Properties

Label 45.18.a.b.1.2
Level $45$
Weight $18$
Character 45.1
Self dual yes
Analytic conductor $82.450$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,18,Mod(1,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 18, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.1");
 
S:= CuspForms(chi, 18);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 45.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(82.4499393051\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{849}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 212 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 15)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-14.0688\) of defining polynomial
Character \(\chi\) \(=\) 45.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+702.477 q^{2} +362402. q^{4} -390625. q^{5} -2.67481e6 q^{7} +1.62504e8 q^{8} -2.74405e8 q^{10} +9.86334e8 q^{11} +2.81488e9 q^{13} -1.87899e9 q^{14} +6.66544e10 q^{16} -1.28501e10 q^{17} -1.22560e11 q^{19} -1.41563e11 q^{20} +6.92877e11 q^{22} -1.14646e11 q^{23} +1.52588e11 q^{25} +1.97739e12 q^{26} -9.69355e11 q^{28} +4.90027e12 q^{29} +7.64406e12 q^{31} +2.55235e13 q^{32} -9.02688e12 q^{34} +1.04485e12 q^{35} +3.18983e12 q^{37} -8.60956e13 q^{38} -6.34781e13 q^{40} +5.53137e12 q^{41} +2.42435e13 q^{43} +3.57449e14 q^{44} -8.05365e13 q^{46} +5.82161e13 q^{47} -2.25476e14 q^{49} +1.07189e14 q^{50} +1.02012e15 q^{52} +6.45746e14 q^{53} -3.85287e14 q^{55} -4.34667e14 q^{56} +3.44233e15 q^{58} +1.04433e12 q^{59} -1.56088e15 q^{61} +5.36978e15 q^{62} +9.19314e15 q^{64} -1.09956e15 q^{65} +1.31151e15 q^{67} -4.65689e15 q^{68} +7.33981e14 q^{70} +7.09230e15 q^{71} -1.17619e16 q^{73} +2.24078e15 q^{74} -4.44160e16 q^{76} -2.63826e15 q^{77} -7.14674e15 q^{79} -2.60369e16 q^{80} +3.88566e15 q^{82} -9.04707e15 q^{83} +5.01956e15 q^{85} +1.70305e16 q^{86} +1.60283e17 q^{88} +1.16786e16 q^{89} -7.52927e15 q^{91} -4.15481e16 q^{92} +4.08955e16 q^{94} +4.78750e16 q^{95} -8.32538e16 q^{97} -1.58392e17 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 356 q^{2} + 351376 q^{4} - 781250 q^{5} - 20754552 q^{7} + 211737408 q^{8} - 139062500 q^{10} + 1131629912 q^{11} - 446672524 q^{13} + 4385222016 q^{14} + 51041317120 q^{16} - 20662021036 q^{17} - 194376127216 q^{19}+ \cdots - 19\!\cdots\!04 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 702.477 1.94034 0.970168 0.242432i \(-0.0779453\pi\)
0.970168 + 0.242432i \(0.0779453\pi\)
\(3\) 0 0
\(4\) 362402. 2.76491
\(5\) −390625. −0.447214
\(6\) 0 0
\(7\) −2.67481e6 −0.175372 −0.0876858 0.996148i \(-0.527947\pi\)
−0.0876858 + 0.996148i \(0.527947\pi\)
\(8\) 1.62504e8 3.42451
\(9\) 0 0
\(10\) −2.74405e8 −0.867745
\(11\) 9.86334e8 1.38735 0.693675 0.720288i \(-0.255990\pi\)
0.693675 + 0.720288i \(0.255990\pi\)
\(12\) 0 0
\(13\) 2.81488e9 0.957065 0.478533 0.878070i \(-0.341169\pi\)
0.478533 + 0.878070i \(0.341169\pi\)
\(14\) −1.87899e9 −0.340280
\(15\) 0 0
\(16\) 6.66544e10 3.87980
\(17\) −1.28501e10 −0.446776 −0.223388 0.974730i \(-0.571712\pi\)
−0.223388 + 0.974730i \(0.571712\pi\)
\(18\) 0 0
\(19\) −1.22560e11 −1.65555 −0.827777 0.561057i \(-0.810395\pi\)
−0.827777 + 0.561057i \(0.810395\pi\)
\(20\) −1.41563e11 −1.23650
\(21\) 0 0
\(22\) 6.92877e11 2.69193
\(23\) −1.14646e11 −0.305263 −0.152631 0.988283i \(-0.548775\pi\)
−0.152631 + 0.988283i \(0.548775\pi\)
\(24\) 0 0
\(25\) 1.52588e11 0.200000
\(26\) 1.97739e12 1.85703
\(27\) 0 0
\(28\) −9.69355e11 −0.484886
\(29\) 4.90027e12 1.81902 0.909510 0.415682i \(-0.136457\pi\)
0.909510 + 0.415682i \(0.136457\pi\)
\(30\) 0 0
\(31\) 7.64406e12 1.60972 0.804859 0.593466i \(-0.202241\pi\)
0.804859 + 0.593466i \(0.202241\pi\)
\(32\) 2.55235e13 4.10361
\(33\) 0 0
\(34\) −9.02688e12 −0.866896
\(35\) 1.04485e12 0.0784286
\(36\) 0 0
\(37\) 3.18983e12 0.149298 0.0746488 0.997210i \(-0.476216\pi\)
0.0746488 + 0.997210i \(0.476216\pi\)
\(38\) −8.60956e13 −3.21233
\(39\) 0 0
\(40\) −6.34781e13 −1.53149
\(41\) 5.53137e12 0.108186 0.0540928 0.998536i \(-0.482773\pi\)
0.0540928 + 0.998536i \(0.482773\pi\)
\(42\) 0 0
\(43\) 2.42435e13 0.316311 0.158155 0.987414i \(-0.449445\pi\)
0.158155 + 0.987414i \(0.449445\pi\)
\(44\) 3.57449e14 3.83589
\(45\) 0 0
\(46\) −8.05365e13 −0.592313
\(47\) 5.82161e13 0.356625 0.178312 0.983974i \(-0.442936\pi\)
0.178312 + 0.983974i \(0.442936\pi\)
\(48\) 0 0
\(49\) −2.25476e14 −0.969245
\(50\) 1.07189e14 0.388067
\(51\) 0 0
\(52\) 1.02012e15 2.64620
\(53\) 6.45746e14 1.42468 0.712339 0.701835i \(-0.247636\pi\)
0.712339 + 0.701835i \(0.247636\pi\)
\(54\) 0 0
\(55\) −3.85287e14 −0.620442
\(56\) −4.34667e14 −0.600562
\(57\) 0 0
\(58\) 3.44233e15 3.52951
\(59\) 1.04433e12 0.000925970 0 0.000462985 1.00000i \(-0.499853\pi\)
0.000462985 1.00000i \(0.499853\pi\)
\(60\) 0 0
\(61\) −1.56088e15 −1.04247 −0.521237 0.853412i \(-0.674529\pi\)
−0.521237 + 0.853412i \(0.674529\pi\)
\(62\) 5.36978e15 3.12340
\(63\) 0 0
\(64\) 9.19314e15 4.08258
\(65\) −1.09956e15 −0.428013
\(66\) 0 0
\(67\) 1.31151e15 0.394581 0.197290 0.980345i \(-0.436786\pi\)
0.197290 + 0.980345i \(0.436786\pi\)
\(68\) −4.65689e15 −1.23529
\(69\) 0 0
\(70\) 7.33981e14 0.152178
\(71\) 7.09230e15 1.30344 0.651720 0.758459i \(-0.274048\pi\)
0.651720 + 0.758459i \(0.274048\pi\)
\(72\) 0 0
\(73\) −1.17619e16 −1.70700 −0.853501 0.521091i \(-0.825525\pi\)
−0.853501 + 0.521091i \(0.825525\pi\)
\(74\) 2.24078e15 0.289688
\(75\) 0 0
\(76\) −4.44160e16 −4.57745
\(77\) −2.63826e15 −0.243302
\(78\) 0 0
\(79\) −7.14674e15 −0.530003 −0.265001 0.964248i \(-0.585372\pi\)
−0.265001 + 0.964248i \(0.585372\pi\)
\(80\) −2.60369e16 −1.73510
\(81\) 0 0
\(82\) 3.88566e15 0.209917
\(83\) −9.04707e15 −0.440904 −0.220452 0.975398i \(-0.570753\pi\)
−0.220452 + 0.975398i \(0.570753\pi\)
\(84\) 0 0
\(85\) 5.01956e15 0.199804
\(86\) 1.70305e16 0.613749
\(87\) 0 0
\(88\) 1.60283e17 4.75100
\(89\) 1.16786e16 0.314467 0.157233 0.987561i \(-0.449743\pi\)
0.157233 + 0.987561i \(0.449743\pi\)
\(90\) 0 0
\(91\) −7.52927e15 −0.167842
\(92\) −4.15481e16 −0.844023
\(93\) 0 0
\(94\) 4.08955e16 0.691972
\(95\) 4.78750e16 0.740386
\(96\) 0 0
\(97\) −8.32538e16 −1.07856 −0.539280 0.842126i \(-0.681304\pi\)
−0.539280 + 0.842126i \(0.681304\pi\)
\(98\) −1.58392e17 −1.88066
\(99\) 0 0
\(100\) 5.52981e16 0.552981
\(101\) 1.36210e16 0.125164 0.0625818 0.998040i \(-0.480067\pi\)
0.0625818 + 0.998040i \(0.480067\pi\)
\(102\) 0 0
\(103\) 1.19030e17 0.925847 0.462923 0.886398i \(-0.346801\pi\)
0.462923 + 0.886398i \(0.346801\pi\)
\(104\) 4.57429e17 3.27748
\(105\) 0 0
\(106\) 4.53622e17 2.76436
\(107\) −3.05375e17 −1.71819 −0.859096 0.511814i \(-0.828974\pi\)
−0.859096 + 0.511814i \(0.828974\pi\)
\(108\) 0 0
\(109\) −2.94297e17 −1.41469 −0.707344 0.706869i \(-0.750107\pi\)
−0.707344 + 0.706869i \(0.750107\pi\)
\(110\) −2.70655e17 −1.20387
\(111\) 0 0
\(112\) −1.78288e17 −0.680407
\(113\) 7.25034e16 0.256562 0.128281 0.991738i \(-0.459054\pi\)
0.128281 + 0.991738i \(0.459054\pi\)
\(114\) 0 0
\(115\) 4.47838e16 0.136518
\(116\) 1.77587e18 5.02942
\(117\) 0 0
\(118\) 7.33620e14 0.00179669
\(119\) 3.43715e16 0.0783519
\(120\) 0 0
\(121\) 4.67408e17 0.924742
\(122\) −1.09648e18 −2.02275
\(123\) 0 0
\(124\) 2.77022e18 4.45072
\(125\) −5.96046e16 −0.0894427
\(126\) 0 0
\(127\) −1.00107e18 −1.31261 −0.656304 0.754497i \(-0.727881\pi\)
−0.656304 + 0.754497i \(0.727881\pi\)
\(128\) 3.11255e18 3.81797
\(129\) 0 0
\(130\) −7.72418e17 −0.830489
\(131\) −6.36150e17 −0.640846 −0.320423 0.947275i \(-0.603825\pi\)
−0.320423 + 0.947275i \(0.603825\pi\)
\(132\) 0 0
\(133\) 3.27825e17 0.290337
\(134\) 9.21306e17 0.765620
\(135\) 0 0
\(136\) −2.08819e18 −1.52999
\(137\) −2.75383e17 −0.189588 −0.0947942 0.995497i \(-0.530219\pi\)
−0.0947942 + 0.995497i \(0.530219\pi\)
\(138\) 0 0
\(139\) 3.61048e17 0.219755 0.109878 0.993945i \(-0.464954\pi\)
0.109878 + 0.993945i \(0.464954\pi\)
\(140\) 3.78654e17 0.216848
\(141\) 0 0
\(142\) 4.98218e18 2.52911
\(143\) 2.77641e18 1.32779
\(144\) 0 0
\(145\) −1.91417e18 −0.813490
\(146\) −8.26248e18 −3.31216
\(147\) 0 0
\(148\) 1.15600e18 0.412794
\(149\) 4.02824e18 1.35841 0.679207 0.733947i \(-0.262324\pi\)
0.679207 + 0.733947i \(0.262324\pi\)
\(150\) 0 0
\(151\) −3.02464e18 −0.910689 −0.455345 0.890315i \(-0.650484\pi\)
−0.455345 + 0.890315i \(0.650484\pi\)
\(152\) −1.99165e19 −5.66947
\(153\) 0 0
\(154\) −1.85331e18 −0.472088
\(155\) −2.98596e18 −0.719888
\(156\) 0 0
\(157\) −3.80909e18 −0.823520 −0.411760 0.911292i \(-0.635086\pi\)
−0.411760 + 0.911292i \(0.635086\pi\)
\(158\) −5.02042e18 −1.02838
\(159\) 0 0
\(160\) −9.97012e18 −1.83519
\(161\) 3.06657e17 0.0535345
\(162\) 0 0
\(163\) −7.01276e18 −1.10229 −0.551143 0.834411i \(-0.685808\pi\)
−0.551143 + 0.834411i \(0.685808\pi\)
\(164\) 2.00458e18 0.299123
\(165\) 0 0
\(166\) −6.35535e18 −0.855502
\(167\) 5.20936e18 0.666337 0.333169 0.942867i \(-0.391882\pi\)
0.333169 + 0.942867i \(0.391882\pi\)
\(168\) 0 0
\(169\) −7.26857e17 −0.0840256
\(170\) 3.52613e18 0.387688
\(171\) 0 0
\(172\) 8.78590e18 0.874570
\(173\) −4.55714e18 −0.431818 −0.215909 0.976413i \(-0.569271\pi\)
−0.215909 + 0.976413i \(0.569271\pi\)
\(174\) 0 0
\(175\) −4.08143e17 −0.0350743
\(176\) 6.57436e19 5.38264
\(177\) 0 0
\(178\) 8.20393e18 0.610171
\(179\) −1.27111e19 −0.901428 −0.450714 0.892668i \(-0.648831\pi\)
−0.450714 + 0.892668i \(0.648831\pi\)
\(180\) 0 0
\(181\) 1.67839e19 1.08299 0.541494 0.840704i \(-0.317859\pi\)
0.541494 + 0.840704i \(0.317859\pi\)
\(182\) −5.28914e18 −0.325670
\(183\) 0 0
\(184\) −1.86305e19 −1.04538
\(185\) −1.24603e18 −0.0667679
\(186\) 0 0
\(187\) −1.26745e19 −0.619835
\(188\) 2.10976e19 0.986034
\(189\) 0 0
\(190\) 3.36311e19 1.43660
\(191\) −1.93607e19 −0.790930 −0.395465 0.918481i \(-0.629417\pi\)
−0.395465 + 0.918481i \(0.629417\pi\)
\(192\) 0 0
\(193\) 5.41103e18 0.202322 0.101161 0.994870i \(-0.467744\pi\)
0.101161 + 0.994870i \(0.467744\pi\)
\(194\) −5.84839e19 −2.09277
\(195\) 0 0
\(196\) −8.17129e19 −2.67987
\(197\) −1.69857e19 −0.533483 −0.266741 0.963768i \(-0.585947\pi\)
−0.266741 + 0.963768i \(0.585947\pi\)
\(198\) 0 0
\(199\) −8.38703e18 −0.241745 −0.120872 0.992668i \(-0.538569\pi\)
−0.120872 + 0.992668i \(0.538569\pi\)
\(200\) 2.47961e19 0.684902
\(201\) 0 0
\(202\) 9.56845e18 0.242860
\(203\) −1.31073e19 −0.319004
\(204\) 0 0
\(205\) −2.16069e18 −0.0483821
\(206\) 8.36156e19 1.79645
\(207\) 0 0
\(208\) 1.87624e20 3.71322
\(209\) −1.20885e20 −2.29683
\(210\) 0 0
\(211\) 2.60946e19 0.457245 0.228623 0.973515i \(-0.426578\pi\)
0.228623 + 0.973515i \(0.426578\pi\)
\(212\) 2.34020e20 3.93910
\(213\) 0 0
\(214\) −2.14519e20 −3.33387
\(215\) −9.47013e18 −0.141459
\(216\) 0 0
\(217\) −2.04464e19 −0.282299
\(218\) −2.06737e20 −2.74497
\(219\) 0 0
\(220\) −1.39629e20 −1.71546
\(221\) −3.61715e19 −0.427594
\(222\) 0 0
\(223\) 1.19753e19 0.131128 0.0655641 0.997848i \(-0.479115\pi\)
0.0655641 + 0.997848i \(0.479115\pi\)
\(224\) −6.82705e19 −0.719656
\(225\) 0 0
\(226\) 5.09320e19 0.497816
\(227\) −1.24200e20 −1.16924 −0.584619 0.811308i \(-0.698756\pi\)
−0.584619 + 0.811308i \(0.698756\pi\)
\(228\) 0 0
\(229\) 1.03099e20 0.900853 0.450426 0.892814i \(-0.351272\pi\)
0.450426 + 0.892814i \(0.351272\pi\)
\(230\) 3.14596e19 0.264890
\(231\) 0 0
\(232\) 7.96313e20 6.22925
\(233\) −1.13357e20 −0.854919 −0.427459 0.904035i \(-0.640591\pi\)
−0.427459 + 0.904035i \(0.640591\pi\)
\(234\) 0 0
\(235\) −2.27407e19 −0.159487
\(236\) 3.78468e17 0.00256022
\(237\) 0 0
\(238\) 2.41452e19 0.152029
\(239\) 8.29065e19 0.503740 0.251870 0.967761i \(-0.418954\pi\)
0.251870 + 0.967761i \(0.418954\pi\)
\(240\) 0 0
\(241\) −1.62688e20 −0.920896 −0.460448 0.887687i \(-0.652311\pi\)
−0.460448 + 0.887687i \(0.652311\pi\)
\(242\) 3.28343e20 1.79431
\(243\) 0 0
\(244\) −5.65664e20 −2.88234
\(245\) 8.80765e19 0.433459
\(246\) 0 0
\(247\) −3.44992e20 −1.58447
\(248\) 1.24219e21 5.51250
\(249\) 0 0
\(250\) −4.18709e19 −0.173549
\(251\) −4.10409e20 −1.64433 −0.822167 0.569247i \(-0.807235\pi\)
−0.822167 + 0.569247i \(0.807235\pi\)
\(252\) 0 0
\(253\) −1.13080e20 −0.423507
\(254\) −7.03232e20 −2.54690
\(255\) 0 0
\(256\) 9.81533e20 3.32556
\(257\) 1.69582e20 0.555839 0.277920 0.960604i \(-0.410355\pi\)
0.277920 + 0.960604i \(0.410355\pi\)
\(258\) 0 0
\(259\) −8.53218e18 −0.0261826
\(260\) −3.98484e20 −1.18341
\(261\) 0 0
\(262\) −4.46881e20 −1.24346
\(263\) 3.50624e20 0.944534 0.472267 0.881456i \(-0.343436\pi\)
0.472267 + 0.881456i \(0.343436\pi\)
\(264\) 0 0
\(265\) −2.52245e20 −0.637136
\(266\) 2.30289e20 0.563352
\(267\) 0 0
\(268\) 4.75294e20 1.09098
\(269\) −2.92843e20 −0.651240 −0.325620 0.945501i \(-0.605573\pi\)
−0.325620 + 0.945501i \(0.605573\pi\)
\(270\) 0 0
\(271\) 5.64043e20 1.17780 0.588902 0.808204i \(-0.299560\pi\)
0.588902 + 0.808204i \(0.299560\pi\)
\(272\) −8.56515e20 −1.73340
\(273\) 0 0
\(274\) −1.93450e20 −0.367865
\(275\) 1.50503e20 0.277470
\(276\) 0 0
\(277\) 7.92843e20 1.37439 0.687194 0.726474i \(-0.258842\pi\)
0.687194 + 0.726474i \(0.258842\pi\)
\(278\) 2.53628e20 0.426399
\(279\) 0 0
\(280\) 1.69792e20 0.268580
\(281\) 4.07531e20 0.625399 0.312700 0.949852i \(-0.398767\pi\)
0.312700 + 0.949852i \(0.398767\pi\)
\(282\) 0 0
\(283\) 9.05800e20 1.30872 0.654362 0.756182i \(-0.272937\pi\)
0.654362 + 0.756182i \(0.272937\pi\)
\(284\) 2.57026e21 3.60389
\(285\) 0 0
\(286\) 1.95037e21 2.57635
\(287\) −1.47953e19 −0.0189727
\(288\) 0 0
\(289\) −6.62116e20 −0.800391
\(290\) −1.34466e21 −1.57845
\(291\) 0 0
\(292\) −4.26254e21 −4.71970
\(293\) −1.22920e21 −1.32205 −0.661025 0.750364i \(-0.729878\pi\)
−0.661025 + 0.750364i \(0.729878\pi\)
\(294\) 0 0
\(295\) −4.07943e17 −0.000414106 0
\(296\) 5.18359e20 0.511271
\(297\) 0 0
\(298\) 2.82974e21 2.63578
\(299\) −3.22716e20 −0.292157
\(300\) 0 0
\(301\) −6.48468e19 −0.0554719
\(302\) −2.12474e21 −1.76704
\(303\) 0 0
\(304\) −8.16918e21 −6.42322
\(305\) 6.09717e20 0.466208
\(306\) 0 0
\(307\) −1.33769e21 −0.967565 −0.483783 0.875188i \(-0.660738\pi\)
−0.483783 + 0.875188i \(0.660738\pi\)
\(308\) −9.56108e20 −0.672707
\(309\) 0 0
\(310\) −2.09757e21 −1.39683
\(311\) 8.26556e19 0.0535561 0.0267781 0.999641i \(-0.491475\pi\)
0.0267781 + 0.999641i \(0.491475\pi\)
\(312\) 0 0
\(313\) −2.88314e20 −0.176905 −0.0884523 0.996080i \(-0.528192\pi\)
−0.0884523 + 0.996080i \(0.528192\pi\)
\(314\) −2.67580e21 −1.59791
\(315\) 0 0
\(316\) −2.58999e21 −1.46541
\(317\) 3.17162e21 1.74694 0.873468 0.486882i \(-0.161866\pi\)
0.873468 + 0.486882i \(0.161866\pi\)
\(318\) 0 0
\(319\) 4.83331e21 2.52362
\(320\) −3.59107e21 −1.82578
\(321\) 0 0
\(322\) 2.15420e20 0.103875
\(323\) 1.57491e21 0.739662
\(324\) 0 0
\(325\) 4.29517e20 0.191413
\(326\) −4.92630e21 −2.13881
\(327\) 0 0
\(328\) 8.98868e20 0.370483
\(329\) −1.55717e20 −0.0625419
\(330\) 0 0
\(331\) −1.58984e21 −0.606478 −0.303239 0.952915i \(-0.598068\pi\)
−0.303239 + 0.952915i \(0.598068\pi\)
\(332\) −3.27867e21 −1.21906
\(333\) 0 0
\(334\) 3.65945e21 1.29292
\(335\) −5.12309e20 −0.176462
\(336\) 0 0
\(337\) −3.01551e20 −0.0987432 −0.0493716 0.998780i \(-0.515722\pi\)
−0.0493716 + 0.998780i \(0.515722\pi\)
\(338\) −5.10600e20 −0.163038
\(339\) 0 0
\(340\) 1.81910e21 0.552440
\(341\) 7.53960e21 2.23324
\(342\) 0 0
\(343\) 1.22535e21 0.345350
\(344\) 3.93967e21 1.08321
\(345\) 0 0
\(346\) −3.20129e21 −0.837873
\(347\) 3.81902e21 0.975331 0.487665 0.873031i \(-0.337849\pi\)
0.487665 + 0.873031i \(0.337849\pi\)
\(348\) 0 0
\(349\) −3.13624e20 −0.0762769 −0.0381384 0.999272i \(-0.512143\pi\)
−0.0381384 + 0.999272i \(0.512143\pi\)
\(350\) −2.86711e20 −0.0680560
\(351\) 0 0
\(352\) 2.51747e22 5.69314
\(353\) 4.65586e21 1.02781 0.513907 0.857846i \(-0.328198\pi\)
0.513907 + 0.857846i \(0.328198\pi\)
\(354\) 0 0
\(355\) −2.77043e21 −0.582916
\(356\) 4.23234e21 0.869471
\(357\) 0 0
\(358\) −8.92923e21 −1.74907
\(359\) −3.57780e21 −0.684405 −0.342203 0.939626i \(-0.611173\pi\)
−0.342203 + 0.939626i \(0.611173\pi\)
\(360\) 0 0
\(361\) 9.54059e21 1.74086
\(362\) 1.17903e22 2.10136
\(363\) 0 0
\(364\) −2.72862e21 −0.464068
\(365\) 4.59450e21 0.763395
\(366\) 0 0
\(367\) −5.72348e21 −0.907818 −0.453909 0.891048i \(-0.649971\pi\)
−0.453909 + 0.891048i \(0.649971\pi\)
\(368\) −7.64170e21 −1.18436
\(369\) 0 0
\(370\) −8.75305e20 −0.129552
\(371\) −1.72725e21 −0.249848
\(372\) 0 0
\(373\) 7.79326e21 1.07695 0.538473 0.842643i \(-0.319001\pi\)
0.538473 + 0.842643i \(0.319001\pi\)
\(374\) −8.90352e21 −1.20269
\(375\) 0 0
\(376\) 9.46034e21 1.22127
\(377\) 1.37937e22 1.74092
\(378\) 0 0
\(379\) 4.41273e21 0.532444 0.266222 0.963912i \(-0.414225\pi\)
0.266222 + 0.963912i \(0.414225\pi\)
\(380\) 1.73500e22 2.04710
\(381\) 0 0
\(382\) −1.36005e22 −1.53467
\(383\) −7.42094e21 −0.818973 −0.409486 0.912316i \(-0.634292\pi\)
−0.409486 + 0.912316i \(0.634292\pi\)
\(384\) 0 0
\(385\) 1.03057e21 0.108808
\(386\) 3.80112e21 0.392572
\(387\) 0 0
\(388\) −3.01713e22 −2.98212
\(389\) −4.44977e21 −0.430295 −0.215147 0.976582i \(-0.569023\pi\)
−0.215147 + 0.976582i \(0.569023\pi\)
\(390\) 0 0
\(391\) 1.47322e21 0.136384
\(392\) −3.66407e22 −3.31919
\(393\) 0 0
\(394\) −1.19321e22 −1.03514
\(395\) 2.79170e21 0.237024
\(396\) 0 0
\(397\) −4.94222e20 −0.0401979 −0.0200989 0.999798i \(-0.506398\pi\)
−0.0200989 + 0.999798i \(0.506398\pi\)
\(398\) −5.89170e21 −0.469066
\(399\) 0 0
\(400\) 1.01707e22 0.775960
\(401\) −2.49341e22 −1.86237 −0.931187 0.364542i \(-0.881225\pi\)
−0.931187 + 0.364542i \(0.881225\pi\)
\(402\) 0 0
\(403\) 2.15171e22 1.54061
\(404\) 4.93628e21 0.346066
\(405\) 0 0
\(406\) −9.20757e21 −0.618976
\(407\) 3.14624e21 0.207128
\(408\) 0 0
\(409\) 7.82942e21 0.494404 0.247202 0.968964i \(-0.420489\pi\)
0.247202 + 0.968964i \(0.420489\pi\)
\(410\) −1.51783e21 −0.0938775
\(411\) 0 0
\(412\) 4.31366e22 2.55988
\(413\) −2.79339e18 −0.000162389 0
\(414\) 0 0
\(415\) 3.53401e21 0.197178
\(416\) 7.18457e22 3.92742
\(417\) 0 0
\(418\) −8.49191e22 −4.45663
\(419\) 1.37314e20 0.00706150 0.00353075 0.999994i \(-0.498876\pi\)
0.00353075 + 0.999994i \(0.498876\pi\)
\(420\) 0 0
\(421\) −1.84158e21 −0.0909481 −0.0454740 0.998966i \(-0.514480\pi\)
−0.0454740 + 0.998966i \(0.514480\pi\)
\(422\) 1.83308e22 0.887209
\(423\) 0 0
\(424\) 1.04936e23 4.87883
\(425\) −1.96077e21 −0.0893552
\(426\) 0 0
\(427\) 4.17505e21 0.182820
\(428\) −1.10669e23 −4.75064
\(429\) 0 0
\(430\) −6.65255e21 −0.274477
\(431\) 3.30639e21 0.133751 0.0668756 0.997761i \(-0.478697\pi\)
0.0668756 + 0.997761i \(0.478697\pi\)
\(432\) 0 0
\(433\) 1.49902e22 0.582990 0.291495 0.956572i \(-0.405847\pi\)
0.291495 + 0.956572i \(0.405847\pi\)
\(434\) −1.43631e22 −0.547755
\(435\) 0 0
\(436\) −1.06654e23 −3.91148
\(437\) 1.40511e22 0.505379
\(438\) 0 0
\(439\) 5.27352e22 1.82453 0.912267 0.409597i \(-0.134331\pi\)
0.912267 + 0.409597i \(0.134331\pi\)
\(440\) −6.26106e22 −2.12471
\(441\) 0 0
\(442\) −2.54096e22 −0.829676
\(443\) −2.21332e22 −0.708944 −0.354472 0.935067i \(-0.615339\pi\)
−0.354472 + 0.935067i \(0.615339\pi\)
\(444\) 0 0
\(445\) −4.56194e21 −0.140634
\(446\) 8.41239e21 0.254433
\(447\) 0 0
\(448\) −2.45899e22 −0.715968
\(449\) −1.01171e22 −0.289041 −0.144521 0.989502i \(-0.546164\pi\)
−0.144521 + 0.989502i \(0.546164\pi\)
\(450\) 0 0
\(451\) 5.45578e21 0.150091
\(452\) 2.62754e22 0.709369
\(453\) 0 0
\(454\) −8.72479e22 −2.26872
\(455\) 2.94112e21 0.0750613
\(456\) 0 0
\(457\) −7.09706e22 −1.74498 −0.872490 0.488632i \(-0.837496\pi\)
−0.872490 + 0.488632i \(0.837496\pi\)
\(458\) 7.24248e22 1.74796
\(459\) 0 0
\(460\) 1.62297e22 0.377459
\(461\) −1.09889e22 −0.250899 −0.125449 0.992100i \(-0.540037\pi\)
−0.125449 + 0.992100i \(0.540037\pi\)
\(462\) 0 0
\(463\) 1.78028e22 0.391787 0.195893 0.980625i \(-0.437239\pi\)
0.195893 + 0.980625i \(0.437239\pi\)
\(464\) 3.26625e23 7.05743
\(465\) 0 0
\(466\) −7.96310e22 −1.65883
\(467\) −7.82704e22 −1.60105 −0.800524 0.599301i \(-0.795445\pi\)
−0.800524 + 0.599301i \(0.795445\pi\)
\(468\) 0 0
\(469\) −3.50804e21 −0.0691983
\(470\) −1.59748e22 −0.309459
\(471\) 0 0
\(472\) 1.69708e20 0.00317100
\(473\) 2.39122e22 0.438834
\(474\) 0 0
\(475\) −1.87012e22 −0.331111
\(476\) 1.24563e22 0.216636
\(477\) 0 0
\(478\) 5.82399e22 0.977425
\(479\) 1.17366e23 1.93504 0.967522 0.252785i \(-0.0813467\pi\)
0.967522 + 0.252785i \(0.0813467\pi\)
\(480\) 0 0
\(481\) 8.97899e21 0.142888
\(482\) −1.14285e23 −1.78685
\(483\) 0 0
\(484\) 1.69390e23 2.55683
\(485\) 3.25210e22 0.482347
\(486\) 0 0
\(487\) 4.40441e22 0.630800 0.315400 0.948959i \(-0.397861\pi\)
0.315400 + 0.948959i \(0.397861\pi\)
\(488\) −2.53648e23 −3.56996
\(489\) 0 0
\(490\) 6.18717e22 0.841057
\(491\) 9.19512e21 0.122847 0.0614235 0.998112i \(-0.480436\pi\)
0.0614235 + 0.998112i \(0.480436\pi\)
\(492\) 0 0
\(493\) −6.29689e22 −0.812695
\(494\) −2.42349e23 −3.07441
\(495\) 0 0
\(496\) 5.09511e23 6.24539
\(497\) −1.89705e22 −0.228586
\(498\) 0 0
\(499\) −9.12259e22 −1.06234 −0.531170 0.847265i \(-0.678247\pi\)
−0.531170 + 0.847265i \(0.678247\pi\)
\(500\) −2.16008e22 −0.247301
\(501\) 0 0
\(502\) −2.88303e23 −3.19056
\(503\) 4.20493e22 0.457542 0.228771 0.973480i \(-0.426529\pi\)
0.228771 + 0.973480i \(0.426529\pi\)
\(504\) 0 0
\(505\) −5.32071e21 −0.0559749
\(506\) −7.94359e22 −0.821746
\(507\) 0 0
\(508\) −3.62791e23 −3.62924
\(509\) −3.12071e22 −0.307010 −0.153505 0.988148i \(-0.549056\pi\)
−0.153505 + 0.988148i \(0.549056\pi\)
\(510\) 0 0
\(511\) 3.14609e22 0.299360
\(512\) 2.81536e23 2.63475
\(513\) 0 0
\(514\) 1.19128e23 1.07852
\(515\) −4.64960e22 −0.414051
\(516\) 0 0
\(517\) 5.74206e22 0.494764
\(518\) −5.99366e21 −0.0508030
\(519\) 0 0
\(520\) −1.78683e23 −1.46573
\(521\) 1.71736e23 1.38593 0.692965 0.720971i \(-0.256304\pi\)
0.692965 + 0.720971i \(0.256304\pi\)
\(522\) 0 0
\(523\) −3.54202e22 −0.276686 −0.138343 0.990384i \(-0.544178\pi\)
−0.138343 + 0.990384i \(0.544178\pi\)
\(524\) −2.30542e23 −1.77188
\(525\) 0 0
\(526\) 2.46305e23 1.83271
\(527\) −9.82268e22 −0.719184
\(528\) 0 0
\(529\) −1.27906e23 −0.906815
\(530\) −1.77196e23 −1.23626
\(531\) 0 0
\(532\) 1.18804e23 0.802755
\(533\) 1.55701e22 0.103541
\(534\) 0 0
\(535\) 1.19287e23 0.768399
\(536\) 2.13126e23 1.35125
\(537\) 0 0
\(538\) −2.05716e23 −1.26363
\(539\) −2.22395e23 −1.34468
\(540\) 0 0
\(541\) −1.03474e23 −0.606257 −0.303128 0.952950i \(-0.598031\pi\)
−0.303128 + 0.952950i \(0.598031\pi\)
\(542\) 3.96227e23 2.28534
\(543\) 0 0
\(544\) −3.27979e23 −1.83339
\(545\) 1.14960e23 0.632668
\(546\) 0 0
\(547\) 2.96616e23 1.58235 0.791176 0.611589i \(-0.209469\pi\)
0.791176 + 0.611589i \(0.209469\pi\)
\(548\) −9.97992e22 −0.524194
\(549\) 0 0
\(550\) 1.05725e23 0.538385
\(551\) −6.00578e23 −3.01149
\(552\) 0 0
\(553\) 1.91162e22 0.0929474
\(554\) 5.56954e23 2.66678
\(555\) 0 0
\(556\) 1.30845e23 0.607603
\(557\) 5.46640e22 0.249996 0.124998 0.992157i \(-0.460108\pi\)
0.124998 + 0.992157i \(0.460108\pi\)
\(558\) 0 0
\(559\) 6.82427e22 0.302730
\(560\) 6.96437e22 0.304287
\(561\) 0 0
\(562\) 2.86281e23 1.21349
\(563\) 1.18516e23 0.494829 0.247414 0.968910i \(-0.420419\pi\)
0.247414 + 0.968910i \(0.420419\pi\)
\(564\) 0 0
\(565\) −2.83217e22 −0.114738
\(566\) 6.36304e23 2.53936
\(567\) 0 0
\(568\) 1.15253e24 4.46365
\(569\) 4.39785e23 1.67798 0.838988 0.544149i \(-0.183147\pi\)
0.838988 + 0.544149i \(0.183147\pi\)
\(570\) 0 0
\(571\) −4.89721e22 −0.181360 −0.0906800 0.995880i \(-0.528904\pi\)
−0.0906800 + 0.995880i \(0.528904\pi\)
\(572\) 1.00618e24 3.67120
\(573\) 0 0
\(574\) −1.03934e22 −0.0368134
\(575\) −1.74937e22 −0.0610526
\(576\) 0 0
\(577\) 5.15333e23 1.74620 0.873099 0.487543i \(-0.162107\pi\)
0.873099 + 0.487543i \(0.162107\pi\)
\(578\) −4.65121e23 −1.55303
\(579\) 0 0
\(580\) −6.93698e23 −2.24922
\(581\) 2.41992e22 0.0773220
\(582\) 0 0
\(583\) 6.36922e23 1.97653
\(584\) −1.91136e24 −5.84565
\(585\) 0 0
\(586\) −8.63485e23 −2.56522
\(587\) 3.59992e22 0.105407 0.0527035 0.998610i \(-0.483216\pi\)
0.0527035 + 0.998610i \(0.483216\pi\)
\(588\) 0 0
\(589\) −9.36857e23 −2.66498
\(590\) −2.86570e20 −0.000803506 0
\(591\) 0 0
\(592\) 2.12616e23 0.579245
\(593\) 3.67652e23 0.987351 0.493676 0.869646i \(-0.335653\pi\)
0.493676 + 0.869646i \(0.335653\pi\)
\(594\) 0 0
\(595\) −1.34264e22 −0.0350400
\(596\) 1.45984e24 3.75588
\(597\) 0 0
\(598\) −2.26701e23 −0.566882
\(599\) 6.97132e23 1.71865 0.859324 0.511432i \(-0.170885\pi\)
0.859324 + 0.511432i \(0.170885\pi\)
\(600\) 0 0
\(601\) 3.44330e23 0.825166 0.412583 0.910920i \(-0.364627\pi\)
0.412583 + 0.910920i \(0.364627\pi\)
\(602\) −4.55534e22 −0.107634
\(603\) 0 0
\(604\) −1.09614e24 −2.51797
\(605\) −1.82581e23 −0.413557
\(606\) 0 0
\(607\) −3.08234e23 −0.678855 −0.339427 0.940632i \(-0.610233\pi\)
−0.339427 + 0.940632i \(0.610233\pi\)
\(608\) −3.12816e24 −6.79374
\(609\) 0 0
\(610\) 4.28312e23 0.904601
\(611\) 1.63872e23 0.341313
\(612\) 0 0
\(613\) −4.35176e23 −0.881558 −0.440779 0.897616i \(-0.645298\pi\)
−0.440779 + 0.897616i \(0.645298\pi\)
\(614\) −9.39699e23 −1.87740
\(615\) 0 0
\(616\) −4.28727e23 −0.833190
\(617\) −6.04231e23 −1.15819 −0.579094 0.815261i \(-0.696594\pi\)
−0.579094 + 0.815261i \(0.696594\pi\)
\(618\) 0 0
\(619\) −3.33503e23 −0.621913 −0.310956 0.950424i \(-0.600649\pi\)
−0.310956 + 0.950424i \(0.600649\pi\)
\(620\) −1.08212e24 −1.99042
\(621\) 0 0
\(622\) 5.80637e22 0.103917
\(623\) −3.12379e22 −0.0551485
\(624\) 0 0
\(625\) 2.32831e22 0.0400000
\(626\) −2.02534e23 −0.343255
\(627\) 0 0
\(628\) −1.38042e24 −2.27695
\(629\) −4.09896e22 −0.0667026
\(630\) 0 0
\(631\) 7.67831e23 1.21623 0.608116 0.793848i \(-0.291926\pi\)
0.608116 + 0.793848i \(0.291926\pi\)
\(632\) −1.16137e24 −1.81500
\(633\) 0 0
\(634\) 2.22799e24 3.38964
\(635\) 3.91045e23 0.587016
\(636\) 0 0
\(637\) −6.34688e23 −0.927631
\(638\) 3.39529e24 4.89667
\(639\) 0 0
\(640\) −1.21584e24 −1.70745
\(641\) 1.34739e24 1.86724 0.933620 0.358264i \(-0.116631\pi\)
0.933620 + 0.358264i \(0.116631\pi\)
\(642\) 0 0
\(643\) 1.07291e24 1.44800 0.723999 0.689801i \(-0.242302\pi\)
0.723999 + 0.689801i \(0.242302\pi\)
\(644\) 1.11133e23 0.148018
\(645\) 0 0
\(646\) 1.10634e24 1.43519
\(647\) −2.56767e23 −0.328740 −0.164370 0.986399i \(-0.552559\pi\)
−0.164370 + 0.986399i \(0.552559\pi\)
\(648\) 0 0
\(649\) 1.03006e21 0.00128465
\(650\) 3.01726e23 0.371406
\(651\) 0 0
\(652\) −2.54144e24 −3.04772
\(653\) −9.55573e23 −1.13110 −0.565551 0.824713i \(-0.691336\pi\)
−0.565551 + 0.824713i \(0.691336\pi\)
\(654\) 0 0
\(655\) 2.48496e23 0.286595
\(656\) 3.68690e23 0.419739
\(657\) 0 0
\(658\) −1.09388e23 −0.121352
\(659\) 4.48249e23 0.490901 0.245450 0.969409i \(-0.421064\pi\)
0.245450 + 0.969409i \(0.421064\pi\)
\(660\) 0 0
\(661\) 3.31071e23 0.353353 0.176677 0.984269i \(-0.443465\pi\)
0.176677 + 0.984269i \(0.443465\pi\)
\(662\) −1.11682e24 −1.17677
\(663\) 0 0
\(664\) −1.47018e24 −1.50988
\(665\) −1.28057e23 −0.129843
\(666\) 0 0
\(667\) −5.61799e23 −0.555279
\(668\) 1.88788e24 1.84236
\(669\) 0 0
\(670\) −3.59885e23 −0.342396
\(671\) −1.53955e24 −1.44628
\(672\) 0 0
\(673\) −9.61434e23 −0.880626 −0.440313 0.897844i \(-0.645132\pi\)
−0.440313 + 0.897844i \(0.645132\pi\)
\(674\) −2.11833e23 −0.191595
\(675\) 0 0
\(676\) −2.63414e23 −0.232323
\(677\) −1.08092e24 −0.941432 −0.470716 0.882285i \(-0.656004\pi\)
−0.470716 + 0.882285i \(0.656004\pi\)
\(678\) 0 0
\(679\) 2.22688e23 0.189149
\(680\) 8.15698e23 0.684232
\(681\) 0 0
\(682\) 5.29640e24 4.33325
\(683\) −4.56949e23 −0.369226 −0.184613 0.982811i \(-0.559103\pi\)
−0.184613 + 0.982811i \(0.559103\pi\)
\(684\) 0 0
\(685\) 1.07571e23 0.0847865
\(686\) 8.60778e23 0.670095
\(687\) 0 0
\(688\) 1.61594e24 1.22722
\(689\) 1.81770e24 1.36351
\(690\) 0 0
\(691\) −1.38418e24 −1.01305 −0.506523 0.862226i \(-0.669070\pi\)
−0.506523 + 0.862226i \(0.669070\pi\)
\(692\) −1.65152e24 −1.19394
\(693\) 0 0
\(694\) 2.68278e24 1.89247
\(695\) −1.41035e23 −0.0982776
\(696\) 0 0
\(697\) −7.10785e22 −0.0483348
\(698\) −2.20314e23 −0.148003
\(699\) 0 0
\(700\) −1.47912e23 −0.0969772
\(701\) −9.18978e22 −0.0595254 −0.0297627 0.999557i \(-0.509475\pi\)
−0.0297627 + 0.999557i \(0.509475\pi\)
\(702\) 0 0
\(703\) −3.90946e23 −0.247170
\(704\) 9.06751e24 5.66396
\(705\) 0 0
\(706\) 3.27063e24 1.99431
\(707\) −3.64336e22 −0.0219501
\(708\) 0 0
\(709\) −1.54021e24 −0.905913 −0.452956 0.891533i \(-0.649631\pi\)
−0.452956 + 0.891533i \(0.649631\pi\)
\(710\) −1.94616e24 −1.13105
\(711\) 0 0
\(712\) 1.89781e24 1.07690
\(713\) −8.76365e23 −0.491387
\(714\) 0 0
\(715\) −1.08454e24 −0.593804
\(716\) −4.60651e24 −2.49236
\(717\) 0 0
\(718\) −2.51332e24 −1.32798
\(719\) −3.23522e24 −1.68931 −0.844654 0.535313i \(-0.820194\pi\)
−0.844654 + 0.535313i \(0.820194\pi\)
\(720\) 0 0
\(721\) −3.18382e23 −0.162367
\(722\) 6.70204e24 3.37786
\(723\) 0 0
\(724\) 6.08250e24 2.99436
\(725\) 7.47722e23 0.363804
\(726\) 0 0
\(727\) −2.33512e24 −1.10986 −0.554929 0.831898i \(-0.687255\pi\)
−0.554929 + 0.831898i \(0.687255\pi\)
\(728\) −1.22354e24 −0.574777
\(729\) 0 0
\(730\) 3.22753e24 1.48124
\(731\) −3.11531e23 −0.141320
\(732\) 0 0
\(733\) 1.81465e24 0.804282 0.402141 0.915578i \(-0.368266\pi\)
0.402141 + 0.915578i \(0.368266\pi\)
\(734\) −4.02061e24 −1.76147
\(735\) 0 0
\(736\) −2.92618e24 −1.25268
\(737\) 1.29359e24 0.547422
\(738\) 0 0
\(739\) −1.21901e24 −0.504114 −0.252057 0.967712i \(-0.581107\pi\)
−0.252057 + 0.967712i \(0.581107\pi\)
\(740\) −4.51562e23 −0.184607
\(741\) 0 0
\(742\) −1.21335e24 −0.484790
\(743\) −4.70556e23 −0.185869 −0.0929344 0.995672i \(-0.529625\pi\)
−0.0929344 + 0.995672i \(0.529625\pi\)
\(744\) 0 0
\(745\) −1.57353e24 −0.607501
\(746\) 5.47458e24 2.08964
\(747\) 0 0
\(748\) −4.59325e24 −1.71379
\(749\) 8.16820e23 0.301322
\(750\) 0 0
\(751\) −3.20027e24 −1.15411 −0.577056 0.816705i \(-0.695798\pi\)
−0.577056 + 0.816705i \(0.695798\pi\)
\(752\) 3.88036e24 1.38363
\(753\) 0 0
\(754\) 9.68975e24 3.37797
\(755\) 1.18150e24 0.407273
\(756\) 0 0
\(757\) −5.33142e24 −1.79692 −0.898458 0.439060i \(-0.855312\pi\)
−0.898458 + 0.439060i \(0.855312\pi\)
\(758\) 3.09984e24 1.03312
\(759\) 0 0
\(760\) 7.77988e24 2.53546
\(761\) −3.19775e24 −1.03057 −0.515283 0.857020i \(-0.672313\pi\)
−0.515283 + 0.857020i \(0.672313\pi\)
\(762\) 0 0
\(763\) 7.87188e23 0.248096
\(764\) −7.01636e24 −2.18685
\(765\) 0 0
\(766\) −5.21304e24 −1.58908
\(767\) 2.93967e21 0.000886214 0
\(768\) 0 0
\(769\) −3.24975e24 −0.958245 −0.479122 0.877748i \(-0.659045\pi\)
−0.479122 + 0.877748i \(0.659045\pi\)
\(770\) 7.23950e23 0.211124
\(771\) 0 0
\(772\) 1.96097e24 0.559401
\(773\) −4.35391e24 −1.22844 −0.614220 0.789135i \(-0.710529\pi\)
−0.614220 + 0.789135i \(0.710529\pi\)
\(774\) 0 0
\(775\) 1.16639e24 0.321944
\(776\) −1.35291e25 −3.69354
\(777\) 0 0
\(778\) −3.12586e24 −0.834917
\(779\) −6.77925e23 −0.179107
\(780\) 0 0
\(781\) 6.99538e24 1.80833
\(782\) 1.03490e24 0.264631
\(783\) 0 0
\(784\) −1.50290e25 −3.76048
\(785\) 1.48792e24 0.368289
\(786\) 0 0
\(787\) 1.67282e24 0.405194 0.202597 0.979262i \(-0.435062\pi\)
0.202597 + 0.979262i \(0.435062\pi\)
\(788\) −6.15565e24 −1.47503
\(789\) 0 0
\(790\) 1.96110e24 0.459907
\(791\) −1.93933e23 −0.0449936
\(792\) 0 0
\(793\) −4.39368e24 −0.997715
\(794\) −3.47180e23 −0.0779974
\(795\) 0 0
\(796\) −3.03948e24 −0.668402
\(797\) −9.07285e23 −0.197400 −0.0987002 0.995117i \(-0.531468\pi\)
−0.0987002 + 0.995117i \(0.531468\pi\)
\(798\) 0 0
\(799\) −7.48082e23 −0.159331
\(800\) 3.89458e24 0.820721
\(801\) 0 0
\(802\) −1.75156e25 −3.61363
\(803\) −1.16012e25 −2.36821
\(804\) 0 0
\(805\) −1.19788e23 −0.0239413
\(806\) 1.51153e25 2.98929
\(807\) 0 0
\(808\) 2.21347e24 0.428624
\(809\) 9.92795e23 0.190238 0.0951189 0.995466i \(-0.469677\pi\)
0.0951189 + 0.995466i \(0.469677\pi\)
\(810\) 0 0
\(811\) 5.63576e24 1.05749 0.528744 0.848781i \(-0.322663\pi\)
0.528744 + 0.848781i \(0.322663\pi\)
\(812\) −4.75011e24 −0.882017
\(813\) 0 0
\(814\) 2.21016e24 0.401898
\(815\) 2.73936e24 0.492957
\(816\) 0 0
\(817\) −2.97129e24 −0.523670
\(818\) 5.49999e24 0.959310
\(819\) 0 0
\(820\) −7.83038e23 −0.133772
\(821\) 9.18781e24 1.55344 0.776721 0.629845i \(-0.216882\pi\)
0.776721 + 0.629845i \(0.216882\pi\)
\(822\) 0 0
\(823\) 6.83078e24 1.13128 0.565642 0.824651i \(-0.308628\pi\)
0.565642 + 0.824651i \(0.308628\pi\)
\(824\) 1.93428e25 3.17057
\(825\) 0 0
\(826\) −1.96229e21 −0.000315089 0
\(827\) 9.93808e24 1.57945 0.789724 0.613462i \(-0.210224\pi\)
0.789724 + 0.613462i \(0.210224\pi\)
\(828\) 0 0
\(829\) 1.00372e25 1.56278 0.781391 0.624042i \(-0.214511\pi\)
0.781391 + 0.624042i \(0.214511\pi\)
\(830\) 2.48256e24 0.382592
\(831\) 0 0
\(832\) 2.58776e25 3.90729
\(833\) 2.89738e24 0.433035
\(834\) 0 0
\(835\) −2.03491e24 −0.297995
\(836\) −4.38090e25 −6.35053
\(837\) 0 0
\(838\) 9.64602e22 0.0137017
\(839\) −1.16269e25 −1.63489 −0.817446 0.576005i \(-0.804611\pi\)
−0.817446 + 0.576005i \(0.804611\pi\)
\(840\) 0 0
\(841\) 1.67555e25 2.30883
\(842\) −1.29367e24 −0.176470
\(843\) 0 0
\(844\) 9.45671e24 1.26424
\(845\) 2.83928e23 0.0375774
\(846\) 0 0
\(847\) −1.25023e24 −0.162174
\(848\) 4.30419e25 5.52747
\(849\) 0 0
\(850\) −1.37739e24 −0.173379
\(851\) −3.65703e23 −0.0455750
\(852\) 0 0
\(853\) 1.09678e23 0.0133984 0.00669922 0.999978i \(-0.497868\pi\)
0.00669922 + 0.999978i \(0.497868\pi\)
\(854\) 2.93287e24 0.354733
\(855\) 0 0
\(856\) −4.96246e25 −5.88397
\(857\) −1.52818e25 −1.79406 −0.897030 0.441970i \(-0.854280\pi\)
−0.897030 + 0.441970i \(0.854280\pi\)
\(858\) 0 0
\(859\) −1.62639e25 −1.87190 −0.935951 0.352130i \(-0.885457\pi\)
−0.935951 + 0.352130i \(0.885457\pi\)
\(860\) −3.43199e24 −0.391119
\(861\) 0 0
\(862\) 2.32266e24 0.259522
\(863\) 8.64833e24 0.956842 0.478421 0.878130i \(-0.341209\pi\)
0.478421 + 0.878130i \(0.341209\pi\)
\(864\) 0 0
\(865\) 1.78013e24 0.193115
\(866\) 1.05303e25 1.13120
\(867\) 0 0
\(868\) −7.40981e24 −0.780530
\(869\) −7.04908e24 −0.735299
\(870\) 0 0
\(871\) 3.69175e24 0.377640
\(872\) −4.78244e25 −4.84462
\(873\) 0 0
\(874\) 9.87056e24 0.980606
\(875\) 1.59431e23 0.0156857
\(876\) 0 0
\(877\) 1.02051e25 0.984740 0.492370 0.870386i \(-0.336131\pi\)
0.492370 + 0.870386i \(0.336131\pi\)
\(878\) 3.70452e25 3.54021
\(879\) 0 0
\(880\) −2.56811e25 −2.40719
\(881\) 9.18419e23 0.0852601 0.0426301 0.999091i \(-0.486426\pi\)
0.0426301 + 0.999091i \(0.486426\pi\)
\(882\) 0 0
\(883\) 8.44090e24 0.768640 0.384320 0.923200i \(-0.374436\pi\)
0.384320 + 0.923200i \(0.374436\pi\)
\(884\) −1.31086e25 −1.18226
\(885\) 0 0
\(886\) −1.55480e25 −1.37559
\(887\) 1.20407e25 1.05512 0.527558 0.849519i \(-0.323108\pi\)
0.527558 + 0.849519i \(0.323108\pi\)
\(888\) 0 0
\(889\) 2.67768e24 0.230194
\(890\) −3.20466e24 −0.272877
\(891\) 0 0
\(892\) 4.33988e24 0.362557
\(893\) −7.13498e24 −0.590412
\(894\) 0 0
\(895\) 4.96526e24 0.403131
\(896\) −8.32548e24 −0.669563
\(897\) 0 0
\(898\) −7.10700e24 −0.560838
\(899\) 3.74580e25 2.92811
\(900\) 0 0
\(901\) −8.29789e24 −0.636512
\(902\) 3.83256e24 0.291228
\(903\) 0 0
\(904\) 1.17821e25 0.878599
\(905\) −6.55620e24 −0.484327
\(906\) 0 0
\(907\) −2.51467e25 −1.82314 −0.911568 0.411150i \(-0.865127\pi\)
−0.911568 + 0.411150i \(0.865127\pi\)
\(908\) −4.50104e25 −3.23284
\(909\) 0 0
\(910\) 2.06607e24 0.145644
\(911\) 8.57548e24 0.598897 0.299448 0.954112i \(-0.403197\pi\)
0.299448 + 0.954112i \(0.403197\pi\)
\(912\) 0 0
\(913\) −8.92343e24 −0.611688
\(914\) −4.98552e25 −3.38585
\(915\) 0 0
\(916\) 3.73633e25 2.49077
\(917\) 1.70158e24 0.112386
\(918\) 0 0
\(919\) 1.26569e25 0.820626 0.410313 0.911945i \(-0.365419\pi\)
0.410313 + 0.911945i \(0.365419\pi\)
\(920\) 7.27753e24 0.467507
\(921\) 0 0
\(922\) −7.71948e24 −0.486828
\(923\) 1.99640e25 1.24748
\(924\) 0 0
\(925\) 4.86729e23 0.0298595
\(926\) 1.25060e25 0.760198
\(927\) 0 0
\(928\) 1.25072e26 7.46454
\(929\) 1.61298e25 0.953881 0.476941 0.878936i \(-0.341746\pi\)
0.476941 + 0.878936i \(0.341746\pi\)
\(930\) 0 0
\(931\) 2.76343e25 1.60464
\(932\) −4.10810e25 −2.36377
\(933\) 0 0
\(934\) −5.49832e25 −3.10657
\(935\) 4.95097e24 0.277199
\(936\) 0 0
\(937\) 2.27726e24 0.125206 0.0626032 0.998038i \(-0.480060\pi\)
0.0626032 + 0.998038i \(0.480060\pi\)
\(938\) −2.46432e24 −0.134268
\(939\) 0 0
\(940\) −8.24126e24 −0.440968
\(941\) 1.42919e25 0.757839 0.378919 0.925430i \(-0.376296\pi\)
0.378919 + 0.925430i \(0.376296\pi\)
\(942\) 0 0
\(943\) −6.34151e23 −0.0330251
\(944\) 6.96095e22 0.00359258
\(945\) 0 0
\(946\) 1.67978e25 0.851486
\(947\) 1.82863e24 0.0918653 0.0459326 0.998945i \(-0.485374\pi\)
0.0459326 + 0.998945i \(0.485374\pi\)
\(948\) 0 0
\(949\) −3.31084e25 −1.63371
\(950\) −1.31372e25 −0.642467
\(951\) 0 0
\(952\) 5.58550e24 0.268317
\(953\) −1.66599e25 −0.793201 −0.396601 0.917991i \(-0.629810\pi\)
−0.396601 + 0.917991i \(0.629810\pi\)
\(954\) 0 0
\(955\) 7.56278e24 0.353715
\(956\) 3.00455e25 1.39279
\(957\) 0 0
\(958\) 8.24470e25 3.75464
\(959\) 7.36596e23 0.0332484
\(960\) 0 0
\(961\) 3.58816e25 1.59119
\(962\) 6.30753e24 0.277250
\(963\) 0 0
\(964\) −5.89584e25 −2.54619
\(965\) −2.11368e24 −0.0904810
\(966\) 0 0
\(967\) −3.59794e25 −1.51331 −0.756657 0.653812i \(-0.773169\pi\)
−0.756657 + 0.653812i \(0.773169\pi\)
\(968\) 7.59556e25 3.16679
\(969\) 0 0
\(970\) 2.28453e25 0.935915
\(971\) 2.68946e25 1.09220 0.546099 0.837721i \(-0.316112\pi\)
0.546099 + 0.837721i \(0.316112\pi\)
\(972\) 0 0
\(973\) −9.65735e23 −0.0385389
\(974\) 3.09400e25 1.22396
\(975\) 0 0
\(976\) −1.04039e26 −4.04459
\(977\) −1.26185e25 −0.486301 −0.243151 0.969989i \(-0.578181\pi\)
−0.243151 + 0.969989i \(0.578181\pi\)
\(978\) 0 0
\(979\) 1.15190e25 0.436276
\(980\) 3.19191e25 1.19847
\(981\) 0 0
\(982\) 6.45936e24 0.238365
\(983\) 2.72481e25 0.996852 0.498426 0.866932i \(-0.333912\pi\)
0.498426 + 0.866932i \(0.333912\pi\)
\(984\) 0 0
\(985\) 6.63504e24 0.238581
\(986\) −4.42342e25 −1.57690
\(987\) 0 0
\(988\) −1.25026e26 −4.38092
\(989\) −2.77944e24 −0.0965580
\(990\) 0 0
\(991\) −2.34443e25 −0.800593 −0.400296 0.916386i \(-0.631093\pi\)
−0.400296 + 0.916386i \(0.631093\pi\)
\(992\) 1.95103e26 6.60565
\(993\) 0 0
\(994\) −1.33264e25 −0.443535
\(995\) 3.27619e24 0.108112
\(996\) 0 0
\(997\) 5.52750e25 1.79316 0.896582 0.442877i \(-0.146042\pi\)
0.896582 + 0.442877i \(0.146042\pi\)
\(998\) −6.40841e25 −2.06130
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 45.18.a.b.1.2 2
3.2 odd 2 15.18.a.a.1.1 2
15.2 even 4 75.18.b.b.49.1 4
15.8 even 4 75.18.b.b.49.4 4
15.14 odd 2 75.18.a.c.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.18.a.a.1.1 2 3.2 odd 2
45.18.a.b.1.2 2 1.1 even 1 trivial
75.18.a.c.1.2 2 15.14 odd 2
75.18.b.b.49.1 4 15.2 even 4
75.18.b.b.49.4 4 15.8 even 4