Properties

Label 45.2.e.b.31.3
Level $45$
Weight $2$
Character 45.31
Analytic conductor $0.359$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,2,Mod(16,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.16");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 45.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.359326809096\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.954288.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 2x^{4} + 3x^{3} - 6x^{2} - 9x + 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 31.3
Root \(1.71903 - 0.211943i\) of defining polynomial
Character \(\chi\) \(=\) 45.31
Dual form 45.2.e.b.16.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.04307 + 1.80664i) q^{2} +(-1.04307 - 1.38276i) q^{3} +(-1.17597 + 2.03684i) q^{4} +(-0.500000 + 0.866025i) q^{5} +(1.41016 - 3.32675i) q^{6} +(-2.04307 - 3.53869i) q^{7} -0.734191 q^{8} +(-0.824030 + 2.88461i) q^{9} +O(q^{10})\) \(q+(1.04307 + 1.80664i) q^{2} +(-1.04307 - 1.38276i) q^{3} +(-1.17597 + 2.03684i) q^{4} +(-0.500000 + 0.866025i) q^{5} +(1.41016 - 3.32675i) q^{6} +(-2.04307 - 3.53869i) q^{7} -0.734191 q^{8} +(-0.824030 + 2.88461i) q^{9} -2.08613 q^{10} +(0.675970 + 1.17081i) q^{11} +(4.04307 - 0.498476i) q^{12} +(-0.324030 + 0.561237i) q^{13} +(4.26210 - 7.38217i) q^{14} +(1.71903 - 0.211943i) q^{15} +(1.58613 + 2.74726i) q^{16} -1.35194 q^{17} +(-6.07097 + 1.52011i) q^{18} +0.648061 q^{19} +(-1.17597 - 2.03684i) q^{20} +(-2.76210 + 6.51615i) q^{21} +(-1.41016 + 2.44247i) q^{22} +(-2.39500 + 4.14827i) q^{23} +(0.765809 + 1.01521i) q^{24} +(-0.500000 - 0.866025i) q^{25} -1.35194 q^{26} +(4.84823 - 1.86940i) q^{27} +9.61033 q^{28} +(-1.93807 - 3.35683i) q^{29} +(2.17597 + 2.88461i) q^{30} +(3.84823 - 6.66533i) q^{31} +(-4.04307 + 7.00279i) q^{32} +(0.913870 - 2.15594i) q^{33} +(-1.41016 - 2.44247i) q^{34} +4.08613 q^{35} +(-4.90645 - 5.07063i) q^{36} +7.52420 q^{37} +(0.675970 + 1.17081i) q^{38} +(1.11404 - 0.137352i) q^{39} +(0.367095 - 0.635828i) q^{40} +(0.0898394 - 0.155606i) q^{41} +(-14.6534 + 1.80664i) q^{42} +(0.410161 + 0.710419i) q^{43} -3.17968 q^{44} +(-2.08613 - 2.15594i) q^{45} -9.99258 q^{46} +(-5.45323 - 9.44526i) q^{47} +(2.14435 - 5.05880i) q^{48} +(-4.84823 + 8.39738i) q^{49} +(1.04307 - 1.80664i) q^{50} +(1.41016 + 1.86940i) q^{51} +(-0.762100 - 1.32000i) q^{52} +4.17226 q^{53} +(8.43436 + 6.80911i) q^{54} -1.35194 q^{55} +(1.50000 + 2.59808i) q^{56} +(-0.675970 - 0.896110i) q^{57} +(4.04307 - 7.00279i) q^{58} +(-2.08613 + 3.61328i) q^{59} +(-1.58984 + 3.75064i) q^{60} +(1.91016 + 3.30850i) q^{61} +16.0558 q^{62} +(11.8913 - 2.97746i) q^{63} -10.5242 q^{64} +(-0.324030 - 0.561237i) q^{65} +(4.84823 - 0.597746i) q^{66} +(-4.07097 + 7.05113i) q^{67} +(1.58984 - 2.75368i) q^{68} +(8.23419 - 1.01521i) q^{69} +(4.26210 + 7.38217i) q^{70} -6.11644 q^{71} +(0.604996 - 2.11785i) q^{72} -12.3445 q^{73} +(7.84823 + 13.5935i) q^{74} +(-0.675970 + 1.59470i) q^{75} +(-0.762100 + 1.32000i) q^{76} +(2.76210 - 4.78410i) q^{77} +(1.41016 + 1.86940i) q^{78} +(-5.17226 - 8.95862i) q^{79} -3.17226 q^{80} +(-7.64195 - 4.75401i) q^{81} +0.374833 q^{82} +(6.12920 + 10.6161i) q^{83} +(-10.0242 - 13.2887i) q^{84} +(0.675970 - 1.17081i) q^{85} +(-0.855648 + 1.48203i) q^{86} +(-2.62015 + 6.18127i) q^{87} +(-0.496291 - 0.859601i) q^{88} -3.00000 q^{89} +(1.71903 - 6.01767i) q^{90} +2.64806 q^{91} +(-5.63290 - 9.75648i) q^{92} +(-13.2305 + 1.63121i) q^{93} +(11.3761 - 19.7041i) q^{94} +(-0.324030 + 0.561237i) q^{95} +(13.9003 - 1.71380i) q^{96} +(6.79001 + 11.7606i) q^{97} -20.2281 q^{98} +(-3.93436 + 0.985122i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{2} + q^{3} - 5 q^{4} - 3 q^{5} - 4 q^{6} - 5 q^{7} + 6 q^{8} - 7 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - q^{2} + q^{3} - 5 q^{4} - 3 q^{5} - 4 q^{6} - 5 q^{7} + 6 q^{8} - 7 q^{9} + 2 q^{10} + 2 q^{11} + 17 q^{12} - 4 q^{13} + 9 q^{14} + q^{15} - 5 q^{16} - 4 q^{17} - 23 q^{18} + 8 q^{19} - 5 q^{20} + 4 q^{22} - 3 q^{23} + 15 q^{24} - 3 q^{25} - 4 q^{26} - 2 q^{27} + 10 q^{28} + 7 q^{29} + 11 q^{30} - 8 q^{31} - 17 q^{32} + 20 q^{33} + 4 q^{34} + 10 q^{35} + 10 q^{36} + 12 q^{37} + 2 q^{38} - 14 q^{39} - 3 q^{40} + 13 q^{41} - 33 q^{42} - 10 q^{43} - 44 q^{44} + 2 q^{45} - 6 q^{46} - 13 q^{47} - 10 q^{48} + 2 q^{49} - q^{50} - 4 q^{51} + 12 q^{52} - 4 q^{53} + 5 q^{54} - 4 q^{55} + 9 q^{56} - 2 q^{57} + 17 q^{58} + 2 q^{59} - 22 q^{60} - q^{61} + 84 q^{62} + 33 q^{63} - 30 q^{64} - 4 q^{65} - 2 q^{66} - 11 q^{67} + 22 q^{68} + 39 q^{69} + 9 q^{70} - 20 q^{71} + 15 q^{72} - 16 q^{73} + 16 q^{74} - 2 q^{75} + 12 q^{76} - 4 q^{78} - 2 q^{79} + 10 q^{80} - 19 q^{81} - 58 q^{82} + 15 q^{83} - 27 q^{84} + 2 q^{85} - 28 q^{86} - 26 q^{87} + 24 q^{88} - 18 q^{89} + q^{90} + 20 q^{91} - 39 q^{92} - 42 q^{93} + 31 q^{94} - 4 q^{95} + 13 q^{96} + 18 q^{97} - 80 q^{98} + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.04307 + 1.80664i 0.737558 + 1.27749i 0.953592 + 0.301103i \(0.0973547\pi\)
−0.216033 + 0.976386i \(0.569312\pi\)
\(3\) −1.04307 1.38276i −0.602214 0.798335i
\(4\) −1.17597 + 2.03684i −0.587985 + 1.01842i
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 1.41016 3.32675i 0.575696 1.35814i
\(7\) −2.04307 3.53869i −0.772206 1.33750i −0.936351 0.351064i \(-0.885820\pi\)
0.164145 0.986436i \(-0.447513\pi\)
\(8\) −0.734191 −0.259576
\(9\) −0.824030 + 2.88461i −0.274677 + 0.961537i
\(10\) −2.08613 −0.659692
\(11\) 0.675970 + 1.17081i 0.203813 + 0.353014i 0.949754 0.312998i \(-0.101333\pi\)
−0.745941 + 0.666012i \(0.768000\pi\)
\(12\) 4.04307 0.498476i 1.16713 0.143898i
\(13\) −0.324030 + 0.561237i −0.0898699 + 0.155659i −0.907456 0.420147i \(-0.861978\pi\)
0.817586 + 0.575806i \(0.195312\pi\)
\(14\) 4.26210 7.38217i 1.13909 1.97297i
\(15\) 1.71903 0.211943i 0.443853 0.0547234i
\(16\) 1.58613 + 2.74726i 0.396533 + 0.686815i
\(17\) −1.35194 −0.327893 −0.163947 0.986469i \(-0.552423\pi\)
−0.163947 + 0.986469i \(0.552423\pi\)
\(18\) −6.07097 + 1.52011i −1.43094 + 0.358293i
\(19\) 0.648061 0.148675 0.0743377 0.997233i \(-0.476316\pi\)
0.0743377 + 0.997233i \(0.476316\pi\)
\(20\) −1.17597 2.03684i −0.262955 0.455451i
\(21\) −2.76210 + 6.51615i −0.602740 + 1.42194i
\(22\) −1.41016 + 2.44247i −0.300647 + 0.520736i
\(23\) −2.39500 + 4.14827i −0.499393 + 0.864974i −1.00000 0.000700856i \(-0.999777\pi\)
0.500607 + 0.865675i \(0.333110\pi\)
\(24\) 0.765809 + 1.01521i 0.156320 + 0.207228i
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) −1.35194 −0.265137
\(27\) 4.84823 1.86940i 0.933042 0.359767i
\(28\) 9.61033 1.81618
\(29\) −1.93807 3.35683i −0.359890 0.623349i 0.628052 0.778172i \(-0.283853\pi\)
−0.987942 + 0.154823i \(0.950519\pi\)
\(30\) 2.17597 + 2.88461i 0.397276 + 0.526655i
\(31\) 3.84823 6.66533i 0.691163 1.19713i −0.280295 0.959914i \(-0.590432\pi\)
0.971457 0.237215i \(-0.0762345\pi\)
\(32\) −4.04307 + 7.00279i −0.714720 + 1.23793i
\(33\) 0.913870 2.15594i 0.159084 0.375300i
\(34\) −1.41016 2.44247i −0.241841 0.418880i
\(35\) 4.08613 0.690682
\(36\) −4.90645 5.07063i −0.817742 0.845105i
\(37\) 7.52420 1.23697 0.618485 0.785796i \(-0.287747\pi\)
0.618485 + 0.785796i \(0.287747\pi\)
\(38\) 0.675970 + 1.17081i 0.109657 + 0.189931i
\(39\) 1.11404 0.137352i 0.178389 0.0219939i
\(40\) 0.367095 0.635828i 0.0580429 0.100533i
\(41\) 0.0898394 0.155606i 0.0140306 0.0243016i −0.858925 0.512102i \(-0.828867\pi\)
0.872955 + 0.487800i \(0.162200\pi\)
\(42\) −14.6534 + 1.80664i −2.26107 + 0.278771i
\(43\) 0.410161 + 0.710419i 0.0625489 + 0.108338i 0.895604 0.444852i \(-0.146744\pi\)
−0.833055 + 0.553190i \(0.813410\pi\)
\(44\) −3.17968 −0.479355
\(45\) −2.08613 2.15594i −0.310982 0.321388i
\(46\) −9.99258 −1.47333
\(47\) −5.45323 9.44526i −0.795435 1.37773i −0.922563 0.385847i \(-0.873909\pi\)
0.127128 0.991886i \(-0.459424\pi\)
\(48\) 2.14435 5.05880i 0.309510 0.730175i
\(49\) −4.84823 + 8.39738i −0.692604 + 1.19963i
\(50\) 1.04307 1.80664i 0.147512 0.255498i
\(51\) 1.41016 + 1.86940i 0.197462 + 0.261769i
\(52\) −0.762100 1.32000i −0.105684 0.183050i
\(53\) 4.17226 0.573104 0.286552 0.958065i \(-0.407491\pi\)
0.286552 + 0.958065i \(0.407491\pi\)
\(54\) 8.43436 + 6.80911i 1.14777 + 0.926602i
\(55\) −1.35194 −0.182295
\(56\) 1.50000 + 2.59808i 0.200446 + 0.347183i
\(57\) −0.675970 0.896110i −0.0895344 0.118693i
\(58\) 4.04307 7.00279i 0.530880 0.919512i
\(59\) −2.08613 + 3.61328i −0.271591 + 0.470409i −0.969269 0.246002i \(-0.920883\pi\)
0.697678 + 0.716411i \(0.254216\pi\)
\(60\) −1.58984 + 3.75064i −0.205247 + 0.484205i
\(61\) 1.91016 + 3.30850i 0.244571 + 0.423609i 0.962011 0.273011i \(-0.0880195\pi\)
−0.717440 + 0.696620i \(0.754686\pi\)
\(62\) 16.0558 2.03909
\(63\) 11.8913 2.97746i 1.49816 0.375124i
\(64\) −10.5242 −1.31552
\(65\) −0.324030 0.561237i −0.0401910 0.0696129i
\(66\) 4.84823 0.597746i 0.596776 0.0735775i
\(67\) −4.07097 + 7.05113i −0.497349 + 0.861433i −0.999995 0.00305885i \(-0.999026\pi\)
0.502647 + 0.864492i \(0.332360\pi\)
\(68\) 1.58984 2.75368i 0.192796 0.333933i
\(69\) 8.23419 1.01521i 0.991280 0.122217i
\(70\) 4.26210 + 7.38217i 0.509418 + 0.882338i
\(71\) −6.11644 −0.725888 −0.362944 0.931811i \(-0.618228\pi\)
−0.362944 + 0.931811i \(0.618228\pi\)
\(72\) 0.604996 2.11785i 0.0712994 0.249592i
\(73\) −12.3445 −1.44482 −0.722408 0.691467i \(-0.756965\pi\)
−0.722408 + 0.691467i \(0.756965\pi\)
\(74\) 7.84823 + 13.5935i 0.912338 + 1.58022i
\(75\) −0.675970 + 1.59470i −0.0780542 + 0.184140i
\(76\) −0.762100 + 1.32000i −0.0874188 + 0.151414i
\(77\) 2.76210 4.78410i 0.314770 0.545198i
\(78\) 1.41016 + 1.86940i 0.159669 + 0.211668i
\(79\) −5.17226 8.95862i −0.581925 1.00792i −0.995251 0.0973403i \(-0.968966\pi\)
0.413326 0.910583i \(-0.364367\pi\)
\(80\) −3.17226 −0.354669
\(81\) −7.64195 4.75401i −0.849105 0.528224i
\(82\) 0.374833 0.0413934
\(83\) 6.12920 + 10.6161i 0.672767 + 1.16527i 0.977116 + 0.212706i \(0.0682275\pi\)
−0.304350 + 0.952560i \(0.598439\pi\)
\(84\) −10.0242 13.2887i −1.09373 1.44992i
\(85\) 0.675970 1.17081i 0.0733192 0.126993i
\(86\) −0.855648 + 1.48203i −0.0922669 + 0.159811i
\(87\) −2.62015 + 6.18127i −0.280910 + 0.662702i
\(88\) −0.496291 0.859601i −0.0529048 0.0916338i
\(89\) −3.00000 −0.317999 −0.159000 0.987279i \(-0.550827\pi\)
−0.159000 + 0.987279i \(0.550827\pi\)
\(90\) 1.71903 6.01767i 0.181202 0.634318i
\(91\) 2.64806 0.277592
\(92\) −5.63290 9.75648i −0.587271 1.01718i
\(93\) −13.2305 + 1.63121i −1.37194 + 0.169148i
\(94\) 11.3761 19.7041i 1.17336 2.03232i
\(95\) −0.324030 + 0.561237i −0.0332448 + 0.0575817i
\(96\) 13.9003 1.71380i 1.41870 0.174914i
\(97\) 6.79001 + 11.7606i 0.689421 + 1.19411i 0.972025 + 0.234876i \(0.0754683\pi\)
−0.282605 + 0.959237i \(0.591198\pi\)
\(98\) −20.2281 −2.04334
\(99\) −3.93436 + 0.985122i −0.395418 + 0.0990085i
\(100\) 2.35194 0.235194
\(101\) 0.734191 + 1.27166i 0.0730547 + 0.126535i 0.900239 0.435397i \(-0.143392\pi\)
−0.827184 + 0.561931i \(0.810059\pi\)
\(102\) −1.90645 + 4.49756i −0.188767 + 0.445325i
\(103\) −3.76210 + 6.51615i −0.370691 + 0.642055i −0.989672 0.143351i \(-0.954212\pi\)
0.618981 + 0.785406i \(0.287546\pi\)
\(104\) 0.237900 0.412055i 0.0233280 0.0404053i
\(105\) −4.26210 5.65012i −0.415938 0.551396i
\(106\) 4.35194 + 7.53778i 0.422698 + 0.732134i
\(107\) 1.20999 0.116974 0.0584871 0.998288i \(-0.481372\pi\)
0.0584871 + 0.998288i \(0.481372\pi\)
\(108\) −1.89370 + 12.0734i −0.182221 + 1.16177i
\(109\) 14.1042 1.35094 0.675469 0.737388i \(-0.263941\pi\)
0.675469 + 0.737388i \(0.263941\pi\)
\(110\) −1.41016 2.44247i −0.134454 0.232880i
\(111\) −7.84823 10.4041i −0.744921 0.987517i
\(112\) 6.48113 11.2257i 0.612410 1.06072i
\(113\) 5.96227 10.3270i 0.560883 0.971478i −0.436537 0.899687i \(-0.643795\pi\)
0.997420 0.0717915i \(-0.0228716\pi\)
\(114\) 0.913870 2.15594i 0.0855917 0.201922i
\(115\) −2.39500 4.14827i −0.223335 0.386828i
\(116\) 9.11644 0.846440
\(117\) −1.35194 1.39718i −0.124987 0.129169i
\(118\) −8.70388 −0.801257
\(119\) 2.76210 + 4.78410i 0.253201 + 0.438557i
\(120\) −1.26210 + 0.155606i −0.115213 + 0.0142049i
\(121\) 4.58613 7.94341i 0.416921 0.722128i
\(122\) −3.98484 + 6.90195i −0.360771 + 0.624873i
\(123\) −0.308874 + 0.0380816i −0.0278502 + 0.00343370i
\(124\) 9.05080 + 15.6765i 0.812786 + 1.40779i
\(125\) 1.00000 0.0894427
\(126\) 17.7826 + 18.3776i 1.58420 + 1.63721i
\(127\) −7.07871 −0.628134 −0.314067 0.949401i \(-0.601692\pi\)
−0.314067 + 0.949401i \(0.601692\pi\)
\(128\) −2.89130 5.00787i −0.255557 0.442637i
\(129\) 0.554512 1.30817i 0.0488221 0.115178i
\(130\) 0.675970 1.17081i 0.0592865 0.102687i
\(131\) 3.00000 5.19615i 0.262111 0.453990i −0.704692 0.709514i \(-0.748915\pi\)
0.966803 + 0.255524i \(0.0822479\pi\)
\(132\) 3.31661 + 4.39672i 0.288674 + 0.382685i
\(133\) −1.32403 2.29329i −0.114808 0.198853i
\(134\) −16.9852 −1.46729
\(135\) −0.805165 + 5.13339i −0.0692976 + 0.441812i
\(136\) 0.992582 0.0851132
\(137\) 3.73419 + 6.46781i 0.319033 + 0.552582i 0.980287 0.197581i \(-0.0633084\pi\)
−0.661253 + 0.750163i \(0.729975\pi\)
\(138\) 10.4229 + 13.8173i 0.887257 + 1.17621i
\(139\) −4.00000 + 6.92820i −0.339276 + 0.587643i −0.984297 0.176522i \(-0.943515\pi\)
0.645021 + 0.764165i \(0.276849\pi\)
\(140\) −4.80516 + 8.32279i −0.406111 + 0.703404i
\(141\) −7.37243 + 17.3925i −0.620871 + 1.46471i
\(142\) −6.37985 11.0502i −0.535385 0.927314i
\(143\) −0.876139 −0.0732664
\(144\) −9.23179 + 2.31154i −0.769316 + 0.192629i
\(145\) 3.87614 0.321896
\(146\) −12.8761 22.3021i −1.06564 1.84574i
\(147\) 16.6686 2.05509i 1.37480 0.169501i
\(148\) −8.84823 + 15.3256i −0.727320 + 1.25976i
\(149\) 5.29241 9.16673i 0.433571 0.750968i −0.563607 0.826043i \(-0.690587\pi\)
0.997178 + 0.0750759i \(0.0239199\pi\)
\(150\) −3.58613 + 0.442140i −0.292806 + 0.0361006i
\(151\) −8.84823 15.3256i −0.720059 1.24718i −0.960976 0.276633i \(-0.910781\pi\)
0.240917 0.970546i \(-0.422552\pi\)
\(152\) −0.475800 −0.0385925
\(153\) 1.11404 3.89982i 0.0900647 0.315282i
\(154\) 11.5242 0.928646
\(155\) 3.84823 + 6.66533i 0.309097 + 0.535372i
\(156\) −1.03031 + 2.43064i −0.0824910 + 0.194607i
\(157\) 1.26581 2.19245i 0.101023 0.174976i −0.811084 0.584930i \(-0.801122\pi\)
0.912106 + 0.409954i \(0.134455\pi\)
\(158\) 10.7900 18.6888i 0.858407 1.48680i
\(159\) −4.35194 5.76922i −0.345131 0.457529i
\(160\) −4.04307 7.00279i −0.319632 0.553619i
\(161\) 19.5726 1.54254
\(162\) 0.617748 18.7650i 0.0485349 1.47432i
\(163\) 8.47580 0.663876 0.331938 0.943301i \(-0.392298\pi\)
0.331938 + 0.943301i \(0.392298\pi\)
\(164\) 0.211297 + 0.365977i 0.0164995 + 0.0285780i
\(165\) 1.41016 + 1.86940i 0.109781 + 0.145533i
\(166\) −12.7863 + 22.1465i −0.992409 + 1.71890i
\(167\) −6.36710 + 11.0281i −0.492701 + 0.853383i −0.999965 0.00840816i \(-0.997324\pi\)
0.507264 + 0.861791i \(0.330657\pi\)
\(168\) 2.02791 4.78410i 0.156457 0.369101i
\(169\) 6.29001 + 10.8946i 0.483847 + 0.838047i
\(170\) 2.82032 0.216309
\(171\) −0.534022 + 1.86940i −0.0408377 + 0.142957i
\(172\) −1.92935 −0.147111
\(173\) −11.5242 19.9605i −0.876169 1.51757i −0.855513 0.517782i \(-0.826758\pi\)
−0.0206561 0.999787i \(-0.506576\pi\)
\(174\) −13.9003 + 1.71380i −1.05378 + 0.129923i
\(175\) −2.04307 + 3.53869i −0.154441 + 0.267500i
\(176\) −2.14435 + 3.71413i −0.161637 + 0.279963i
\(177\) 7.17226 0.884280i 0.539100 0.0664666i
\(178\) −3.12920 5.41993i −0.234543 0.406241i
\(179\) 2.22808 0.166534 0.0832672 0.996527i \(-0.473465\pi\)
0.0832672 + 0.996527i \(0.473465\pi\)
\(180\) 6.84452 1.71380i 0.510160 0.127739i
\(181\) 0.468382 0.0348146 0.0174073 0.999848i \(-0.494459\pi\)
0.0174073 + 0.999848i \(0.494459\pi\)
\(182\) 2.76210 + 4.78410i 0.204740 + 0.354621i
\(183\) 2.58242 6.09226i 0.190898 0.450353i
\(184\) 1.75839 3.04562i 0.129630 0.224526i
\(185\) −3.76210 + 6.51615i −0.276595 + 0.479077i
\(186\) −16.7473 22.2013i −1.22797 1.62788i
\(187\) −0.913870 1.58287i −0.0668288 0.115751i
\(188\) 25.6513 1.87081
\(189\) −16.5205 13.3371i −1.20169 0.970130i
\(190\) −1.35194 −0.0980800
\(191\) 10.1140 + 17.5180i 0.731826 + 1.26756i 0.956102 + 0.293034i \(0.0946650\pi\)
−0.224276 + 0.974526i \(0.572002\pi\)
\(192\) 10.9774 + 14.5524i 0.792227 + 1.05023i
\(193\) 9.96467 17.2593i 0.717273 1.24235i −0.244804 0.969573i \(-0.578723\pi\)
0.962076 0.272780i \(-0.0879432\pi\)
\(194\) −14.1648 + 24.5342i −1.01698 + 1.76145i
\(195\) −0.438069 + 1.03346i −0.0313708 + 0.0740077i
\(196\) −11.4027 19.7501i −0.814482 1.41072i
\(197\) −15.5800 −1.11003 −0.555015 0.831840i \(-0.687288\pi\)
−0.555015 + 0.831840i \(0.687288\pi\)
\(198\) −5.88356 6.08043i −0.418126 0.432118i
\(199\) 3.58482 0.254121 0.127061 0.991895i \(-0.459446\pi\)
0.127061 + 0.991895i \(0.459446\pi\)
\(200\) 0.367095 + 0.635828i 0.0259576 + 0.0449598i
\(201\) 13.9963 1.72563i 0.987222 0.121716i
\(202\) −1.53162 + 2.65284i −0.107764 + 0.186653i
\(203\) −7.91920 + 13.7165i −0.555819 + 0.962707i
\(204\) −5.46598 + 0.673910i −0.382695 + 0.0471831i
\(205\) 0.0898394 + 0.155606i 0.00627466 + 0.0108680i
\(206\) −15.6965 −1.09362
\(207\) −9.99258 10.3270i −0.694532 0.717773i
\(208\) −2.05582 −0.142545
\(209\) 0.438069 + 0.758758i 0.0303019 + 0.0524844i
\(210\) 5.76210 13.5935i 0.397623 0.938043i
\(211\) −7.49629 + 12.9840i −0.516066 + 0.893852i 0.483760 + 0.875201i \(0.339271\pi\)
−0.999826 + 0.0186518i \(0.994063\pi\)
\(212\) −4.90645 + 8.49822i −0.336976 + 0.583660i
\(213\) 6.37985 + 8.45755i 0.437140 + 0.579502i
\(214\) 1.26210 + 2.18602i 0.0862754 + 0.149433i
\(215\) −0.820321 −0.0559454
\(216\) −3.55953 + 1.37250i −0.242195 + 0.0933867i
\(217\) −31.4487 −2.13488
\(218\) 14.7116 + 25.4813i 0.996396 + 1.72581i
\(219\) 12.8761 + 17.0695i 0.870089 + 1.15345i
\(220\) 1.58984 2.75368i 0.107187 0.185653i
\(221\) 0.438069 0.758758i 0.0294677 0.0510396i
\(222\) 10.6103 25.0311i 0.712119 1.67998i
\(223\) 13.4155 + 23.2363i 0.898368 + 1.55602i 0.829580 + 0.558388i \(0.188580\pi\)
0.0687878 + 0.997631i \(0.478087\pi\)
\(224\) 33.0410 2.20764
\(225\) 2.91016 0.728674i 0.194011 0.0485782i
\(226\) 24.8761 1.65474
\(227\) −0.675970 1.17081i −0.0448657 0.0777096i 0.842721 0.538351i \(-0.180953\pi\)
−0.887586 + 0.460642i \(0.847619\pi\)
\(228\) 2.62015 0.323043i 0.173524 0.0213940i
\(229\) 4.11775 7.13215i 0.272108 0.471306i −0.697293 0.716786i \(-0.745612\pi\)
0.969402 + 0.245480i \(0.0789457\pi\)
\(230\) 4.99629 8.65383i 0.329446 0.570617i
\(231\) −9.49629 + 1.17081i −0.624810 + 0.0770339i
\(232\) 1.42291 + 2.46456i 0.0934188 + 0.161806i
\(233\) 8.58744 0.562582 0.281291 0.959623i \(-0.409237\pi\)
0.281291 + 0.959623i \(0.409237\pi\)
\(234\) 1.11404 3.89982i 0.0728270 0.254939i
\(235\) 10.9065 0.711458
\(236\) −4.90645 8.49822i −0.319383 0.553187i
\(237\) −6.99258 + 16.4964i −0.454217 + 1.07156i
\(238\) −5.76210 + 9.98025i −0.373501 + 0.646923i
\(239\) 11.9623 20.7193i 0.773775 1.34022i −0.161706 0.986839i \(-0.551700\pi\)
0.935480 0.353378i \(-0.114967\pi\)
\(240\) 3.30887 + 4.38646i 0.213587 + 0.283145i
\(241\) 3.12015 + 5.40426i 0.200987 + 0.348119i 0.948847 0.315737i \(-0.102252\pi\)
−0.747860 + 0.663857i \(0.768919\pi\)
\(242\) 19.1345 1.23001
\(243\) 1.39741 + 15.5257i 0.0896438 + 0.995974i
\(244\) −8.98516 −0.575216
\(245\) −4.84823 8.39738i −0.309742 0.536489i
\(246\) −0.390976 0.518303i −0.0249277 0.0330458i
\(247\) −0.209991 + 0.363716i −0.0133614 + 0.0231427i
\(248\) −2.82534 + 4.89363i −0.179409 + 0.310746i
\(249\) 8.28630 19.5484i 0.525123 1.23883i
\(250\) 1.04307 + 1.80664i 0.0659692 + 0.114262i
\(251\) −28.5726 −1.80349 −0.901743 0.432272i \(-0.857712\pi\)
−0.901743 + 0.432272i \(0.857712\pi\)
\(252\) −7.91920 + 27.7221i −0.498863 + 1.74633i
\(253\) −6.47580 −0.407130
\(254\) −7.38356 12.7887i −0.463286 0.802434i
\(255\) −2.32403 + 0.286534i −0.145536 + 0.0179434i
\(256\) −4.49258 + 7.78138i −0.280786 + 0.486336i
\(257\) 9.00000 15.5885i 0.561405 0.972381i −0.435970 0.899961i \(-0.643595\pi\)
0.997374 0.0724199i \(-0.0230722\pi\)
\(258\) 2.94178 0.362697i 0.183147 0.0225805i
\(259\) −15.3724 26.6258i −0.955196 1.65445i
\(260\) 1.52420 0.0945268
\(261\) 11.2802 2.82444i 0.698226 0.174828i
\(262\) 12.5168 0.773289
\(263\) −15.9344 27.5991i −0.982555 1.70183i −0.652335 0.757931i \(-0.726211\pi\)
−0.330220 0.943904i \(-0.607123\pi\)
\(264\) −0.670955 + 1.58287i −0.0412944 + 0.0974188i
\(265\) −2.08613 + 3.61328i −0.128150 + 0.221962i
\(266\) 2.76210 4.78410i 0.169355 0.293332i
\(267\) 3.12920 + 4.14827i 0.191504 + 0.253870i
\(268\) −9.57468 16.5838i −0.584867 1.01302i
\(269\) −31.4971 −1.92041 −0.960207 0.279289i \(-0.909901\pi\)
−0.960207 + 0.279289i \(0.909901\pi\)
\(270\) −10.1140 + 3.89982i −0.615521 + 0.237335i
\(271\) −3.24030 −0.196834 −0.0984172 0.995145i \(-0.531378\pi\)
−0.0984172 + 0.995145i \(0.531378\pi\)
\(272\) −2.14435 3.71413i −0.130020 0.225202i
\(273\) −2.76210 3.66162i −0.167170 0.221612i
\(274\) −7.79001 + 13.4927i −0.470612 + 0.815123i
\(275\) 0.675970 1.17081i 0.0407625 0.0706027i
\(276\) −7.61534 + 17.9656i −0.458390 + 1.08140i
\(277\) 2.79241 + 4.83660i 0.167780 + 0.290603i 0.937639 0.347611i \(-0.113007\pi\)
−0.769859 + 0.638214i \(0.779674\pi\)
\(278\) −16.6890 −1.00094
\(279\) 16.0558 + 16.5931i 0.961237 + 0.993402i
\(280\) −3.00000 −0.179284
\(281\) 12.0521 + 20.8749i 0.718969 + 1.24529i 0.961409 + 0.275124i \(0.0887188\pi\)
−0.242440 + 0.970166i \(0.577948\pi\)
\(282\) −39.1120 + 4.82218i −2.32908 + 0.287157i
\(283\) 5.27114 9.12989i 0.313337 0.542715i −0.665746 0.746179i \(-0.731886\pi\)
0.979083 + 0.203463i \(0.0652197\pi\)
\(284\) 7.19275 12.4582i 0.426811 0.739259i
\(285\) 1.11404 0.137352i 0.0659900 0.00813602i
\(286\) −0.913870 1.58287i −0.0540383 0.0935970i
\(287\) −0.734191 −0.0433379
\(288\) −16.8687 17.4332i −0.993999 1.02726i
\(289\) −15.1723 −0.892486
\(290\) 4.04307 + 7.00279i 0.237417 + 0.411218i
\(291\) 9.17968 21.6560i 0.538122 1.26950i
\(292\) 14.5168 25.1438i 0.849530 1.47143i
\(293\) −9.49629 + 16.4481i −0.554779 + 0.960906i 0.443141 + 0.896452i \(0.353864\pi\)
−0.997921 + 0.0644541i \(0.979469\pi\)
\(294\) 21.0992 + 27.9705i 1.23053 + 1.63127i
\(295\) −2.08613 3.61328i −0.121459 0.210373i
\(296\) −5.52420 −0.321088
\(297\) 5.46598 + 4.41271i 0.317168 + 0.256052i
\(298\) 22.0813 1.27914
\(299\) −1.55211 2.68833i −0.0897607 0.155470i
\(300\) −2.45323 3.25216i −0.141637 0.187763i
\(301\) 1.67597 2.90286i 0.0966013 0.167318i
\(302\) 18.4586 31.9712i 1.06217 1.83973i
\(303\) 0.992582 2.34163i 0.0570223 0.134523i
\(304\) 1.02791 + 1.78039i 0.0589546 + 0.102112i
\(305\) −3.82032 −0.218751
\(306\) 8.20759 2.05509i 0.469197 0.117482i
\(307\) 29.4791 1.68246 0.841229 0.540679i \(-0.181833\pi\)
0.841229 + 0.540679i \(0.181833\pi\)
\(308\) 6.49629 + 11.2519i 0.370161 + 0.641137i
\(309\) 12.9344 1.59470i 0.735810 0.0907193i
\(310\) −8.02791 + 13.9047i −0.455955 + 0.789736i
\(311\) 4.70628 8.15152i 0.266869 0.462230i −0.701183 0.712982i \(-0.747344\pi\)
0.968052 + 0.250751i \(0.0806776\pi\)
\(312\) −0.817917 + 0.100842i −0.0463055 + 0.00570908i
\(313\) −5.81050 10.0641i −0.328429 0.568855i 0.653771 0.756692i \(-0.273186\pi\)
−0.982200 + 0.187837i \(0.939852\pi\)
\(314\) 5.28128 0.298040
\(315\) −3.36710 + 11.7869i −0.189714 + 0.664116i
\(316\) 24.3297 1.36865
\(317\) 4.58984 + 7.94984i 0.257791 + 0.446507i 0.965650 0.259847i \(-0.0836720\pi\)
−0.707859 + 0.706354i \(0.750339\pi\)
\(318\) 5.88356 13.8801i 0.329934 0.778355i
\(319\) 2.62015 4.53824i 0.146700 0.254092i
\(320\) 5.26210 9.11422i 0.294160 0.509501i
\(321\) −1.26210 1.67312i −0.0704435 0.0933846i
\(322\) 20.4155 + 35.3607i 1.13771 + 1.97057i
\(323\) −0.876139 −0.0487497
\(324\) 18.6699 9.97484i 1.03721 0.554158i
\(325\) 0.648061 0.0359479
\(326\) 8.84081 + 15.3127i 0.489647 + 0.848094i
\(327\) −14.7116 19.5027i −0.813554 1.07850i
\(328\) −0.0659593 + 0.114245i −0.00364199 + 0.00630812i
\(329\) −22.2826 + 38.5946i −1.22848 + 2.12779i
\(330\) −1.90645 + 4.49756i −0.104947 + 0.247583i
\(331\) 3.61033 + 6.25327i 0.198442 + 0.343711i 0.948023 0.318201i \(-0.103079\pi\)
−0.749582 + 0.661912i \(0.769745\pi\)
\(332\) −28.8310 −1.58231
\(333\) −6.20017 + 21.7044i −0.339767 + 1.18939i
\(334\) −26.5652 −1.45358
\(335\) −4.07097 7.05113i −0.222421 0.385245i
\(336\) −22.2826 + 2.74726i −1.21561 + 0.149875i
\(337\) −1.14195 + 1.97791i −0.0622059 + 0.107744i −0.895451 0.445160i \(-0.853147\pi\)
0.833245 + 0.552904i \(0.186480\pi\)
\(338\) −13.1218 + 22.7276i −0.713731 + 1.23622i
\(339\) −20.4987 + 2.52732i −1.11334 + 0.137265i
\(340\) 1.58984 + 2.75368i 0.0862211 + 0.149339i
\(341\) 10.4051 0.563470
\(342\) −3.93436 + 0.985122i −0.212746 + 0.0532693i
\(343\) 11.0181 0.594921
\(344\) −0.301136 0.521583i −0.0162362 0.0281219i
\(345\) −3.23790 + 7.63862i −0.174323 + 0.411250i
\(346\) 24.0410 41.6402i 1.29245 2.23859i
\(347\) 0.354343 0.613740i 0.0190221 0.0329473i −0.856358 0.516383i \(-0.827278\pi\)
0.875380 + 0.483436i \(0.160611\pi\)
\(348\) −9.50904 12.6058i −0.509738 0.675743i
\(349\) 10.6723 + 18.4849i 0.571273 + 0.989474i 0.996436 + 0.0843569i \(0.0268836\pi\)
−0.425163 + 0.905117i \(0.639783\pi\)
\(350\) −8.52420 −0.455638
\(351\) −0.521796 + 3.32675i −0.0278514 + 0.177569i
\(352\) −10.9320 −0.582675
\(353\) 5.04840 + 8.74408i 0.268699 + 0.465401i 0.968526 0.248912i \(-0.0800729\pi\)
−0.699827 + 0.714312i \(0.746740\pi\)
\(354\) 9.07871 + 12.0353i 0.482528 + 0.639671i
\(355\) 3.05822 5.29699i 0.162314 0.281135i
\(356\) 3.52791 6.11052i 0.186979 0.323857i
\(357\) 3.73419 8.80944i 0.197634 0.466245i
\(358\) 2.32403 + 4.02534i 0.122829 + 0.212746i
\(359\) 30.5578 1.61278 0.806388 0.591386i \(-0.201419\pi\)
0.806388 + 0.591386i \(0.201419\pi\)
\(360\) 1.53162 + 1.58287i 0.0807234 + 0.0834245i
\(361\) −18.5800 −0.977896
\(362\) 0.488553 + 0.846198i 0.0256778 + 0.0444752i
\(363\) −15.7674 + 1.94399i −0.827576 + 0.102033i
\(364\) −3.11404 + 5.39367i −0.163220 + 0.282705i
\(365\) 6.17226 10.6907i 0.323071 0.559575i
\(366\) 13.7002 1.68912i 0.716119 0.0882916i
\(367\) 3.58984 + 6.21778i 0.187388 + 0.324566i 0.944379 0.328860i \(-0.106664\pi\)
−0.756991 + 0.653426i \(0.773331\pi\)
\(368\) −15.1952 −0.792102
\(369\) 0.374833 + 0.387376i 0.0195130 + 0.0201660i
\(370\) −15.6965 −0.816020
\(371\) −8.52420 14.7643i −0.442554 0.766527i
\(372\) 12.2361 28.8666i 0.634414 1.49666i
\(373\) 10.9623 18.9872i 0.567605 0.983120i −0.429197 0.903211i \(-0.641204\pi\)
0.996802 0.0799096i \(-0.0254632\pi\)
\(374\) 1.90645 3.30207i 0.0985803 0.170746i
\(375\) −1.04307 1.38276i −0.0538637 0.0714052i
\(376\) 4.00371 + 6.93463i 0.206476 + 0.357626i
\(377\) 2.51197 0.129373
\(378\) 6.86339 43.7581i 0.353014 2.25067i
\(379\) −17.3929 −0.893414 −0.446707 0.894680i \(-0.647403\pi\)
−0.446707 + 0.894680i \(0.647403\pi\)
\(380\) −0.762100 1.32000i −0.0390949 0.0677143i
\(381\) 7.38356 + 9.78813i 0.378271 + 0.501461i
\(382\) −21.0992 + 36.5449i −1.07953 + 1.86980i
\(383\) −0.237900 + 0.412055i −0.0121561 + 0.0210550i −0.872039 0.489436i \(-0.837203\pi\)
0.859883 + 0.510491i \(0.170536\pi\)
\(384\) −3.90886 + 9.22149i −0.199473 + 0.470582i
\(385\) 2.76210 + 4.78410i 0.140770 + 0.243820i
\(386\) 41.5752 2.11612
\(387\) −2.38727 + 0.597746i −0.121352 + 0.0303852i
\(388\) −31.9394 −1.62148
\(389\) 2.79372 + 4.83886i 0.141647 + 0.245340i 0.928117 0.372289i \(-0.121427\pi\)
−0.786470 + 0.617629i \(0.788094\pi\)
\(390\) −2.32403 + 0.286534i −0.117682 + 0.0145092i
\(391\) 3.23790 5.60821i 0.163748 0.283619i
\(392\) 3.55953 6.16528i 0.179783 0.311394i
\(393\) −10.3142 + 1.27166i −0.520283 + 0.0641466i
\(394\) −16.2510 28.1475i −0.818712 1.41805i
\(395\) 10.3445 0.520489
\(396\) 2.62015 9.17213i 0.131668 0.460917i
\(397\) 3.75228 0.188321 0.0941607 0.995557i \(-0.469983\pi\)
0.0941607 + 0.995557i \(0.469983\pi\)
\(398\) 3.73921 + 6.47649i 0.187429 + 0.324637i
\(399\) −1.79001 + 4.22286i −0.0896125 + 0.211407i
\(400\) 1.58613 2.74726i 0.0793065 0.137363i
\(401\) −11.7826 + 20.4080i −0.588394 + 1.01913i 0.406048 + 0.913852i \(0.366906\pi\)
−0.994443 + 0.105278i \(0.966427\pi\)
\(402\) 17.7166 + 23.4863i 0.883625 + 1.17139i
\(403\) 2.49389 + 4.31954i 0.124229 + 0.215172i
\(404\) −3.45355 −0.171820
\(405\) 7.93807 4.24111i 0.394446 0.210743i
\(406\) −33.0410 −1.63980
\(407\) 5.08613 + 8.80944i 0.252110 + 0.436668i
\(408\) −1.03533 1.37250i −0.0512563 0.0679488i
\(409\) −0.524200 + 0.907940i −0.0259200 + 0.0448948i −0.878694 0.477385i \(-0.841585\pi\)
0.852774 + 0.522279i \(0.174918\pi\)
\(410\) −0.187417 + 0.324615i −0.00925585 + 0.0160316i
\(411\) 5.04840 11.9098i 0.249019 0.587468i
\(412\) −8.84823 15.3256i −0.435921 0.755037i
\(413\) 17.0484 0.838897
\(414\) 8.23419 28.8247i 0.404688 1.41666i
\(415\) −12.2584 −0.601741
\(416\) −2.62015 4.53824i −0.128464 0.222505i
\(417\) 13.7523 1.69554i 0.673452 0.0830310i
\(418\) −0.913870 + 1.58287i −0.0446988 + 0.0774207i
\(419\) 12.9599 22.4471i 0.633131 1.09661i −0.353777 0.935330i \(-0.615103\pi\)
0.986908 0.161285i \(-0.0515638\pi\)
\(420\) 16.5205 2.03684i 0.806117 0.0993876i
\(421\) −3.82032 6.61699i −0.186191 0.322492i 0.757786 0.652503i \(-0.226281\pi\)
−0.943977 + 0.330011i \(0.892948\pi\)
\(422\) −31.2765 −1.52252
\(423\) 31.7395 7.94724i 1.54323 0.386408i
\(424\) −3.06324 −0.148764
\(425\) 0.675970 + 1.17081i 0.0327893 + 0.0567928i
\(426\) −8.62517 + 20.3479i −0.417891 + 0.985858i
\(427\) 7.80516 13.5189i 0.377718 0.654227i
\(428\) −1.42291 + 2.46456i −0.0687791 + 0.119129i
\(429\) 0.913870 + 1.21149i 0.0441220 + 0.0584911i
\(430\) −0.855648 1.48203i −0.0412630 0.0714697i
\(431\) 7.98516 0.384632 0.192316 0.981333i \(-0.438400\pi\)
0.192316 + 0.981333i \(0.438400\pi\)
\(432\) 12.8257 + 10.3542i 0.617075 + 0.498168i
\(433\) −12.5120 −0.601287 −0.300644 0.953737i \(-0.597201\pi\)
−0.300644 + 0.953737i \(0.597201\pi\)
\(434\) −32.8031 56.8166i −1.57460 2.72728i
\(435\) −4.04307 5.35976i −0.193850 0.256981i
\(436\) −16.5861 + 28.7280i −0.794332 + 1.37582i
\(437\) −1.55211 + 2.68833i −0.0742474 + 0.128600i
\(438\) −17.4078 + 41.0671i −0.831775 + 1.96226i
\(439\) 4.38225 + 7.59028i 0.209153 + 0.362264i 0.951448 0.307809i \(-0.0995958\pi\)
−0.742295 + 0.670074i \(0.766263\pi\)
\(440\) 0.992582 0.0473195
\(441\) −20.2281 20.9049i −0.963242 0.995474i
\(442\) 1.82774 0.0869367
\(443\) −1.83548 3.17914i −0.0872062 0.151046i 0.819123 0.573618i \(-0.194461\pi\)
−0.906329 + 0.422572i \(0.861127\pi\)
\(444\) 30.4208 3.75064i 1.44371 0.177997i
\(445\) 1.50000 2.59808i 0.0711068 0.123161i
\(446\) −27.9865 + 48.4740i −1.32520 + 2.29531i
\(447\) −18.1957 + 2.24338i −0.860626 + 0.106108i
\(448\) 21.5016 + 37.2419i 1.01586 + 1.75951i
\(449\) 28.1723 1.32953 0.664766 0.747052i \(-0.268531\pi\)
0.664766 + 0.747052i \(0.268531\pi\)
\(450\) 4.35194 + 4.49756i 0.205152 + 0.212017i
\(451\) 0.242915 0.0114384
\(452\) 14.0229 + 24.2884i 0.659581 + 1.14243i
\(453\) −11.9623 + 28.2205i −0.562036 + 1.32592i
\(454\) 1.41016 2.44247i 0.0661821 0.114631i
\(455\) −1.32403 + 2.29329i −0.0620715 + 0.107511i
\(456\) 0.496291 + 0.657916i 0.0232409 + 0.0308097i
\(457\) −17.6308 30.5375i −0.824735 1.42848i −0.902122 0.431482i \(-0.857991\pi\)
0.0773867 0.997001i \(-0.475342\pi\)
\(458\) 17.1803 0.802784
\(459\) −6.55451 + 2.52732i −0.305938 + 0.117965i
\(460\) 11.2658 0.525271
\(461\) −17.3384 30.0310i −0.807530 1.39868i −0.914570 0.404428i \(-0.867470\pi\)
0.107039 0.994255i \(-0.465863\pi\)
\(462\) −12.0205 15.9352i −0.559244 0.741371i
\(463\) −3.72437 + 6.45080i −0.173086 + 0.299794i −0.939497 0.342556i \(-0.888707\pi\)
0.766411 + 0.642350i \(0.222041\pi\)
\(464\) 6.14806 10.6488i 0.285417 0.494356i
\(465\) 5.20257 12.2735i 0.241264 0.569172i
\(466\) 8.95725 + 15.5144i 0.414937 + 0.718692i
\(467\) 29.9655 1.38664 0.693319 0.720630i \(-0.256148\pi\)
0.693319 + 0.720630i \(0.256148\pi\)
\(468\) 4.43567 1.11064i 0.205039 0.0513395i
\(469\) 33.2691 1.53622
\(470\) 11.3761 + 19.7041i 0.524742 + 0.908880i
\(471\) −4.35194 + 0.536558i −0.200527 + 0.0247233i
\(472\) 1.53162 2.65284i 0.0704984 0.122107i
\(473\) −0.554512 + 0.960443i −0.0254965 + 0.0441612i
\(474\) −37.0968 + 4.57373i −1.70391 + 0.210078i
\(475\) −0.324030 0.561237i −0.0148675 0.0257513i
\(476\) −12.9926 −0.595514
\(477\) −3.43807 + 12.0353i −0.157418 + 0.551061i
\(478\) 49.9097 2.28282
\(479\) 3.99258 + 6.91535i 0.182426 + 0.315971i 0.942706 0.333625i \(-0.108272\pi\)
−0.760280 + 0.649595i \(0.774938\pi\)
\(480\) −5.46598 + 12.8949i −0.249487 + 0.588571i
\(481\) −2.43807 + 4.22286i −0.111166 + 0.192546i
\(482\) −6.50904 + 11.2740i −0.296479 + 0.513516i
\(483\) −20.4155 27.0641i −0.928937 1.23146i
\(484\) 10.7863 + 18.6824i 0.490286 + 0.849201i
\(485\) −13.5800 −0.616637
\(486\) −26.5918 + 18.7189i −1.20623 + 0.849108i
\(487\) −11.9442 −0.541243 −0.270621 0.962686i \(-0.587229\pi\)
−0.270621 + 0.962686i \(0.587229\pi\)
\(488\) −1.40242 2.42907i −0.0634847 0.109959i
\(489\) −8.84081 11.7200i −0.399795 0.529995i
\(490\) 10.1140 17.5180i 0.456906 0.791384i
\(491\) 4.61033 7.98533i 0.208061 0.360373i −0.743042 0.669244i \(-0.766618\pi\)
0.951104 + 0.308872i \(0.0999513\pi\)
\(492\) 0.285660 0.673910i 0.0128786 0.0303822i
\(493\) 2.62015 + 4.53824i 0.118006 + 0.204392i
\(494\) −0.876139 −0.0394193
\(495\) 1.11404 3.89982i 0.0500723 0.175284i
\(496\) 24.4152 1.09627
\(497\) 12.4963 + 21.6442i 0.560535 + 0.970876i
\(498\) 43.9602 5.41993i 1.96990 0.242873i
\(499\) −15.0861 + 26.1299i −0.675348 + 1.16974i 0.301019 + 0.953618i \(0.402673\pi\)
−0.976367 + 0.216119i \(0.930660\pi\)
\(500\) −1.17597 + 2.03684i −0.0525910 + 0.0910902i
\(501\) 21.8905 2.69892i 0.977996 0.120579i
\(502\) −29.8031 51.6204i −1.33018 2.30393i
\(503\) −10.5981 −0.472546 −0.236273 0.971687i \(-0.575926\pi\)
−0.236273 + 0.971687i \(0.575926\pi\)
\(504\) −8.73048 + 2.18602i −0.388887 + 0.0973731i
\(505\) −1.46838 −0.0653421
\(506\) −6.75468 11.6995i −0.300282 0.520104i
\(507\) 8.50371 20.0613i 0.377663 0.890955i
\(508\) 8.32435 14.4182i 0.369333 0.639704i
\(509\) −14.3761 + 24.9002i −0.637211 + 1.10368i 0.348831 + 0.937186i \(0.386579\pi\)
−0.986042 + 0.166496i \(0.946755\pi\)
\(510\) −2.94178 3.89982i −0.130264 0.172687i
\(511\) 25.2207 + 43.6835i 1.11570 + 1.93244i
\(512\) −30.3094 −1.33950
\(513\) 3.14195 1.21149i 0.138720 0.0534884i
\(514\) 37.5503 1.65627
\(515\) −3.76210 6.51615i −0.165778 0.287136i
\(516\) 2.01243 + 2.66781i 0.0885924 + 0.117444i
\(517\) 7.37243 12.7694i 0.324239 0.561599i
\(518\) 32.0689 55.5449i 1.40903 2.44050i
\(519\) −15.5800 + 36.7553i −0.683887 + 1.61338i
\(520\) 0.237900 + 0.412055i 0.0104326 + 0.0180698i
\(521\) −36.0942 −1.58132 −0.790658 0.612259i \(-0.790261\pi\)
−0.790658 + 0.612259i \(0.790261\pi\)
\(522\) 16.8687 + 17.4332i 0.738324 + 0.763030i
\(523\) 11.1297 0.486669 0.243334 0.969942i \(-0.421759\pi\)
0.243334 + 0.969942i \(0.421759\pi\)
\(524\) 7.05582 + 12.2210i 0.308235 + 0.533878i
\(525\) 7.02420 0.866025i 0.306561 0.0377964i
\(526\) 33.2411 57.5754i 1.44938 2.51041i
\(527\) −5.20257 + 9.01112i −0.226628 + 0.392531i
\(528\) 7.37243 0.908959i 0.320844 0.0395574i
\(529\) 0.0279088 + 0.0483395i 0.00121343 + 0.00210172i
\(530\) −8.70388 −0.378072
\(531\) −8.70388 8.99513i −0.377716 0.390355i
\(532\) 6.22808 0.270021
\(533\) 0.0582214 + 0.100842i 0.00252185 + 0.00436797i
\(534\) −4.23048 + 9.98025i −0.183071 + 0.431888i
\(535\) −0.604996 + 1.04788i −0.0261562 + 0.0453039i
\(536\) 2.98887 5.17688i 0.129100 0.223607i
\(537\) −2.32403 3.08089i −0.100289 0.132950i
\(538\) −32.8536 56.9040i −1.41642 2.45331i
\(539\) −13.1090 −0.564646
\(540\) −9.50904 7.67670i −0.409204 0.330353i
\(541\) −34.7374 −1.49348 −0.746740 0.665116i \(-0.768382\pi\)
−0.746740 + 0.665116i \(0.768382\pi\)
\(542\) −3.37985 5.85407i −0.145177 0.251454i
\(543\) −0.488553 0.647658i −0.0209658 0.0277937i
\(544\) 5.46598 9.46735i 0.234352 0.405909i
\(545\) −7.05211 + 12.2146i −0.302079 + 0.523216i
\(546\) 3.73419 8.80944i 0.159809 0.377009i
\(547\) 1.35727 + 2.35087i 0.0580328 + 0.100516i 0.893582 0.448899i \(-0.148184\pi\)
−0.835549 + 0.549415i \(0.814851\pi\)
\(548\) −17.5652 −0.750347
\(549\) −11.1177 + 2.78377i −0.474494 + 0.118808i
\(550\) 2.82032 0.120259
\(551\) −1.25599 2.17543i −0.0535068 0.0926766i
\(552\) −6.04547 + 0.745356i −0.257312 + 0.0317245i
\(553\) −21.1345 + 36.6061i −0.898732 + 1.55665i
\(554\) −5.82534 + 10.0898i −0.247495 + 0.428674i
\(555\) 12.9344 1.59470i 0.549033 0.0676912i
\(556\) −9.40776 16.2947i −0.398978 0.691050i
\(557\) −8.93676 −0.378663 −0.189331 0.981913i \(-0.560632\pi\)
−0.189331 + 0.981913i \(0.560632\pi\)
\(558\) −13.2305 + 46.3148i −0.560091 + 1.96066i
\(559\) −0.531618 −0.0224850
\(560\) 6.48113 + 11.2257i 0.273878 + 0.474370i
\(561\) −1.23550 + 2.91469i −0.0521627 + 0.123059i
\(562\) −25.1423 + 43.5477i −1.06056 + 1.83695i
\(563\) 4.68130 8.10826i 0.197293 0.341722i −0.750357 0.661033i \(-0.770118\pi\)
0.947650 + 0.319311i \(0.103451\pi\)
\(564\) −26.7560 35.4695i −1.12663 1.49354i
\(565\) 5.96227 + 10.3270i 0.250835 + 0.434458i
\(566\) 21.9926 0.924417
\(567\) −1.20999 + 36.7553i −0.0508149 + 1.54358i
\(568\) 4.49064 0.188423
\(569\) −17.9368 31.0674i −0.751948 1.30241i −0.946877 0.321595i \(-0.895781\pi\)
0.194929 0.980817i \(-0.437552\pi\)
\(570\) 1.41016 + 1.86940i 0.0590651 + 0.0783007i
\(571\) −10.0000 + 17.3205i −0.418487 + 0.724841i −0.995788 0.0916910i \(-0.970773\pi\)
0.577301 + 0.816532i \(0.304106\pi\)
\(572\) 1.03031 1.78455i 0.0430795 0.0746159i
\(573\) 13.6736 32.2577i 0.571221 1.34758i
\(574\) −0.765809 1.32642i −0.0319643 0.0553637i
\(575\) 4.79001 0.199757
\(576\) 8.67226 30.3582i 0.361344 1.26493i
\(577\) 1.35675 0.0564821 0.0282411 0.999601i \(-0.491009\pi\)
0.0282411 + 0.999601i \(0.491009\pi\)
\(578\) −15.8257 27.4108i −0.658260 1.14014i
\(579\) −34.2592 + 4.22388i −1.42377 + 0.175538i
\(580\) −4.55822 + 7.89507i −0.189270 + 0.327825i
\(581\) 25.0447 43.3787i 1.03903 1.79965i
\(582\) 48.6997 6.00427i 2.01867 0.248885i
\(583\) 2.82032 + 4.88494i 0.116806 + 0.202314i
\(584\) 9.06324 0.375039
\(585\) 1.88596 0.472225i 0.0779749 0.0195241i
\(586\) −39.6210 −1.63673
\(587\) −14.3950 24.9329i −0.594145 1.02909i −0.993667 0.112366i \(-0.964157\pi\)
0.399521 0.916724i \(-0.369176\pi\)
\(588\) −15.4158 + 36.3679i −0.635737 + 1.49979i
\(589\) 2.49389 4.31954i 0.102759 0.177984i
\(590\) 4.35194 7.53778i 0.179167 0.310325i
\(591\) 16.2510 + 21.5434i 0.668476 + 0.886176i
\(592\) 11.9344 + 20.6709i 0.490499 + 0.849570i
\(593\) 30.9171 1.26961 0.634807 0.772671i \(-0.281080\pi\)
0.634807 + 0.772671i \(0.281080\pi\)
\(594\) −2.27082 + 14.4778i −0.0931730 + 0.594032i
\(595\) −5.52420 −0.226470
\(596\) 12.4474 + 21.5596i 0.509867 + 0.883115i
\(597\) −3.73921 4.95694i −0.153035 0.202874i
\(598\) 3.23790 5.60821i 0.132408 0.229337i
\(599\) −0.696460 + 1.20630i −0.0284566 + 0.0492882i −0.879903 0.475153i \(-0.842393\pi\)
0.851446 + 0.524442i \(0.175726\pi\)
\(600\) 0.496291 1.17081i 0.0202610 0.0477983i
\(601\) −4.41256 7.64279i −0.179992 0.311756i 0.761885 0.647712i \(-0.224274\pi\)
−0.941878 + 0.335956i \(0.890941\pi\)
\(602\) 6.99258 0.284996
\(603\) −16.9852 17.5535i −0.691689 0.714835i
\(604\) 41.6210 1.69353
\(605\) 4.58613 + 7.94341i 0.186453 + 0.322946i
\(606\) 5.26581 0.649230i 0.213909 0.0263732i
\(607\) 1.07839 1.86783i 0.0437706 0.0758129i −0.843310 0.537427i \(-0.819396\pi\)
0.887081 + 0.461614i \(0.152730\pi\)
\(608\) −2.62015 + 4.53824i −0.106261 + 0.184050i
\(609\) 27.2268 3.35683i 1.10328 0.136026i
\(610\) −3.98484 6.90195i −0.161342 0.279452i
\(611\) 7.06804 0.285942
\(612\) 6.63322 + 6.85518i 0.268132 + 0.277104i
\(613\) −9.57521 −0.386739 −0.193370 0.981126i \(-0.561942\pi\)
−0.193370 + 0.981126i \(0.561942\pi\)
\(614\) 30.7486 + 53.2581i 1.24091 + 2.14932i
\(615\) 0.121457 0.286534i 0.00489764 0.0115542i
\(616\) −2.02791 + 3.51244i −0.0817068 + 0.141520i
\(617\) 18.8384 32.6291i 0.758406 1.31360i −0.185258 0.982690i \(-0.559312\pi\)
0.943663 0.330907i \(-0.107355\pi\)
\(618\) 16.3724 + 21.7044i 0.658596 + 0.873078i
\(619\) −8.55211 14.8127i −0.343738 0.595372i 0.641385 0.767219i \(-0.278360\pi\)
−0.985124 + 0.171847i \(0.945027\pi\)
\(620\) −18.1016 −0.726978
\(621\) −3.85675 + 24.5890i −0.154766 + 0.986722i
\(622\) 19.6358 0.787325
\(623\) 6.12920 + 10.6161i 0.245561 + 0.425324i
\(624\) 2.14435 + 2.84269i 0.0858428 + 0.113799i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 12.1215 20.9950i 0.484471 0.839128i
\(627\) 0.592243 1.39718i 0.0236519 0.0557979i
\(628\) 2.97711 + 5.15650i 0.118799 + 0.205767i
\(629\) −10.1723 −0.405595
\(630\) −24.8068 + 6.21136i −0.988326 + 0.247466i
\(631\) 33.1090 1.31805 0.659025 0.752121i \(-0.270969\pi\)
0.659025 + 0.752121i \(0.270969\pi\)
\(632\) 3.79743 + 6.57734i 0.151054 + 0.261632i
\(633\) 25.7728 3.17757i 1.02438 0.126297i
\(634\) −9.57500 + 16.5844i −0.380272 + 0.658650i
\(635\) 3.53936 6.13034i 0.140455 0.243275i
\(636\) 16.8687 2.07977i 0.668888 0.0824684i
\(637\) −3.14195 5.44201i −0.124489 0.215620i
\(638\) 10.9320 0.432800
\(639\) 5.04013 17.6436i 0.199385 0.697968i
\(640\) 5.78259 0.228577
\(641\) 11.5763 + 20.0508i 0.457237 + 0.791957i 0.998814 0.0486939i \(-0.0155059\pi\)
−0.541577 + 0.840651i \(0.682173\pi\)
\(642\) 1.70628 4.02534i 0.0673416 0.158867i
\(643\) −21.5319 + 37.2944i −0.849137 + 1.47075i 0.0328430 + 0.999461i \(0.489544\pi\)
−0.881980 + 0.471287i \(0.843789\pi\)
\(644\) −23.0168 + 39.8662i −0.906988 + 1.57095i
\(645\) 0.855648 + 1.13430i 0.0336911 + 0.0446632i
\(646\) −0.913870 1.58287i −0.0359557 0.0622771i
\(647\) −20.6439 −0.811595 −0.405798 0.913963i \(-0.633006\pi\)
−0.405798 + 0.913963i \(0.633006\pi\)
\(648\) 5.61065 + 3.49035i 0.220407 + 0.137114i
\(649\) −5.64064 −0.221415
\(650\) 0.675970 + 1.17081i 0.0265137 + 0.0459231i
\(651\) 32.8031 + 43.4859i 1.28565 + 1.70435i
\(652\) −9.96728 + 17.2638i −0.390349 + 0.676104i
\(653\) −3.41758 + 5.91942i −0.133740 + 0.231645i −0.925116 0.379686i \(-0.876032\pi\)
0.791375 + 0.611331i \(0.209365\pi\)
\(654\) 19.8892 46.9212i 0.777730 1.83476i
\(655\) 3.00000 + 5.19615i 0.117220 + 0.203030i
\(656\) 0.569988 0.0222543
\(657\) 10.1723 35.6091i 0.396858 1.38924i
\(658\) −92.9688 −3.62430
\(659\) 13.4307 + 23.2626i 0.523184 + 0.906181i 0.999636 + 0.0269806i \(0.00858924\pi\)
−0.476452 + 0.879200i \(0.658077\pi\)
\(660\) −5.46598 + 0.673910i −0.212763 + 0.0262319i
\(661\) 1.06063 1.83706i 0.0412535 0.0714532i −0.844661 0.535301i \(-0.820198\pi\)
0.885915 + 0.463848i \(0.153532\pi\)
\(662\) −7.53162 + 13.0451i −0.292725 + 0.507014i
\(663\) −1.50611 + 0.185691i −0.0584926 + 0.00721165i
\(664\) −4.50000 7.79423i −0.174634 0.302475i
\(665\) 2.64806 0.102687
\(666\) −45.6792 + 11.4376i −1.77003 + 0.443198i
\(667\) 18.5667 0.718907
\(668\) −14.9750 25.9375i −0.579401 1.00355i
\(669\) 18.1369 42.7874i 0.701214 1.65425i
\(670\) 8.49258 14.7096i 0.328097 0.568281i
\(671\) −2.58242 + 4.47288i −0.0996933 + 0.172674i
\(672\) −34.4639 45.6876i −1.32947 1.76244i
\(673\) −17.4102 30.1553i −0.671112 1.16240i −0.977589 0.210523i \(-0.932483\pi\)
0.306477 0.951878i \(-0.400850\pi\)
\(674\) −4.76450 −0.183522
\(675\) −4.04307 3.26399i −0.155618 0.125631i
\(676\) −29.5874 −1.13798
\(677\) 12.3421 + 21.3772i 0.474346 + 0.821592i 0.999569 0.0293735i \(-0.00935121\pi\)
−0.525222 + 0.850965i \(0.676018\pi\)
\(678\) −25.9474 34.3976i −0.996505 1.32103i
\(679\) 27.7449 48.0555i 1.06475 1.84420i
\(680\) −0.496291 + 0.859601i −0.0190319 + 0.0329642i
\(681\) −0.913870 + 2.15594i −0.0350196 + 0.0826157i
\(682\) 10.8532 + 18.7984i 0.415592 + 0.719827i
\(683\) −38.4610 −1.47167 −0.735834 0.677162i \(-0.763210\pi\)
−0.735834 + 0.677162i \(0.763210\pi\)
\(684\) −3.17968 3.28608i −0.121578 0.125646i
\(685\) −7.46838 −0.285352
\(686\) 11.4926 + 19.9057i 0.438789 + 0.760005i
\(687\) −14.1571 + 1.74545i −0.540127 + 0.0665932i
\(688\) −1.30114 + 2.25363i −0.0496054 + 0.0859190i
\(689\) −1.35194 + 2.34163i −0.0515048 + 0.0892089i
\(690\) −17.1776 + 2.11785i −0.653940 + 0.0806253i
\(691\) −0.240304 0.416219i −0.00914159 0.0158337i 0.861418 0.507896i \(-0.169577\pi\)
−0.870560 + 0.492062i \(0.836243\pi\)
\(692\) 54.2084 2.06070
\(693\) 11.5242 + 11.9098i 0.437768 + 0.452417i
\(694\) 1.47841 0.0561197
\(695\) −4.00000 6.92820i −0.151729 0.262802i
\(696\) 1.92369 4.53824i 0.0729174 0.172021i
\(697\) −0.121457 + 0.210370i −0.00460053 + 0.00796835i
\(698\) −22.2637 + 38.5619i −0.842694 + 1.45959i
\(699\) −8.95725 11.8743i −0.338794 0.449128i
\(700\) −4.80516 8.32279i −0.181618 0.314572i
\(701\) −18.1797 −0.686637 −0.343318 0.939219i \(-0.611551\pi\)
−0.343318 + 0.939219i \(0.611551\pi\)
\(702\) −6.55451 + 2.52732i −0.247384 + 0.0953875i
\(703\) 4.87614 0.183907
\(704\) −7.11404 12.3219i −0.268120 0.464398i
\(705\) −11.3761 15.0810i −0.428450 0.567982i
\(706\) −10.5316 + 18.2413i −0.396363 + 0.686520i
\(707\) 3.00000 5.19615i 0.112827 0.195421i
\(708\) −6.63322 + 15.6486i −0.249292 + 0.588111i
\(709\) −3.59355 6.22421i −0.134959 0.233755i 0.790623 0.612303i \(-0.209757\pi\)
−0.925582 + 0.378548i \(0.876423\pi\)
\(710\) 12.7597 0.478863
\(711\) 30.1042 7.53778i 1.12900 0.282689i
\(712\) 2.20257 0.0825449
\(713\) 18.4331 + 31.9270i 0.690323 + 1.19568i
\(714\) 19.8105 2.44247i 0.741389 0.0914071i
\(715\) 0.438069 0.758758i 0.0163829 0.0283760i
\(716\) −2.62015 + 4.53824i −0.0979197 + 0.169602i
\(717\) −41.1271 + 5.07063i −1.53592 + 0.189366i
\(718\) 31.8737 + 55.2069i 1.18952 + 2.06030i
\(719\) 12.5168 0.466797 0.233399 0.972381i \(-0.425015\pi\)
0.233399 + 0.972381i \(0.425015\pi\)
\(720\) 2.61404 9.15073i 0.0974195 0.341028i
\(721\) 30.7449 1.14500
\(722\) −19.3802 33.5674i −0.721255 1.24925i
\(723\) 4.21826 9.95141i 0.156879 0.370097i
\(724\) −0.550803 + 0.954019i −0.0204704 + 0.0354558i
\(725\) −1.93807 + 3.35683i −0.0719781 + 0.124670i
\(726\) −19.9586 26.4584i −0.740732 0.981963i
\(727\) −4.21292 7.29699i −0.156249 0.270631i 0.777264 0.629174i \(-0.216607\pi\)
−0.933513 + 0.358544i \(0.883273\pi\)
\(728\) −1.94418 −0.0720562
\(729\) 20.0107 18.1266i 0.741136 0.671355i
\(730\) 25.7523 0.953135
\(731\) −0.554512 0.960443i −0.0205094 0.0355233i
\(732\) 9.37211 + 12.4243i 0.346403 + 0.459215i
\(733\) 11.0000 19.0526i 0.406294 0.703722i −0.588177 0.808732i \(-0.700154\pi\)
0.994471 + 0.105010i \(0.0334875\pi\)
\(734\) −7.48887 + 12.9711i −0.276419 + 0.478772i
\(735\) −6.55451 + 15.4629i −0.241767 + 0.570359i
\(736\) −19.3663 33.5434i −0.713852 1.23643i
\(737\) −11.0074 −0.405463
\(738\) −0.308874 + 1.08125i −0.0113698 + 0.0398013i
\(739\) −1.81290 −0.0666887 −0.0333444 0.999444i \(-0.510616\pi\)
−0.0333444 + 0.999444i \(0.510616\pi\)
\(740\) −8.84823 15.3256i −0.325267 0.563380i
\(741\) 0.721965 0.0890123i 0.0265220 0.00326995i
\(742\) 17.7826 30.8003i 0.652819 1.13072i
\(743\) −10.0686 + 17.4393i −0.369380 + 0.639785i −0.989469 0.144747i \(-0.953763\pi\)
0.620089 + 0.784532i \(0.287097\pi\)
\(744\) 9.71370 1.19762i 0.356122 0.0439068i
\(745\) 5.29241 + 9.16673i 0.193899 + 0.335843i
\(746\) 45.7374 1.67457
\(747\) −35.6739 + 8.93237i −1.30524 + 0.326818i
\(748\) 4.29873 0.157177
\(749\) −2.47209 4.28179i −0.0903282 0.156453i
\(750\) 1.41016 3.32675i 0.0514918 0.121476i
\(751\) −6.10662 + 10.5770i −0.222834 + 0.385959i −0.955667 0.294449i \(-0.904864\pi\)
0.732834 + 0.680408i \(0.238197\pi\)
\(752\) 17.2991 29.9628i 0.630832 1.09263i
\(753\) 29.8031 + 39.5089i 1.08608 + 1.43979i
\(754\) 2.62015 + 4.53824i 0.0954203 + 0.165273i
\(755\) 17.6965 0.644040
\(756\) 46.5931 17.9656i 1.69457 0.653402i
\(757\) 52.9533 1.92462 0.962310 0.271955i \(-0.0876701\pi\)
0.962310 + 0.271955i \(0.0876701\pi\)
\(758\) −18.1419 31.4228i −0.658945 1.14133i
\(759\) 6.75468 + 8.95445i 0.245179 + 0.325026i
\(760\) 0.237900 0.412055i 0.00862955 0.0149468i
\(761\) 9.22677 15.9812i 0.334470 0.579319i −0.648913 0.760863i \(-0.724776\pi\)
0.983383 + 0.181543i \(0.0581093\pi\)
\(762\) −9.98212 + 23.5491i −0.361614 + 0.853094i
\(763\) −28.8158 49.9105i −1.04320 1.80688i
\(764\) −47.5752 −1.72121
\(765\) 2.82032 + 2.91469i 0.101969 + 0.105381i
\(766\) −0.992582 −0.0358634
\(767\) −1.35194 2.34163i −0.0488157 0.0845513i
\(768\) 15.4458 1.90434i 0.557353