0.688398 0.725333i \(-0.741686\pi\)
0.725333 + 0.688398i \(0.241686\pi\)
\(734\) 2.82843 0.104399
\(735\) 0 0
\(736\) 20.0000 0.737210
\(737\) 11.3137 11.3137i 0.416746 0.416746i
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) −2.82843 + 1.41421i −0.103975 + 0.0519875i
\(741\) 0 0
\(742\) 8.00000 + 8.00000i 0.293689 + 0.293689i
\(743\) −22.6274 22.6274i −0.830119 0.830119i 0.157413 0.987533i \(-0.449684\pi\)
−0.987533 + 0.157413i \(0.949684\pi\)
\(744\) 0 0
\(745\) 9.00000 + 3.00000i 0.329734 + 0.109911i
\(746\) 24.0416i 0.880227i
\(747\) 0 0
\(748\) −8.00000 + 8.00000i −0.292509 + 0.292509i
\(749\) 11.3137 0.413394
\(750\) 0 0
\(751\) −4.00000 −0.145962 −0.0729810 0.997333i \(-0.523251\pi\)
−0.0729810 + 0.997333i \(0.523251\pi\)
\(752\) 5.65685 5.65685i 0.206284 0.206284i
\(753\) 0 0
\(754\) 6.00000i 0.218507i
\(755\) 16.9706 + 5.65685i 0.617622 + 0.205874i
\(756\) 0 0
\(757\) 19.0000 + 19.0000i 0.690567 + 0.690567i 0.962357 0.271790i \(-0.0876156\pi\)
−0.271790 + 0.962357i \(0.587616\pi\)
\(758\) 25.4558 + 25.4558i 0.924598 + 0.924598i
\(759\) 0 0
\(760\) 0 0
\(761\) 52.3259i 1.89681i 0.317058 + 0.948406i \(0.397305\pi\)
−0.317058 + 0.948406i \(0.602695\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −22.6274 −0.818631
\(765\) 0 0
\(766\) 32.0000 1.15621
\(767\) −8.48528 + 8.48528i −0.306386 + 0.306386i
\(768\) 0 0
\(769\) 24.0000i 0.865462i −0.901523 0.432731i \(-0.857550\pi\)
0.901523 0.432731i \(-0.142450\pi\)
\(770\) 5.65685 16.9706i 0.203859 0.611577i
\(771\) 0 0
\(772\) 1.00000 + 1.00000i 0.0359908 + 0.0359908i
\(773\) 2.82843 + 2.82843i 0.101731 + 0.101731i 0.756141 0.654409i \(-0.227083\pi\)
−0.654409 + 0.756141i \(0.727083\pi\)
\(774\) 0 0
\(775\) −16.0000 12.0000i −0.574737 0.431053i
\(776\) 46.6690i 1.67532i
\(777\) 0 0
\(778\) 3.00000 3.00000i 0.107555 0.107555i
\(779\) 0 0
\(780\) 0 0
\(781\) 16.0000 0.572525
\(782\) 11.3137 11.3137i 0.404577 0.404577i
\(783\) 0 0
\(784\) 1.00000i 0.0357143i
\(785\) −7.07107 14.1421i −0.252377 0.504754i
\(786\) 0 0