Properties

Label 45.2.e.b.31.1
Level $45$
Weight $2$
Character 45.31
Analytic conductor $0.359$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,2,Mod(16,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.16");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 45.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.359326809096\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.954288.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 2x^{4} + 3x^{3} - 6x^{2} - 9x + 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 31.1
Root \(0.403374 + 1.68443i\) of defining polynomial
Character \(\chi\) \(=\) 45.31
Dual form 45.2.e.b.16.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.25707 - 2.17731i) q^{2} +(1.25707 - 1.19154i) q^{3} +(-2.16044 + 3.74200i) q^{4} +(-0.500000 + 0.866025i) q^{5} +(-4.17458 - 1.23917i) q^{6} +(0.257068 + 0.445256i) q^{7} +5.83502 q^{8} +(0.160442 - 2.99571i) q^{9} +O(q^{10})\) \(q+(-1.25707 - 2.17731i) q^{2} +(1.25707 - 1.19154i) q^{3} +(-2.16044 + 3.74200i) q^{4} +(-0.500000 + 0.866025i) q^{5} +(-4.17458 - 1.23917i) q^{6} +(0.257068 + 0.445256i) q^{7} +5.83502 q^{8} +(0.160442 - 2.99571i) q^{9} +2.51414 q^{10} +(1.66044 + 2.87597i) q^{11} +(1.74293 + 7.27821i) q^{12} +(0.660442 - 1.14392i) q^{13} +(0.646305 - 1.11943i) q^{14} +(0.403374 + 1.68443i) q^{15} +(-3.01414 - 5.22064i) q^{16} -3.32088 q^{17} +(-6.72426 + 3.41648i) q^{18} -1.32088 q^{19} +(-2.16044 - 3.74200i) q^{20} +(0.853695 + 0.253408i) q^{21} +(4.17458 - 7.23058i) q^{22} +(-2.06382 + 3.57463i) q^{23} +(7.33502 - 6.95269i) q^{24} +(-0.500000 - 0.866025i) q^{25} -3.32088 q^{26} +(-3.36783 - 3.95698i) q^{27} -2.22153 q^{28} +(0.693252 + 1.20075i) q^{29} +(3.16044 - 2.99571i) q^{30} +(-4.36783 + 7.56531i) q^{31} +(-1.74293 + 3.01885i) q^{32} +(5.51414 + 1.63680i) q^{33} +(4.17458 + 7.23058i) q^{34} -0.514137 q^{35} +(10.8633 + 7.07243i) q^{36} +0.292611 q^{37} +(1.66044 + 2.87597i) q^{38} +(-0.532810 - 2.22493i) q^{39} +(-2.91751 + 5.05328i) q^{40} +(5.67458 - 9.82866i) q^{41} +(-0.521405 - 2.17731i) q^{42} +(-5.17458 - 8.96263i) q^{43} -14.3492 q^{44} +(2.51414 + 1.63680i) q^{45} +10.3774 q^{46} +(2.43165 + 4.21174i) q^{47} +(-10.0096 - 2.97122i) q^{48} +(3.36783 - 5.83326i) q^{49} +(-1.25707 + 2.17731i) q^{50} +(-4.17458 + 3.95698i) q^{51} +(2.85369 + 4.94274i) q^{52} -5.02827 q^{53} +(-4.38197 + 12.3070i) q^{54} -3.32088 q^{55} +(1.50000 + 2.59808i) q^{56} +(-1.66044 + 1.57389i) q^{57} +(1.74293 - 3.01885i) q^{58} +(2.51414 - 4.35461i) q^{59} +(-7.17458 - 2.12968i) q^{60} +(-3.67458 - 6.36456i) q^{61} +21.9627 q^{62} +(1.37510 - 0.698664i) q^{63} -3.29261 q^{64} +(0.660442 + 1.14392i) q^{65} +(-3.36783 - 14.0635i) q^{66} +(-4.72426 + 8.18266i) q^{67} +(7.17458 - 12.4267i) q^{68} +(1.66498 + 6.95269i) q^{69} +(0.646305 + 1.11943i) q^{70} +8.99093 q^{71} +(0.936184 - 17.4800i) q^{72} +6.05655 q^{73} +(-0.367832 - 0.637103i) q^{74} +(-1.66044 - 0.492881i) q^{75} +(2.85369 - 4.94274i) q^{76} +(-0.853695 + 1.47864i) q^{77} +(-4.17458 + 3.95698i) q^{78} +(4.02827 + 6.97717i) q^{79} +6.02827 q^{80} +(-8.94852 - 0.961276i) q^{81} -28.5333 q^{82} +(-0.771205 - 1.33577i) q^{83} +(-2.79261 + 2.64705i) q^{84} +(1.66044 - 2.87597i) q^{85} +(-13.0096 + 22.5333i) q^{86} +(2.30221 + 0.683382i) q^{87} +(9.68872 + 16.7813i) q^{88} -3.00000 q^{89} +(0.403374 - 7.53162i) q^{90} +0.679116 q^{91} +(-8.91751 - 15.4456i) q^{92} +(3.52374 + 14.7146i) q^{93} +(6.11350 - 10.5889i) q^{94} +(0.660442 - 1.14392i) q^{95} +(1.40611 + 5.87168i) q^{96} +(6.12763 + 10.6134i) q^{97} -16.9344 q^{98} +(8.88197 - 4.51277i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{2} + q^{3} - 5 q^{4} - 3 q^{5} - 4 q^{6} - 5 q^{7} + 6 q^{8} - 7 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - q^{2} + q^{3} - 5 q^{4} - 3 q^{5} - 4 q^{6} - 5 q^{7} + 6 q^{8} - 7 q^{9} + 2 q^{10} + 2 q^{11} + 17 q^{12} - 4 q^{13} + 9 q^{14} + q^{15} - 5 q^{16} - 4 q^{17} - 23 q^{18} + 8 q^{19} - 5 q^{20} + 4 q^{22} - 3 q^{23} + 15 q^{24} - 3 q^{25} - 4 q^{26} - 2 q^{27} + 10 q^{28} + 7 q^{29} + 11 q^{30} - 8 q^{31} - 17 q^{32} + 20 q^{33} + 4 q^{34} + 10 q^{35} + 10 q^{36} + 12 q^{37} + 2 q^{38} - 14 q^{39} - 3 q^{40} + 13 q^{41} - 33 q^{42} - 10 q^{43} - 44 q^{44} + 2 q^{45} - 6 q^{46} - 13 q^{47} - 10 q^{48} + 2 q^{49} - q^{50} - 4 q^{51} + 12 q^{52} - 4 q^{53} + 5 q^{54} - 4 q^{55} + 9 q^{56} - 2 q^{57} + 17 q^{58} + 2 q^{59} - 22 q^{60} - q^{61} + 84 q^{62} + 33 q^{63} - 30 q^{64} - 4 q^{65} - 2 q^{66} - 11 q^{67} + 22 q^{68} + 39 q^{69} + 9 q^{70} - 20 q^{71} + 15 q^{72} - 16 q^{73} + 16 q^{74} - 2 q^{75} + 12 q^{76} - 4 q^{78} - 2 q^{79} + 10 q^{80} - 19 q^{81} - 58 q^{82} + 15 q^{83} - 27 q^{84} + 2 q^{85} - 28 q^{86} - 26 q^{87} + 24 q^{88} - 18 q^{89} + q^{90} + 20 q^{91} - 39 q^{92} - 42 q^{93} + 31 q^{94} - 4 q^{95} + 13 q^{96} + 18 q^{97} - 80 q^{98} + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.25707 2.17731i −0.888882 1.53959i −0.841199 0.540726i \(-0.818150\pi\)
−0.0476826 0.998863i \(-0.515184\pi\)
\(3\) 1.25707 1.19154i 0.725769 0.687939i
\(4\) −2.16044 + 3.74200i −1.08022 + 1.87100i
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) −4.17458 1.23917i −1.70426 0.505889i
\(7\) 0.257068 + 0.445256i 0.0971627 + 0.168291i 0.910509 0.413489i \(-0.135690\pi\)
−0.813346 + 0.581780i \(0.802357\pi\)
\(8\) 5.83502 2.06299
\(9\) 0.160442 2.99571i 0.0534807 0.998569i
\(10\) 2.51414 0.795040
\(11\) 1.66044 + 2.87597i 0.500642 + 0.867138i 1.00000 0.000741679i \(0.000236084\pi\)
−0.499358 + 0.866396i \(0.666431\pi\)
\(12\) 1.74293 + 7.27821i 0.503141 + 2.10104i
\(13\) 0.660442 1.14392i 0.183174 0.317266i −0.759786 0.650173i \(-0.774696\pi\)
0.942960 + 0.332907i \(0.108030\pi\)
\(14\) 0.646305 1.11943i 0.172732 0.299181i
\(15\) 0.403374 + 1.68443i 0.104151 + 0.434917i
\(16\) −3.01414 5.22064i −0.753534 1.30516i
\(17\) −3.32088 −0.805433 −0.402716 0.915325i \(-0.631934\pi\)
−0.402716 + 0.915325i \(0.631934\pi\)
\(18\) −6.72426 + 3.41648i −1.58492 + 0.805271i
\(19\) −1.32088 −0.303032 −0.151516 0.988455i \(-0.548415\pi\)
−0.151516 + 0.988455i \(0.548415\pi\)
\(20\) −2.16044 3.74200i −0.483090 0.836736i
\(21\) 0.853695 + 0.253408i 0.186291 + 0.0552982i
\(22\) 4.17458 7.23058i 0.890023 1.54157i
\(23\) −2.06382 + 3.57463i −0.430335 + 0.745363i −0.996902 0.0786532i \(-0.974938\pi\)
0.566567 + 0.824016i \(0.308271\pi\)
\(24\) 7.33502 6.95269i 1.49725 1.41921i
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) −3.32088 −0.651279
\(27\) −3.36783 3.95698i −0.648139 0.761522i
\(28\) −2.22153 −0.419829
\(29\) 0.693252 + 1.20075i 0.128734 + 0.222973i 0.923186 0.384353i \(-0.125575\pi\)
−0.794453 + 0.607326i \(0.792242\pi\)
\(30\) 3.16044 2.99571i 0.577015 0.546939i
\(31\) −4.36783 + 7.56531i −0.784486 + 1.35877i 0.144820 + 0.989458i \(0.453740\pi\)
−0.929306 + 0.369311i \(0.879594\pi\)
\(32\) −1.74293 + 3.01885i −0.308110 + 0.533662i
\(33\) 5.51414 + 1.63680i 0.959888 + 0.284930i
\(34\) 4.17458 + 7.23058i 0.715934 + 1.24003i
\(35\) −0.514137 −0.0869050
\(36\) 10.8633 + 7.07243i 1.81055 + 1.17874i
\(37\) 0.292611 0.0481049 0.0240524 0.999711i \(-0.492343\pi\)
0.0240524 + 0.999711i \(0.492343\pi\)
\(38\) 1.66044 + 2.87597i 0.269359 + 0.466544i
\(39\) −0.532810 2.22493i −0.0853179 0.356274i
\(40\) −2.91751 + 5.05328i −0.461299 + 0.798993i
\(41\) 5.67458 9.82866i 0.886220 1.53498i 0.0419119 0.999121i \(-0.486655\pi\)
0.844308 0.535857i \(-0.180012\pi\)
\(42\) −0.521405 2.17731i −0.0804546 0.335966i
\(43\) −5.17458 8.96263i −0.789116 1.36679i −0.926509 0.376272i \(-0.877206\pi\)
0.137393 0.990517i \(-0.456128\pi\)
\(44\) −14.3492 −2.16322
\(45\) 2.51414 + 1.63680i 0.374785 + 0.244000i
\(46\) 10.3774 1.53007
\(47\) 2.43165 + 4.21174i 0.354692 + 0.614345i 0.987065 0.160319i \(-0.0512523\pi\)
−0.632373 + 0.774664i \(0.717919\pi\)
\(48\) −10.0096 2.97122i −1.44476 0.428859i
\(49\) 3.36783 5.83326i 0.481119 0.833322i
\(50\) −1.25707 + 2.17731i −0.177776 + 0.307918i
\(51\) −4.17458 + 3.95698i −0.584558 + 0.554088i
\(52\) 2.85369 + 4.94274i 0.395736 + 0.685435i
\(53\) −5.02827 −0.690687 −0.345343 0.938476i \(-0.612238\pi\)
−0.345343 + 0.938476i \(0.612238\pi\)
\(54\) −4.38197 + 12.3070i −0.596310 + 1.67477i
\(55\) −3.32088 −0.447788
\(56\) 1.50000 + 2.59808i 0.200446 + 0.347183i
\(57\) −1.66044 + 1.57389i −0.219931 + 0.208467i
\(58\) 1.74293 3.01885i 0.228858 0.396394i
\(59\) 2.51414 4.35461i 0.327313 0.566922i −0.654665 0.755919i \(-0.727190\pi\)
0.981978 + 0.188997i \(0.0605236\pi\)
\(60\) −7.17458 2.12968i −0.926234 0.274941i
\(61\) −3.67458 6.36456i −0.470482 0.814898i 0.528948 0.848654i \(-0.322586\pi\)
−0.999430 + 0.0337558i \(0.989253\pi\)
\(62\) 21.9627 2.78926
\(63\) 1.37510 0.698664i 0.173246 0.0880234i
\(64\) −3.29261 −0.411576
\(65\) 0.660442 + 1.14392i 0.0819178 + 0.141886i
\(66\) −3.36783 14.0635i −0.414551 1.73110i
\(67\) −4.72426 + 8.18266i −0.577160 + 0.999670i 0.418643 + 0.908151i \(0.362506\pi\)
−0.995803 + 0.0915197i \(0.970828\pi\)
\(68\) 7.17458 12.4267i 0.870046 1.50696i
\(69\) 1.66498 + 6.95269i 0.200440 + 0.837005i
\(70\) 0.646305 + 1.11943i 0.0772483 + 0.133798i
\(71\) 8.99093 1.06703 0.533513 0.845792i \(-0.320871\pi\)
0.533513 + 0.845792i \(0.320871\pi\)
\(72\) 0.936184 17.4800i 0.110330 2.06004i
\(73\) 6.05655 0.708865 0.354433 0.935082i \(-0.384674\pi\)
0.354433 + 0.935082i \(0.384674\pi\)
\(74\) −0.367832 0.637103i −0.0427596 0.0740617i
\(75\) −1.66044 0.492881i −0.191731 0.0569130i
\(76\) 2.85369 4.94274i 0.327341 0.566972i
\(77\) −0.853695 + 1.47864i −0.0972875 + 0.168507i
\(78\) −4.17458 + 3.95698i −0.472678 + 0.448040i
\(79\) 4.02827 + 6.97717i 0.453216 + 0.784994i 0.998584 0.0532036i \(-0.0169432\pi\)
−0.545367 + 0.838197i \(0.683610\pi\)
\(80\) 6.02827 0.673982
\(81\) −8.94852 0.961276i −0.994280 0.106808i
\(82\) −28.5333 −3.15098
\(83\) −0.771205 1.33577i −0.0846508 0.146619i 0.820592 0.571515i \(-0.193644\pi\)
−0.905242 + 0.424896i \(0.860311\pi\)
\(84\) −2.79261 + 2.64705i −0.304699 + 0.288817i
\(85\) 1.66044 2.87597i 0.180100 0.311943i
\(86\) −13.0096 + 22.5333i −1.40286 + 2.42983i
\(87\) 2.30221 + 0.683382i 0.246823 + 0.0732662i
\(88\) 9.68872 + 16.7813i 1.03282 + 1.78890i
\(89\) −3.00000 −0.317999 −0.159000 0.987279i \(-0.550827\pi\)
−0.159000 + 0.987279i \(0.550827\pi\)
\(90\) 0.403374 7.53162i 0.0425193 0.793902i
\(91\) 0.679116 0.0711906
\(92\) −8.91751 15.4456i −0.929715 1.61031i
\(93\) 3.52374 + 14.7146i 0.365395 + 1.52583i
\(94\) 6.11350 10.5889i 0.630559 1.09216i
\(95\) 0.660442 1.14392i 0.0677599 0.117364i
\(96\) 1.40611 + 5.87168i 0.143510 + 0.599276i
\(97\) 6.12763 + 10.6134i 0.622167 + 1.07762i 0.989081 + 0.147370i \(0.0470808\pi\)
−0.366915 + 0.930255i \(0.619586\pi\)
\(98\) −16.9344 −1.71063
\(99\) 8.88197 4.51277i 0.892671 0.453551i
\(100\) 4.32088 0.432088
\(101\) −5.83502 10.1066i −0.580606 1.00564i −0.995408 0.0957276i \(-0.969482\pi\)
0.414801 0.909912i \(-0.363851\pi\)
\(102\) 13.8633 + 4.11514i 1.37267 + 0.407460i
\(103\) −0.146305 + 0.253408i −0.0144159 + 0.0249691i −0.873143 0.487464i \(-0.837922\pi\)
0.858727 + 0.512433i \(0.171256\pi\)
\(104\) 3.85369 6.67479i 0.377886 0.654517i
\(105\) −0.646305 + 0.612617i −0.0630729 + 0.0597853i
\(106\) 6.32088 + 10.9481i 0.613939 + 1.06337i
\(107\) 1.87237 0.181009 0.0905043 0.995896i \(-0.471152\pi\)
0.0905043 + 0.995896i \(0.471152\pi\)
\(108\) 22.0830 4.05358i 2.12494 0.390056i
\(109\) 5.54787 0.531390 0.265695 0.964057i \(-0.414399\pi\)
0.265695 + 0.964057i \(0.414399\pi\)
\(110\) 4.17458 + 7.23058i 0.398031 + 0.689409i
\(111\) 0.367832 0.348659i 0.0349130 0.0330932i
\(112\) 1.54968 2.68412i 0.146431 0.253626i
\(113\) −3.90064 + 6.75611i −0.366942 + 0.635561i −0.989086 0.147341i \(-0.952928\pi\)
0.622144 + 0.782903i \(0.286262\pi\)
\(114\) 5.51414 + 1.63680i 0.516446 + 0.153300i
\(115\) −2.06382 3.57463i −0.192452 0.333336i
\(116\) −5.99093 −0.556244
\(117\) −3.32088 2.16202i −0.307016 0.199879i
\(118\) −12.6418 −1.16377
\(119\) −0.853695 1.47864i −0.0782581 0.135547i
\(120\) 2.35369 + 9.82866i 0.214862 + 0.897230i
\(121\) −0.0141369 + 0.0244859i −0.00128518 + 0.00222599i
\(122\) −9.23840 + 16.0014i −0.836405 + 1.44870i
\(123\) −4.57795 19.1168i −0.412780 1.72370i
\(124\) −18.8729 32.6888i −1.69484 2.93554i
\(125\) 1.00000 0.0894427
\(126\) −3.24980 2.11575i −0.289515 0.188486i
\(127\) 17.8916 1.58762 0.793810 0.608166i \(-0.208094\pi\)
0.793810 + 0.608166i \(0.208094\pi\)
\(128\) 7.62490 + 13.2067i 0.673952 + 1.16732i
\(129\) −17.1842 5.10090i −1.51298 0.449109i
\(130\) 1.66044 2.87597i 0.145630 0.252239i
\(131\) 3.00000 5.19615i 0.262111 0.453990i −0.704692 0.709514i \(-0.748915\pi\)
0.966803 + 0.255524i \(0.0822479\pi\)
\(132\) −18.0379 + 17.0977i −1.57000 + 1.48816i
\(133\) −0.339558 0.588131i −0.0294434 0.0509974i
\(134\) 23.7549 2.05211
\(135\) 5.11076 0.938136i 0.439864 0.0807419i
\(136\) −19.3774 −1.66160
\(137\) −2.83502 4.91040i −0.242212 0.419524i 0.719132 0.694874i \(-0.244540\pi\)
−0.961344 + 0.275350i \(0.911206\pi\)
\(138\) 13.0451 12.3652i 1.11048 1.05259i
\(139\) −4.00000 + 6.92820i −0.339276 + 0.587643i −0.984297 0.176522i \(-0.943515\pi\)
0.645021 + 0.764165i \(0.276849\pi\)
\(140\) 1.11076 1.92390i 0.0938766 0.162599i
\(141\) 8.07522 + 2.39703i 0.680056 + 0.201866i
\(142\) −11.3022 19.5760i −0.948460 1.64278i
\(143\) 4.38650 0.366818
\(144\) −16.1231 + 8.19186i −1.34359 + 0.682655i
\(145\) −1.38650 −0.115143
\(146\) −7.61350 13.1870i −0.630097 1.09136i
\(147\) −2.71699 11.3457i −0.224094 0.935780i
\(148\) −0.632168 + 1.09495i −0.0519639 + 0.0900042i
\(149\) −8.83049 + 15.2948i −0.723422 + 1.25300i 0.236199 + 0.971705i \(0.424098\pi\)
−0.959620 + 0.281298i \(0.909235\pi\)
\(150\) 1.01414 + 4.23488i 0.0828039 + 0.345776i
\(151\) −0.632168 1.09495i −0.0514451 0.0891056i 0.839156 0.543891i \(-0.183049\pi\)
−0.890601 + 0.454785i \(0.849716\pi\)
\(152\) −7.70739 −0.625152
\(153\) −0.532810 + 9.94840i −0.0430752 + 0.804280i
\(154\) 4.29261 0.345908
\(155\) −4.36783 7.56531i −0.350833 0.607660i
\(156\) 9.47679 + 2.81306i 0.758750 + 0.225225i
\(157\) 7.83502 13.5707i 0.625303 1.08306i −0.363179 0.931719i \(-0.618309\pi\)
0.988482 0.151337i \(-0.0483579\pi\)
\(158\) 10.1276 17.5416i 0.805711 1.39553i
\(159\) −6.32088 + 5.99141i −0.501279 + 0.475150i
\(160\) −1.74293 3.01885i −0.137791 0.238661i
\(161\) −2.12217 −0.167250
\(162\) 9.15591 + 20.6921i 0.719356 + 1.62572i
\(163\) 15.7074 1.23030 0.615149 0.788411i \(-0.289096\pi\)
0.615149 + 0.788411i \(0.289096\pi\)
\(164\) 24.5192 + 42.4685i 1.91463 + 3.31623i
\(165\) −4.17458 + 3.95698i −0.324991 + 0.308051i
\(166\) −1.93892 + 3.35830i −0.150489 + 0.260655i
\(167\) −3.08249 + 5.33903i −0.238530 + 0.413146i −0.960293 0.278994i \(-0.909999\pi\)
0.721763 + 0.692141i \(0.243332\pi\)
\(168\) 4.98133 + 1.47864i 0.384318 + 0.114080i
\(169\) 5.62763 + 9.74734i 0.432895 + 0.749796i
\(170\) −8.34916 −0.640351
\(171\) −0.211926 + 3.95698i −0.0162064 + 0.302598i
\(172\) 44.7175 3.40968
\(173\) −4.29261 7.43502i −0.326361 0.565274i 0.655426 0.755260i \(-0.272489\pi\)
−0.981787 + 0.189986i \(0.939156\pi\)
\(174\) −1.40611 5.87168i −0.106597 0.445131i
\(175\) 0.257068 0.445256i 0.0194325 0.0336582i
\(176\) 10.0096 17.3371i 0.754502 1.30684i
\(177\) −2.02827 8.46975i −0.152454 0.636626i
\(178\) 3.77121 + 6.53192i 0.282664 + 0.489588i
\(179\) −1.06562 −0.0796482 −0.0398241 0.999207i \(-0.512680\pi\)
−0.0398241 + 0.999207i \(0.512680\pi\)
\(180\) −11.5565 + 5.87168i −0.861374 + 0.437649i
\(181\) −12.6700 −0.941757 −0.470878 0.882198i \(-0.656063\pi\)
−0.470878 + 0.882198i \(0.656063\pi\)
\(182\) −0.853695 1.47864i −0.0632801 0.109604i
\(183\) −12.2029 3.62226i −0.902061 0.267765i
\(184\) −12.0424 + 20.8581i −0.887778 + 1.53768i
\(185\) −0.146305 + 0.253408i −0.0107566 + 0.0186309i
\(186\) 27.6086 26.1695i 2.02436 1.91884i
\(187\) −5.51414 9.55077i −0.403234 0.698421i
\(188\) −21.0137 −1.53258
\(189\) 0.896105 2.51676i 0.0651821 0.183067i
\(190\) −3.32088 −0.240922
\(191\) 8.46719 + 14.6656i 0.612664 + 1.06117i 0.990789 + 0.135411i \(0.0432356\pi\)
−0.378125 + 0.925754i \(0.623431\pi\)
\(192\) −4.13904 + 3.92329i −0.298709 + 0.283139i
\(193\) −13.3588 + 23.1380i −0.961585 + 1.66551i −0.243060 + 0.970011i \(0.578151\pi\)
−0.718524 + 0.695502i \(0.755182\pi\)
\(194\) 15.4057 26.6835i 1.10607 1.91576i
\(195\) 2.19325 + 0.651039i 0.157062 + 0.0466218i
\(196\) 14.5520 + 25.2048i 1.03943 + 1.80034i
\(197\) −14.2553 −1.01565 −0.507823 0.861462i \(-0.669550\pi\)
−0.507823 + 0.861462i \(0.669550\pi\)
\(198\) −20.9909 13.6659i −1.49176 0.971194i
\(199\) −24.6610 −1.74817 −0.874085 0.485773i \(-0.838538\pi\)
−0.874085 + 0.485773i \(0.838538\pi\)
\(200\) −2.91751 5.05328i −0.206299 0.357321i
\(201\) 3.81128 + 15.9153i 0.268827 + 1.12258i
\(202\) −14.6700 + 25.4093i −1.03218 + 1.78779i
\(203\) −0.356427 + 0.617349i −0.0250162 + 0.0433294i
\(204\) −5.78807 24.1701i −0.405246 1.69224i
\(205\) 5.67458 + 9.82866i 0.396330 + 0.686463i
\(206\) 0.735663 0.0512561
\(207\) 10.3774 + 6.75611i 0.721281 + 0.469582i
\(208\) −7.96265 −0.552111
\(209\) −2.19325 3.79882i −0.151710 0.262770i
\(210\) 2.14631 + 0.637103i 0.148109 + 0.0439643i
\(211\) 2.68872 4.65699i 0.185099 0.320601i −0.758511 0.651660i \(-0.774073\pi\)
0.943610 + 0.331060i \(0.107406\pi\)
\(212\) 10.8633 18.8158i 0.746094 1.29227i
\(213\) 11.3022 10.7131i 0.774415 0.734049i
\(214\) −2.35369 4.07672i −0.160895 0.278679i
\(215\) 10.3492 0.705807
\(216\) −19.6514 23.0891i −1.33711 1.57101i
\(217\) −4.49133 −0.304891
\(218\) −6.97406 12.0794i −0.472343 0.818122i
\(219\) 7.61350 7.21665i 0.514472 0.487656i
\(220\) 7.17458 12.4267i 0.483710 0.837810i
\(221\) −2.19325 + 3.79882i −0.147534 + 0.255537i
\(222\) −1.22153 0.362594i −0.0819835 0.0243357i
\(223\) −4.33229 7.50375i −0.290112 0.502488i 0.683724 0.729740i \(-0.260359\pi\)
−0.973836 + 0.227252i \(0.927026\pi\)
\(224\) −1.79221 −0.119747
\(225\) −2.67458 + 1.35891i −0.178305 + 0.0905938i
\(226\) 19.6135 1.30467
\(227\) −1.66044 2.87597i −0.110207 0.190885i 0.805646 0.592397i \(-0.201818\pi\)
−0.915854 + 0.401512i \(0.868485\pi\)
\(228\) −2.30221 9.61367i −0.152468 0.636681i
\(229\) 12.6559 21.9207i 0.836326 1.44856i −0.0566206 0.998396i \(-0.518033\pi\)
0.892946 0.450163i \(-0.148634\pi\)
\(230\) −5.18872 + 8.98712i −0.342134 + 0.592593i
\(231\) 0.688716 + 2.87597i 0.0453142 + 0.189225i
\(232\) 4.04514 + 7.00639i 0.265577 + 0.459992i
\(233\) 27.6327 1.81028 0.905139 0.425116i \(-0.139767\pi\)
0.905139 + 0.425116i \(0.139767\pi\)
\(234\) −0.532810 + 9.94840i −0.0348309 + 0.650347i
\(235\) −4.86330 −0.317246
\(236\) 10.8633 + 18.8158i 0.707140 + 1.22480i
\(237\) 13.3774 + 3.97092i 0.868958 + 0.257939i
\(238\) −2.14631 + 3.71751i −0.139124 + 0.240970i
\(239\) 2.09936 3.63620i 0.135796 0.235206i −0.790105 0.612971i \(-0.789974\pi\)
0.925901 + 0.377765i \(0.123307\pi\)
\(240\) 7.57795 7.18296i 0.489155 0.463658i
\(241\) −1.80221 3.12152i −0.116091 0.201075i 0.802125 0.597157i \(-0.203703\pi\)
−0.918215 + 0.396082i \(0.870370\pi\)
\(242\) 0.0710844 0.00456948
\(243\) −12.3943 + 9.45417i −0.795095 + 0.606485i
\(244\) 31.7549 2.03290
\(245\) 3.36783 + 5.83326i 0.215163 + 0.372673i
\(246\) −35.8684 + 33.9987i −2.28688 + 2.16768i
\(247\) −0.872368 + 1.51099i −0.0555074 + 0.0961417i
\(248\) −25.4864 + 44.1437i −1.61839 + 2.80313i
\(249\) −2.56108 0.760225i −0.162302 0.0481773i
\(250\) −1.25707 2.17731i −0.0795040 0.137705i
\(251\) −6.87783 −0.434125 −0.217062 0.976158i \(-0.569648\pi\)
−0.217062 + 0.976158i \(0.569648\pi\)
\(252\) −0.356427 + 6.65504i −0.0224528 + 0.419228i
\(253\) −13.7074 −0.861776
\(254\) −22.4909 38.9554i −1.41121 2.44428i
\(255\) −1.33956 5.59378i −0.0838864 0.350296i
\(256\) 15.8774 27.5005i 0.992340 1.71878i
\(257\) 9.00000 15.5885i 0.561405 0.972381i −0.435970 0.899961i \(-0.643595\pi\)
0.997374 0.0724199i \(-0.0230722\pi\)
\(258\) 10.4955 + 43.8274i 0.653419 + 2.72858i
\(259\) 0.0752210 + 0.130287i 0.00467400 + 0.00809561i
\(260\) −5.70739 −0.353957
\(261\) 3.70832 1.88413i 0.229539 0.116625i
\(262\) −15.0848 −0.931943
\(263\) −3.11803 5.40059i −0.192266 0.333015i 0.753735 0.657179i \(-0.228250\pi\)
−0.946001 + 0.324164i \(0.894917\pi\)
\(264\) 32.1751 + 9.55077i 1.98024 + 0.587809i
\(265\) 2.51414 4.35461i 0.154442 0.267502i
\(266\) −0.853695 + 1.47864i −0.0523434 + 0.0906614i
\(267\) −3.77121 + 3.57463i −0.230794 + 0.218764i
\(268\) −20.4130 35.3563i −1.24692 2.15973i
\(269\) 9.92345 0.605044 0.302522 0.953142i \(-0.402172\pi\)
0.302522 + 0.953142i \(0.402172\pi\)
\(270\) −8.46719 9.94840i −0.515297 0.605440i
\(271\) 6.60442 0.401190 0.200595 0.979674i \(-0.435712\pi\)
0.200595 + 0.979674i \(0.435712\pi\)
\(272\) 10.0096 + 17.3371i 0.606921 + 1.05122i
\(273\) 0.853695 0.809197i 0.0516680 0.0489748i
\(274\) −7.12763 + 12.3454i −0.430596 + 0.745814i
\(275\) 1.66044 2.87597i 0.100128 0.173428i
\(276\) −29.6140 8.79054i −1.78255 0.529128i
\(277\) −11.3305 19.6250i −0.680783 1.17915i −0.974742 0.223333i \(-0.928306\pi\)
0.293959 0.955818i \(-0.405027\pi\)
\(278\) 20.1131 1.20630
\(279\) 21.9627 + 14.2985i 1.31487 + 0.856031i
\(280\) −3.00000 −0.179284
\(281\) 7.77394 + 13.4649i 0.463754 + 0.803246i 0.999144 0.0413590i \(-0.0131687\pi\)
−0.535390 + 0.844605i \(0.679835\pi\)
\(282\) −4.93205 20.5955i −0.293699 1.22644i
\(283\) −0.322689 + 0.558913i −0.0191819 + 0.0332240i −0.875457 0.483296i \(-0.839439\pi\)
0.856275 + 0.516520i \(0.172773\pi\)
\(284\) −19.4244 + 33.6440i −1.15262 + 1.99640i
\(285\) −0.532810 2.22493i −0.0315610 0.131794i
\(286\) −5.51414 9.55077i −0.326058 0.564749i
\(287\) 5.83502 0.344430
\(288\) 8.76394 + 5.70566i 0.516420 + 0.336209i
\(289\) −5.97173 −0.351278
\(290\) 1.74293 + 3.01885i 0.102348 + 0.177273i
\(291\) 20.3492 + 6.04039i 1.19289 + 0.354094i
\(292\) −13.0848 + 22.6636i −0.765731 + 1.32629i
\(293\) 0.688716 1.19289i 0.0402352 0.0696895i −0.845207 0.534440i \(-0.820523\pi\)
0.885442 + 0.464750i \(0.153856\pi\)
\(294\) −21.2877 + 20.1781i −1.24152 + 1.17681i
\(295\) 2.51414 + 4.35461i 0.146379 + 0.253535i
\(296\) 1.70739 0.0992400
\(297\) 5.78807 16.2561i 0.335858 0.943276i
\(298\) 44.4021 2.57214
\(299\) 2.72606 + 4.72168i 0.157652 + 0.273062i
\(300\) 5.43165 5.14853i 0.313596 0.297250i
\(301\) 2.66044 4.60802i 0.153345 0.265602i
\(302\) −1.58936 + 2.75285i −0.0914573 + 0.158409i
\(303\) −19.3774 5.75194i −1.11320 0.330440i
\(304\) 3.98133 + 6.89586i 0.228345 + 0.395505i
\(305\) 7.34916 0.420812
\(306\) 22.3305 11.3457i 1.27655 0.648592i
\(307\) −7.98546 −0.455754 −0.227877 0.973690i \(-0.573178\pi\)
−0.227877 + 0.973690i \(0.573178\pi\)
\(308\) −3.68872 6.38904i −0.210184 0.364050i
\(309\) 0.118031 + 0.492881i 0.00671458 + 0.0280390i
\(310\) −10.9813 + 19.0202i −0.623697 + 1.08028i
\(311\) −4.81635 + 8.34216i −0.273110 + 0.473040i −0.969657 0.244471i \(-0.921386\pi\)
0.696547 + 0.717512i \(0.254719\pi\)
\(312\) −3.10896 12.9825i −0.176010 0.734991i
\(313\) 12.2685 + 21.2496i 0.693455 + 1.20110i 0.970699 + 0.240300i \(0.0772458\pi\)
−0.277244 + 0.960800i \(0.589421\pi\)
\(314\) −39.3966 −2.22328
\(315\) −0.0824893 + 1.54020i −0.00464774 + 0.0867806i
\(316\) −34.8114 −1.95829
\(317\) 10.1746 + 17.6229i 0.571461 + 0.989800i 0.996416 + 0.0845855i \(0.0269566\pi\)
−0.424955 + 0.905215i \(0.639710\pi\)
\(318\) 20.9909 + 6.23089i 1.17711 + 0.349411i
\(319\) −2.30221 + 3.98755i −0.128899 + 0.223260i
\(320\) 1.64631 2.85148i 0.0920313 0.159403i
\(321\) 2.35369 2.23101i 0.131370 0.124523i
\(322\) 2.66771 + 4.62061i 0.148666 + 0.257497i
\(323\) 4.38650 0.244072
\(324\) 22.9298 31.4085i 1.27388 1.74492i
\(325\) −1.32088 −0.0732695
\(326\) −19.7453 34.1998i −1.09359 1.89415i
\(327\) 6.97406 6.61054i 0.385666 0.365564i
\(328\) 33.1113 57.3504i 1.82827 3.16665i
\(329\) −1.25020 + 2.16541i −0.0689257 + 0.119383i
\(330\) 13.8633 + 4.11514i 0.763149 + 0.226531i
\(331\) −8.22153 14.2401i −0.451896 0.782707i 0.546608 0.837389i \(-0.315919\pi\)
−0.998504 + 0.0546819i \(0.982586\pi\)
\(332\) 6.66458 0.365766
\(333\) 0.0469471 0.876576i 0.00257269 0.0480360i
\(334\) 15.4996 0.848100
\(335\) −4.72426 8.18266i −0.258114 0.447066i
\(336\) −1.25020 5.22064i −0.0682040 0.284809i
\(337\) −2.44852 + 4.24096i −0.133379 + 0.231020i −0.924977 0.380023i \(-0.875916\pi\)
0.791598 + 0.611042i \(0.209249\pi\)
\(338\) 14.1486 24.5062i 0.769584 1.33296i
\(339\) 3.14683 + 13.1407i 0.170913 + 0.713704i
\(340\) 7.17458 + 12.4267i 0.389096 + 0.673934i
\(341\) −29.0101 −1.57099
\(342\) 8.88197 4.51277i 0.480282 0.244023i
\(343\) 7.06201 0.381313
\(344\) −30.1938 52.2972i −1.62794 2.81967i
\(345\) −6.85369 2.03443i −0.368991 0.109530i
\(346\) −10.7922 + 18.6927i −0.580193 + 1.00492i
\(347\) −11.1372 + 19.2903i −0.597878 + 1.03556i 0.395256 + 0.918571i \(0.370656\pi\)
−0.993134 + 0.116984i \(0.962677\pi\)
\(348\) −7.53101 + 7.13846i −0.403704 + 0.382662i
\(349\) 1.47173 + 2.54910i 0.0787797 + 0.136450i 0.902724 0.430221i \(-0.141564\pi\)
−0.823944 + 0.566671i \(0.808231\pi\)
\(350\) −1.29261 −0.0690929
\(351\) −6.75073 + 1.23917i −0.360327 + 0.0661420i
\(352\) −11.5761 −0.617011
\(353\) −9.41478 16.3069i −0.501098 0.867927i −0.999999 0.00126845i \(-0.999596\pi\)
0.498901 0.866659i \(-0.333737\pi\)
\(354\) −15.8916 + 15.0632i −0.844627 + 0.800602i
\(355\) −4.49546 + 7.78637i −0.238594 + 0.413258i
\(356\) 6.48133 11.2260i 0.343510 0.594976i
\(357\) −2.83502 0.841540i −0.150045 0.0445390i
\(358\) 1.33956 + 2.32018i 0.0707978 + 0.122625i
\(359\) −31.8770 −1.68241 −0.841203 0.540720i \(-0.818152\pi\)
−0.841203 + 0.540720i \(0.818152\pi\)
\(360\) 14.6700 + 9.55077i 0.773179 + 0.503370i
\(361\) −17.2553 −0.908172
\(362\) 15.9271 + 27.5866i 0.837110 + 1.44992i
\(363\) 0.0114049 + 0.0476252i 0.000598604 + 0.00249968i
\(364\) −1.46719 + 2.54125i −0.0769016 + 0.133198i
\(365\) −3.02827 + 5.24512i −0.158507 + 0.274542i
\(366\) 7.45305 + 31.1228i 0.389577 + 1.62681i
\(367\) 9.17458 + 15.8908i 0.478909 + 0.829495i 0.999708 0.0241848i \(-0.00769900\pi\)
−0.520798 + 0.853680i \(0.674366\pi\)
\(368\) 24.8825 1.29709
\(369\) −28.5333 18.5763i −1.48539 0.967044i
\(370\) 0.735663 0.0382453
\(371\) −1.29261 2.23887i −0.0671090 0.116236i
\(372\) −62.6747 18.6042i −3.24953 0.964582i
\(373\) 1.09936 1.90414i 0.0569226 0.0985929i −0.836160 0.548486i \(-0.815205\pi\)
0.893083 + 0.449893i \(0.148538\pi\)
\(374\) −13.8633 + 24.0119i −0.716854 + 1.24163i
\(375\) 1.25707 1.19154i 0.0649147 0.0615311i
\(376\) 14.1887 + 24.5756i 0.731727 + 1.26739i
\(377\) 1.83141 0.0943226
\(378\) −6.60623 + 1.21265i −0.339788 + 0.0623717i
\(379\) 15.4713 0.794709 0.397354 0.917665i \(-0.369928\pi\)
0.397354 + 0.917665i \(0.369928\pi\)
\(380\) 2.85369 + 4.94274i 0.146391 + 0.253557i
\(381\) 22.4909 21.3186i 1.15225 1.09219i
\(382\) 21.2877 36.8713i 1.08917 1.88650i
\(383\) −3.85369 + 6.67479i −0.196915 + 0.341066i −0.947526 0.319677i \(-0.896426\pi\)
0.750612 + 0.660743i \(0.229759\pi\)
\(384\) 25.3214 + 7.51633i 1.29218 + 0.383566i
\(385\) −0.853695 1.47864i −0.0435083 0.0753586i
\(386\) 67.1715 3.41894
\(387\) −27.6796 + 14.0635i −1.40704 + 0.714890i
\(388\) −52.9536 −2.68831
\(389\) 12.3163 + 21.3325i 0.624464 + 1.08160i 0.988644 + 0.150274i \(0.0480157\pi\)
−0.364181 + 0.931328i \(0.618651\pi\)
\(390\) −1.33956 5.59378i −0.0678311 0.283252i
\(391\) 6.85369 11.8709i 0.346606 0.600340i
\(392\) 19.6514 34.0372i 0.992544 1.71914i
\(393\) −2.42024 10.1066i −0.122085 0.509808i
\(394\) 17.9198 + 31.0381i 0.902789 + 1.56368i
\(395\) −8.05655 −0.405369
\(396\) −2.30221 + 42.9859i −0.115690 + 2.16012i
\(397\) −6.77301 −0.339928 −0.169964 0.985450i \(-0.554365\pi\)
−0.169964 + 0.985450i \(0.554365\pi\)
\(398\) 31.0005 + 53.6945i 1.55392 + 2.69146i
\(399\) −1.12763 0.334723i −0.0564522 0.0167571i
\(400\) −3.01414 + 5.22064i −0.150707 + 0.261032i
\(401\) 9.24980 16.0211i 0.461913 0.800057i −0.537143 0.843491i \(-0.680497\pi\)
0.999056 + 0.0434343i \(0.0138299\pi\)
\(402\) 29.8615 28.3050i 1.48936 1.41172i
\(403\) 5.76940 + 9.99290i 0.287394 + 0.497782i
\(404\) 50.4249 2.50873
\(405\) 5.30675 7.26900i 0.263694 0.361200i
\(406\) 1.79221 0.0889459
\(407\) 0.485863 + 0.841540i 0.0240833 + 0.0417136i
\(408\) −24.3588 + 23.0891i −1.20594 + 1.14308i
\(409\) 6.70739 11.6175i 0.331659 0.574450i −0.651178 0.758925i \(-0.725725\pi\)
0.982837 + 0.184474i \(0.0590583\pi\)
\(410\) 14.2667 24.7106i 0.704581 1.22037i
\(411\) −9.41478 2.79466i −0.464397 0.137850i
\(412\) −0.632168 1.09495i −0.0311447 0.0539442i
\(413\) 2.58522 0.127210
\(414\) 1.66498 31.0877i 0.0818292 1.52788i
\(415\) 1.54241 0.0757140
\(416\) 2.30221 + 3.98755i 0.112875 + 0.195506i
\(417\) 3.22699 + 13.4754i 0.158026 + 0.659893i
\(418\) −5.51414 + 9.55077i −0.269705 + 0.467143i
\(419\) 16.5575 28.6784i 0.808886 1.40103i −0.104751 0.994499i \(-0.533404\pi\)
0.913636 0.406532i \(-0.133262\pi\)
\(420\) −0.896105 3.74200i −0.0437255 0.182591i
\(421\) 7.34916 + 12.7291i 0.358176 + 0.620379i 0.987656 0.156637i \(-0.0500654\pi\)
−0.629480 + 0.777017i \(0.716732\pi\)
\(422\) −13.5196 −0.658124
\(423\) 13.0073 6.60876i 0.632435 0.321329i
\(424\) −29.3401 −1.42488
\(425\) 1.66044 + 2.87597i 0.0805433 + 0.139505i
\(426\) −37.5333 11.1413i −1.81850 0.539797i
\(427\) 1.88924 3.27225i 0.0914266 0.158355i
\(428\) −4.04514 + 7.00639i −0.195529 + 0.338667i
\(429\) 5.51414 5.22672i 0.266225 0.252348i
\(430\) −13.0096 22.5333i −0.627379 1.08665i
\(431\) −32.7549 −1.57775 −0.788873 0.614556i \(-0.789335\pi\)
−0.788873 + 0.614556i \(0.789335\pi\)
\(432\) −10.5069 + 29.5091i −0.505512 + 1.41976i
\(433\) −11.8314 −0.568581 −0.284291 0.958738i \(-0.591758\pi\)
−0.284291 + 0.958738i \(0.591758\pi\)
\(434\) 5.64591 + 9.77900i 0.271012 + 0.469407i
\(435\) −1.74293 + 1.65208i −0.0835672 + 0.0792113i
\(436\) −11.9859 + 20.7601i −0.574019 + 0.994230i
\(437\) 2.72606 4.72168i 0.130405 0.225869i
\(438\) −25.2835 7.50509i −1.20809 0.358607i
\(439\) −4.15591 7.19824i −0.198351 0.343553i 0.749643 0.661842i \(-0.230225\pi\)
−0.947994 + 0.318289i \(0.896892\pi\)
\(440\) −19.3774 −0.923783
\(441\) −16.9344 11.0249i −0.806399 0.524997i
\(442\) 11.0283 0.524561
\(443\) 14.5876 + 25.2664i 0.693076 + 1.20044i 0.970825 + 0.239789i \(0.0770781\pi\)
−0.277750 + 0.960654i \(0.589589\pi\)
\(444\) 0.510000 + 2.12968i 0.0242035 + 0.101070i
\(445\) 1.50000 2.59808i 0.0711068 0.123161i
\(446\) −10.8920 + 18.8654i −0.515750 + 0.893305i
\(447\) 7.12397 + 29.7486i 0.336952 + 1.40706i
\(448\) −0.846426 1.46605i −0.0399899 0.0692645i
\(449\) 18.9717 0.895331 0.447666 0.894201i \(-0.352256\pi\)
0.447666 + 0.894201i \(0.352256\pi\)
\(450\) 6.32088 + 4.11514i 0.297969 + 0.193990i
\(451\) 37.6892 1.77472
\(452\) −16.8542 29.1924i −0.792756 1.37309i
\(453\) −2.09936 0.623167i −0.0986365 0.0292790i
\(454\) −4.17458 + 7.23058i −0.195923 + 0.339348i
\(455\) −0.339558 + 0.588131i −0.0159187 + 0.0275720i
\(456\) −9.68872 + 9.18370i −0.453716 + 0.430066i
\(457\) 11.6176 + 20.1223i 0.543450 + 0.941283i 0.998703 + 0.0509206i \(0.0162155\pi\)
−0.455253 + 0.890362i \(0.650451\pi\)
\(458\) −63.6374 −2.97358
\(459\) 11.1842 + 13.1407i 0.522033 + 0.613354i
\(460\) 17.8350 0.831562
\(461\) −2.21285 3.83277i −0.103063 0.178510i 0.809882 0.586592i \(-0.199531\pi\)
−0.912945 + 0.408082i \(0.866198\pi\)
\(462\) 5.39611 5.11484i 0.251050 0.237964i
\(463\) 9.75434 16.8950i 0.453322 0.785178i −0.545268 0.838262i \(-0.683572\pi\)
0.998590 + 0.0530845i \(0.0169053\pi\)
\(464\) 4.17912 7.23844i 0.194011 0.336036i
\(465\) −14.5051 4.30564i −0.672656 0.199669i
\(466\) −34.7362 60.1648i −1.60912 2.78708i
\(467\) −24.5935 −1.13805 −0.569026 0.822320i \(-0.692679\pi\)
−0.569026 + 0.822320i \(0.692679\pi\)
\(468\) 15.2649 7.75581i 0.705619 0.358512i
\(469\) −4.85783 −0.224314
\(470\) 6.11350 + 10.5889i 0.281995 + 0.488429i
\(471\) −6.32088 26.3950i −0.291251 1.21622i
\(472\) 14.6700 25.4093i 0.675243 1.16956i
\(473\) 17.1842 29.7639i 0.790129 1.36854i
\(474\) −8.17044 34.1185i −0.375281 1.56711i
\(475\) 0.660442 + 1.14392i 0.0303032 + 0.0524866i
\(476\) 7.37743 0.338144
\(477\) −0.806748 + 15.0632i −0.0369384 + 0.689698i
\(478\) −10.5561 −0.482827
\(479\) −16.3774 28.3665i −0.748304 1.29610i −0.948635 0.316372i \(-0.897535\pi\)
0.200331 0.979728i \(-0.435798\pi\)
\(480\) −5.78807 1.71812i −0.264188 0.0784209i
\(481\) 0.193252 0.334723i 0.00881155 0.0152621i
\(482\) −4.53101 + 7.84793i −0.206382 + 0.357464i
\(483\) −2.66771 + 2.52866i −0.121385 + 0.115058i
\(484\) −0.0610840 0.105801i −0.00277655 0.00480912i
\(485\) −12.2553 −0.556483
\(486\) 36.1651 + 15.1017i 1.64048 + 0.685025i
\(487\) −6.03735 −0.273578 −0.136789 0.990600i \(-0.543678\pi\)
−0.136789 + 0.990600i \(0.543678\pi\)
\(488\) −21.4412 37.1373i −0.970600 1.68113i
\(489\) 19.7453 18.7161i 0.892912 0.846369i
\(490\) 8.46719 14.6656i 0.382509 0.662524i
\(491\) −7.22153 + 12.5081i −0.325903 + 0.564480i −0.981695 0.190461i \(-0.939002\pi\)
0.655792 + 0.754942i \(0.272335\pi\)
\(492\) 81.4254 + 24.1701i 3.67094 + 1.08967i
\(493\) −2.30221 3.98755i −0.103686 0.179590i
\(494\) 4.38650 0.197358
\(495\) −0.532810 + 9.94840i −0.0239480 + 0.447147i
\(496\) 52.6610 2.36455
\(497\) 2.31128 + 4.00326i 0.103675 + 0.179571i
\(498\) 1.56422 + 6.53192i 0.0700942 + 0.292702i
\(499\) −10.4859 + 18.1620i −0.469412 + 0.813045i −0.999388 0.0349673i \(-0.988867\pi\)
0.529977 + 0.848012i \(0.322201\pi\)
\(500\) −2.16044 + 3.74200i −0.0966179 + 0.167347i
\(501\) 2.48679 + 10.3844i 0.111102 + 0.463943i
\(502\) 8.64591 + 14.9751i 0.385886 + 0.668374i
\(503\) −5.31728 −0.237086 −0.118543 0.992949i \(-0.537822\pi\)
−0.118543 + 0.992949i \(0.537822\pi\)
\(504\) 8.02374 4.07672i 0.357406 0.181591i
\(505\) 11.6700 0.519310
\(506\) 17.2311 + 29.8452i 0.766017 + 1.32678i
\(507\) 18.6887 + 5.54750i 0.829995 + 0.246373i
\(508\) −38.6537 + 66.9502i −1.71498 + 2.97043i
\(509\) −9.11350 + 15.7850i −0.403949 + 0.699659i −0.994198 0.107561i \(-0.965696\pi\)
0.590250 + 0.807221i \(0.299029\pi\)
\(510\) −10.4955 + 9.94840i −0.464747 + 0.440522i
\(511\) 1.55695 + 2.69671i 0.0688753 + 0.119296i
\(512\) −49.3365 −2.18038
\(513\) 4.44852 + 5.22672i 0.196407 + 0.230765i
\(514\) −45.2545 −1.99609
\(515\) −0.146305 0.253408i −0.00644698 0.0111665i
\(516\) 56.2130 53.2829i 2.47464 2.34565i
\(517\) −8.07522 + 13.9867i −0.355148 + 0.615134i
\(518\) 0.189116 0.327558i 0.00830927 0.0143921i
\(519\) −14.2553 4.23149i −0.625737 0.185742i
\(520\) 3.85369 + 6.67479i 0.168996 + 0.292709i
\(521\) 40.1232 1.75783 0.878915 0.476978i \(-0.158268\pi\)
0.878915 + 0.476978i \(0.158268\pi\)
\(522\) −8.76394 5.70566i −0.383587 0.249730i
\(523\) 18.9873 0.830257 0.415129 0.909763i \(-0.363737\pi\)
0.415129 + 0.909763i \(0.363737\pi\)
\(524\) 12.9627 + 22.4520i 0.566276 + 0.980819i
\(525\) −0.207389 0.866025i −0.00905121 0.0377964i
\(526\) −7.83916 + 13.5778i −0.341804 + 0.592021i
\(527\) 14.5051 25.1235i 0.631851 1.09440i
\(528\) −8.07522 33.7209i −0.351429 1.46751i
\(529\) 2.98133 + 5.16381i 0.129623 + 0.224513i
\(530\) −12.6418 −0.549123
\(531\) −12.6418 8.23028i −0.548606 0.357164i
\(532\) 2.93438 0.127221
\(533\) −7.49546 12.9825i −0.324665 0.562336i
\(534\) 12.5237 + 3.71751i 0.541955 + 0.160872i
\(535\) −0.936184 + 1.62152i −0.0404748 + 0.0701043i
\(536\) −27.5661 + 47.7460i −1.19068 + 2.06231i
\(537\) −1.33956 + 1.26973i −0.0578062 + 0.0547931i
\(538\) −12.4745 21.6064i −0.537812 0.931518i
\(539\) 22.3684 0.963473
\(540\) −7.53101 + 21.1512i −0.324083 + 0.910205i
\(541\) 16.5279 0.710589 0.355294 0.934754i \(-0.384381\pi\)
0.355294 + 0.934754i \(0.384381\pi\)
\(542\) −8.30221 14.3799i −0.356611 0.617668i
\(543\) −15.9271 + 15.0969i −0.683498 + 0.647871i
\(544\) 5.78807 10.0252i 0.248162 0.429829i
\(545\) −2.77394 + 4.80460i −0.118822 + 0.205806i
\(546\) −2.83502 0.841540i −0.121328 0.0360146i
\(547\) −8.83683 15.3058i −0.377835 0.654430i 0.612912 0.790151i \(-0.289998\pi\)
−0.990747 + 0.135721i \(0.956665\pi\)
\(548\) 24.4996 1.04657
\(549\) −19.6559 + 9.98682i −0.838894 + 0.426227i
\(550\) −8.34916 −0.356009
\(551\) −0.915706 1.58605i −0.0390104 0.0675680i
\(552\) 9.71519 + 40.5691i 0.413506 + 1.72674i
\(553\) −2.07108 + 3.58722i −0.0880715 + 0.152544i
\(554\) −28.4864 + 49.3399i −1.21027 + 2.09625i
\(555\) 0.118031 + 0.492881i 0.00501016 + 0.0209216i
\(556\) −17.2835 29.9360i −0.732985 1.26957i
\(557\) 17.3401 0.734723 0.367362 0.930078i \(-0.380261\pi\)
0.367362 + 0.930078i \(0.380261\pi\)
\(558\) 3.52374 65.7937i 0.149172 2.78527i
\(559\) −13.6700 −0.578181
\(560\) 1.54968 + 2.68412i 0.0654859 + 0.113425i
\(561\) −18.3118 5.43563i −0.773125 0.229492i
\(562\) 19.5447 33.8525i 0.824445 1.42798i
\(563\) −6.49727 + 11.2536i −0.273827 + 0.474283i −0.969839 0.243748i \(-0.921623\pi\)
0.696011 + 0.718031i \(0.254956\pi\)
\(564\) −26.4157 + 25.0388i −1.11230 + 1.05432i
\(565\) −3.90064 6.75611i −0.164101 0.284232i
\(566\) 1.62257 0.0682016
\(567\) −1.87237 4.23149i −0.0786321 0.177706i
\(568\) 52.4623 2.20127
\(569\) 8.34009 + 14.4455i 0.349635 + 0.605585i 0.986184 0.165651i \(-0.0529724\pi\)
−0.636550 + 0.771236i \(0.719639\pi\)
\(570\) −4.17458 + 3.95698i −0.174854 + 0.165740i
\(571\) −10.0000 + 17.3205i −0.418487 + 0.724841i −0.995788 0.0916910i \(-0.970773\pi\)
0.577301 + 0.816532i \(0.304106\pi\)
\(572\) −9.47679 + 16.4143i −0.396245 + 0.686316i
\(573\) 28.1186 + 8.34663i 1.17467 + 0.348686i
\(574\) −7.33502 12.7046i −0.306158 0.530281i
\(575\) 4.12763 0.172134
\(576\) −0.528274 + 9.86370i −0.0220114 + 0.410987i
\(577\) −23.5953 −0.982287 −0.491144 0.871079i \(-0.663421\pi\)
−0.491144 + 0.871079i \(0.663421\pi\)
\(578\) 7.50687 + 13.0023i 0.312245 + 0.540823i
\(579\) 10.7771 + 45.0037i 0.447883 + 1.87029i
\(580\) 2.99546 5.18830i 0.124380 0.215432i
\(581\) 0.396505 0.686767i 0.0164498 0.0284919i
\(582\) −12.4285 51.8995i −0.515179 2.15130i
\(583\) −8.34916 14.4612i −0.345787 0.598920i
\(584\) 35.3401 1.46238
\(585\) 3.53281 1.79496i 0.146064 0.0742124i
\(586\) −3.46305 −0.143057
\(587\) −14.0638 24.3592i −0.580476 1.00541i −0.995423 0.0955681i \(-0.969533\pi\)
0.414947 0.909846i \(-0.363800\pi\)
\(588\) 48.3255 + 14.3448i 1.99291 + 0.591570i
\(589\) 5.76940 9.99290i 0.237724 0.411750i
\(590\) 6.32088 10.9481i 0.260227 0.450726i
\(591\) −17.9198 + 16.9858i −0.737124 + 0.698702i
\(592\) −0.881969 1.52761i −0.0362487 0.0627846i
\(593\) −9.17872 −0.376925 −0.188462 0.982080i \(-0.560350\pi\)
−0.188462 + 0.982080i \(0.560350\pi\)
\(594\) −42.6706 + 7.83265i −1.75079 + 0.321378i
\(595\) 1.70739 0.0699961
\(596\) −38.1555 66.0873i −1.56291 2.70704i
\(597\) −31.0005 + 29.3846i −1.26877 + 1.20263i
\(598\) 6.85369 11.8709i 0.280268 0.485439i
\(599\) 15.7357 27.2550i 0.642942 1.11361i −0.341831 0.939761i \(-0.611047\pi\)
0.984773 0.173846i \(-0.0556196\pi\)
\(600\) −9.68872 2.87597i −0.395540 0.117411i
\(601\) 14.6327 + 25.3446i 0.596880 + 1.03383i 0.993279 + 0.115748i \(0.0369265\pi\)
−0.396398 + 0.918079i \(0.629740\pi\)
\(602\) −13.3774 −0.545223
\(603\) 23.7549 + 15.4653i 0.967373 + 0.629797i
\(604\) 5.46305 0.222288
\(605\) −0.0141369 0.0244859i −0.000574748 0.000995493i
\(606\) 11.8350 + 49.4212i 0.480765 + 2.00760i
\(607\) 22.1017 38.2813i 0.897080 1.55379i 0.0658708 0.997828i \(-0.479017\pi\)
0.831209 0.555960i \(-0.187649\pi\)
\(608\) 2.30221 3.98755i 0.0933670 0.161716i
\(609\) 0.287546 + 1.20075i 0.0116520 + 0.0486568i
\(610\) −9.23840 16.0014i −0.374052 0.647877i
\(611\) 6.42385 0.259881
\(612\) −36.0757 23.4867i −1.45828 0.949394i
\(613\) −35.1715 −1.42056 −0.710282 0.703918i \(-0.751432\pi\)
−0.710282 + 0.703918i \(0.751432\pi\)
\(614\) 10.0383 + 17.3868i 0.405112 + 0.701674i
\(615\) 18.8446 + 5.59378i 0.759889 + 0.225563i
\(616\) −4.98133 + 8.62791i −0.200703 + 0.347628i
\(617\) 3.71285 6.43085i 0.149474 0.258896i −0.781559 0.623831i \(-0.785575\pi\)
0.931033 + 0.364935i \(0.118909\pi\)
\(618\) 0.924779 0.876576i 0.0372001 0.0352610i
\(619\) −4.27394 7.40268i −0.171784 0.297539i 0.767260 0.641337i \(-0.221620\pi\)
−0.939044 + 0.343798i \(0.888286\pi\)
\(620\) 37.7458 1.51591
\(621\) 21.0953 3.87228i 0.846527 0.155389i
\(622\) 24.2179 0.971050
\(623\) −0.771205 1.33577i −0.0308977 0.0535164i
\(624\) −10.0096 + 9.48786i −0.400705 + 0.379818i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 30.8446 53.4245i 1.23280 2.13527i
\(627\) −7.28354 2.16202i −0.290876 0.0863429i
\(628\) 33.8542 + 58.6372i 1.35093 + 2.33988i
\(629\) −0.971726 −0.0387453
\(630\) 3.45719 1.75654i 0.137738 0.0699821i
\(631\) −2.36836 −0.0942829 −0.0471415 0.998888i \(-0.515011\pi\)
−0.0471415 + 0.998888i \(0.515011\pi\)
\(632\) 23.5051 + 40.7120i 0.934981 + 1.61944i
\(633\) −2.16912 9.05788i −0.0862146 0.360019i
\(634\) 25.5803 44.3064i 1.01592 1.75963i
\(635\) −8.94578 + 15.4946i −0.355003 + 0.614883i
\(636\) −8.76394 36.5968i −0.347513 1.45116i
\(637\) −4.44852 7.70506i −0.176257 0.305285i
\(638\) 11.5761 0.458304
\(639\) 1.44252 26.9342i 0.0570654 1.06550i
\(640\) −15.2498 −0.602801
\(641\) 0.0665480 + 0.115265i 0.00262849 + 0.00455268i 0.867337 0.497722i \(-0.165830\pi\)
−0.864708 + 0.502275i \(0.832497\pi\)
\(642\) −7.81635 2.32018i −0.308487 0.0915703i
\(643\) 11.3232 19.6124i 0.446544 0.773437i −0.551614 0.834099i \(-0.685988\pi\)
0.998158 + 0.0606623i \(0.0193213\pi\)
\(644\) 4.58482 7.94114i 0.180667 0.312925i
\(645\) 13.0096 12.3315i 0.512253 0.485552i
\(646\) −5.51414 9.55077i −0.216951 0.375770i
\(647\) 46.3912 1.82383 0.911913 0.410385i \(-0.134606\pi\)
0.911913 + 0.410385i \(0.134606\pi\)
\(648\) −52.2148 5.60907i −2.05119 0.220345i
\(649\) 16.6983 0.655466
\(650\) 1.66044 + 2.87597i 0.0651279 + 0.112805i
\(651\) −5.64591 + 5.35162i −0.221280 + 0.209746i
\(652\) −33.9349 + 58.7770i −1.32899 + 2.30188i
\(653\) −18.2029 + 31.5283i −0.712333 + 1.23380i 0.251647 + 0.967819i \(0.419028\pi\)
−0.963979 + 0.265977i \(0.914305\pi\)
\(654\) −23.1600 6.87476i −0.905629 0.268824i
\(655\) 3.00000 + 5.19615i 0.117220 + 0.203030i
\(656\) −68.4158 −2.67119
\(657\) 0.971726 18.1436i 0.0379106 0.707851i
\(658\) 6.28635 0.245067
\(659\) −9.57068 16.5769i −0.372821 0.645745i 0.617177 0.786824i \(-0.288276\pi\)
−0.989998 + 0.141079i \(0.954943\pi\)
\(660\) −5.78807 24.1701i −0.225300 0.940819i
\(661\) −19.9536 + 34.5606i −0.776104 + 1.34425i 0.158067 + 0.987428i \(0.449474\pi\)
−0.934172 + 0.356824i \(0.883860\pi\)
\(662\) −20.6700 + 35.8016i −0.803364 + 1.39147i
\(663\) 1.76940 + 7.38874i 0.0687178 + 0.286955i
\(664\) −4.50000 7.79423i −0.174634 0.302475i
\(665\) 0.679116 0.0263350
\(666\) −1.96759 + 0.999697i −0.0762425 + 0.0387375i
\(667\) −5.72298 −0.221595
\(668\) −13.3191 23.0693i −0.515331 0.892579i
\(669\) −14.3870 4.27061i −0.556235 0.165111i
\(670\) −11.8774 + 20.5723i −0.458865 + 0.794778i
\(671\) 12.2029 21.1360i 0.471086 0.815945i
\(672\) −2.25293 + 2.13550i −0.0869087 + 0.0823787i
\(673\) −11.8254 20.4822i −0.455836 0.789532i 0.542899 0.839798i \(-0.317326\pi\)
−0.998736 + 0.0502658i \(0.983993\pi\)
\(674\) 12.3118 0.474233
\(675\) −1.74293 + 4.89512i −0.0670855 + 0.188413i
\(676\) −48.6327 −1.87049
\(677\) 7.40157 + 12.8199i 0.284465 + 0.492709i 0.972479 0.232989i \(-0.0748506\pi\)
−0.688014 + 0.725697i \(0.741517\pi\)
\(678\) 24.6555 23.3704i 0.946889 0.897533i
\(679\) −3.15044 + 5.45673i −0.120903 + 0.209410i
\(680\) 9.68872 16.7813i 0.371545 0.643535i
\(681\) −5.51414 1.63680i −0.211302 0.0627223i
\(682\) 36.4677 + 63.1639i 1.39642 + 2.41867i
\(683\) −4.95252 −0.189503 −0.0947515 0.995501i \(-0.530206\pi\)
−0.0947515 + 0.995501i \(0.530206\pi\)
\(684\) −14.3492 9.34186i −0.548654 0.357195i
\(685\) 5.67004 0.216641
\(686\) −8.87743 15.3762i −0.338942 0.587065i
\(687\) −10.2101 42.6359i −0.389540 1.62666i
\(688\) −31.1938 + 54.0292i −1.18925 + 2.05984i
\(689\) −3.32088 + 5.75194i −0.126516 + 0.219131i
\(690\) 4.18598 + 17.4800i 0.159358 + 0.665453i
\(691\) 9.60442 + 16.6353i 0.365369 + 0.632838i 0.988835 0.149012i \(-0.0476093\pi\)
−0.623466 + 0.781851i \(0.714276\pi\)
\(692\) 37.0957 1.41017
\(693\) 4.29261 + 2.79466i 0.163063 + 0.106160i
\(694\) 56.0011 2.12577
\(695\) −4.00000 6.92820i −0.151729 0.262802i
\(696\) 13.4335 + 3.98755i 0.509194 + 0.151148i
\(697\) −18.8446 + 32.6398i −0.713791 + 1.23632i
\(698\) 3.70012 6.40880i 0.140052 0.242577i
\(699\) 34.7362 32.9256i 1.31384 1.24536i
\(700\) 1.11076 + 1.92390i 0.0419829 + 0.0727165i
\(701\) −29.3492 −1.10850 −0.554251 0.832349i \(-0.686995\pi\)
−0.554251 + 0.832349i \(0.686995\pi\)
\(702\) 11.1842 + 13.1407i 0.422120 + 0.495963i
\(703\) −0.386505 −0.0145773
\(704\) −5.46719 9.46945i −0.206052 0.356893i
\(705\) −6.11350 + 5.79483i −0.230248 + 0.218246i
\(706\) −23.6700 + 40.9977i −0.890834 + 1.54297i
\(707\) 3.00000 5.19615i 0.112827 0.195421i
\(708\) 36.0757 + 10.7086i 1.35581 + 0.402455i
\(709\) −19.3633 33.5382i −0.727204 1.25955i −0.958060 0.286566i \(-0.907486\pi\)
0.230857 0.972988i \(-0.425847\pi\)
\(710\) 22.6044 0.848329
\(711\) 21.5479 10.9481i 0.808108 0.410586i
\(712\) −17.5051 −0.656030
\(713\) −18.0288 31.2268i −0.675184 1.16945i
\(714\) 1.73153 + 7.23058i 0.0648008 + 0.270598i
\(715\) −2.19325 + 3.79882i −0.0820230 + 0.142068i
\(716\) 2.30221 3.98755i 0.0860377 0.149022i
\(717\) −1.69365 7.07243i −0.0632506 0.264125i
\(718\) 40.0716 + 69.4061i 1.49546 + 2.59021i
\(719\) −15.0848 −0.562569 −0.281284 0.959624i \(-0.590760\pi\)
−0.281284 + 0.959624i \(0.590760\pi\)
\(720\) 0.967190 18.0589i 0.0360450 0.673017i
\(721\) −0.150442 −0.00560275
\(722\) 21.6910 + 37.5700i 0.807257 + 1.39821i
\(723\) −5.98494 1.77655i −0.222582 0.0660706i
\(724\) 27.3729 47.4112i 1.01731 1.76203i
\(725\) 0.693252 1.20075i 0.0257467 0.0445947i
\(726\) 0.0893579 0.0847002i 0.00331638 0.00314352i
\(727\) −6.17277 10.6916i −0.228936 0.396528i 0.728557 0.684985i \(-0.240191\pi\)
−0.957493 + 0.288457i \(0.906858\pi\)
\(728\) 3.96265 0.146866
\(729\) −4.31542 + 26.6529i −0.159830 + 0.987144i
\(730\) 15.2270 0.563576
\(731\) 17.1842 + 29.7639i 0.635580 + 1.10086i
\(732\) 39.9180 37.8373i 1.47541 1.39851i
\(733\) 11.0000 19.0526i 0.406294 0.703722i −0.588177 0.808732i \(-0.700154\pi\)
0.994471 + 0.105010i \(0.0334875\pi\)
\(734\) 23.0661 39.9517i 0.851387 1.47465i
\(735\) 11.1842 + 3.31988i 0.412535 + 0.122456i
\(736\) −7.19418 12.4607i −0.265181 0.459307i
\(737\) −31.3774 −1.15580
\(738\) −4.57795 + 85.4775i −0.168517 + 3.14647i
\(739\) 29.7266 1.09351 0.546755 0.837293i \(-0.315863\pi\)
0.546755 + 0.837293i \(0.315863\pi\)
\(740\) −0.632168 1.09495i −0.0232390 0.0402511i
\(741\) 0.703781 + 2.93888i 0.0258540 + 0.107962i
\(742\) −3.24980 + 5.62882i −0.119304 + 0.206640i
\(743\) −24.1824 + 41.8851i −0.887165 + 1.53662i −0.0439537 + 0.999034i \(0.513995\pi\)
−0.843212 + 0.537582i \(0.819338\pi\)
\(744\) 20.5611 + 85.8599i 0.753806 + 3.14778i
\(745\) −8.83049 15.2948i −0.323524 0.560360i
\(746\) −5.52787 −0.202390
\(747\) −4.12530 + 2.09599i −0.150937 + 0.0766883i
\(748\) 47.6519 1.74233
\(749\) 0.481327 + 0.833682i 0.0175873 + 0.0304621i
\(750\) −4.17458 1.23917i −0.152434 0.0452481i
\(751\) 15.9102 27.5573i 0.580573 1.00558i −0.414838 0.909895i \(-0.636162\pi\)
0.995411 0.0956869i \(-0.0305047\pi\)
\(752\) 14.6586 25.3895i 0.534546 0.925860i
\(753\) −8.64591 + 8.19524i −0.315074 + 0.298651i
\(754\) −2.30221 3.98755i −0.0838416 0.145218i
\(755\) 1.26434 0.0460139
\(756\) 7.48173 + 8.79054i 0.272108 + 0.319709i
\(757\) 4.94531 0.179740 0.0898701 0.995953i \(-0.471355\pi\)
0.0898701 + 0.995953i \(0.471355\pi\)
\(758\) −19.4485 33.6858i −0.706402 1.22352i
\(759\) −17.2311 + 16.3330i −0.625450 + 0.592849i
\(760\) 3.85369 6.67479i 0.139788 0.242120i
\(761\) −17.7125 + 30.6789i −0.642076 + 1.11211i 0.342893 + 0.939375i \(0.388593\pi\)
−0.984969 + 0.172734i \(0.944740\pi\)
\(762\) −74.6898 22.1707i −2.70572 0.803160i
\(763\) 1.42618 + 2.47022i 0.0516313 + 0.0894281i
\(764\) −73.1715 −2.64725
\(765\) −8.34916 5.43563i −0.301864 0.196525i
\(766\) 19.3774 0.700135
\(767\) −3.32088 5.75194i −0.119910 0.207691i
\(768\) −12.8091 53.4887i −0.462208