Properties

Label 45.2.f
Level $45$
Weight $2$
Character orbit 45.f
Rep. character $\chi_{45}(8,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $4$
Newform subspaces $1$
Sturm bound $12$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 45.f (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(12\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(45, [\chi])\).

Total New Old
Modular forms 20 4 16
Cusp forms 4 4 0
Eisenstein series 16 0 16

Trace form

\( 4 q - 8 q^{7} + O(q^{10}) \) \( 4 q - 8 q^{7} - 8 q^{10} + 4 q^{13} + 4 q^{16} + 8 q^{22} + 16 q^{25} + 8 q^{28} - 16 q^{31} + 4 q^{37} - 12 q^{40} - 32 q^{43} - 16 q^{46} + 4 q^{52} + 8 q^{55} + 12 q^{58} + 32 q^{61} + 16 q^{67} + 24 q^{70} + 4 q^{73} - 4 q^{82} - 32 q^{85} - 24 q^{88} - 16 q^{91} - 44 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(45, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
45.2.f.a 45.f 15.e $4$ $0.359$ \(\Q(\zeta_{8})\) None 45.2.f.a \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{4}]$ \(q+\zeta_{8}q^{2}-\zeta_{8}^{2}q^{4}+(-\zeta_{8}+2\zeta_{8}^{3})q^{5}+\cdots\)