Properties

Label 45.18.a.b.1.1
Level $45$
Weight $18$
Character 45.1
Self dual yes
Analytic conductor $82.450$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,18,Mod(1,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 18, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.1");
 
S:= CuspForms(chi, 18);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 45.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(82.4499393051\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{849}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 212 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 15)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(15.0688\) of defining polynomial
Character \(\chi\) \(=\) 45.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-346.477 q^{2} -11025.8 q^{4} -390625. q^{5} -1.80797e7 q^{7} +4.92336e7 q^{8} +1.35343e8 q^{10} +1.45296e8 q^{11} -3.26155e9 q^{13} +6.26421e9 q^{14} -1.56131e10 q^{16} -7.81194e9 q^{17} -7.18160e10 q^{19} +4.30694e9 q^{20} -5.03416e10 q^{22} -1.67169e11 q^{23} +1.52588e11 q^{25} +1.13005e12 q^{26} +1.99343e11 q^{28} -1.63211e11 q^{29} -5.38766e12 q^{31} -1.04356e12 q^{32} +2.70666e12 q^{34} +7.06240e12 q^{35} -3.68759e13 q^{37} +2.48826e13 q^{38} -1.92319e13 q^{40} +7.52018e12 q^{41} -5.73935e13 q^{43} -1.60200e12 q^{44} +5.79201e13 q^{46} -1.42516e14 q^{47} +9.42466e13 q^{49} -5.28682e13 q^{50} +3.59611e13 q^{52} -8.01583e14 q^{53} -5.67561e13 q^{55} -8.90131e14 q^{56} +5.65490e13 q^{58} -9.64437e14 q^{59} -1.29792e15 q^{61} +1.86670e15 q^{62} +2.40801e15 q^{64} +1.27404e15 q^{65} +4.71635e15 q^{67} +8.61327e13 q^{68} -2.44696e15 q^{70} -9.29884e15 q^{71} -6.86407e15 q^{73} +1.27767e16 q^{74} +7.91827e14 q^{76} -2.62691e15 q^{77} +1.21446e16 q^{79} +6.09888e15 q^{80} -2.60557e15 q^{82} +3.23986e16 q^{83} +3.05154e15 q^{85} +1.98855e16 q^{86} +7.15343e15 q^{88} +4.91787e16 q^{89} +5.89681e16 q^{91} +1.84316e15 q^{92} +4.93784e16 q^{94} +2.80531e16 q^{95} +1.26124e17 q^{97} -3.26543e16 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 356 q^{2} + 351376 q^{4} - 781250 q^{5} - 20754552 q^{7} + 211737408 q^{8} - 139062500 q^{10} + 1131629912 q^{11} - 446672524 q^{13} + 4385222016 q^{14} + 51041317120 q^{16} - 20662021036 q^{17} - 194376127216 q^{19}+ \cdots - 19\!\cdots\!04 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −346.477 −0.957016 −0.478508 0.878083i \(-0.658822\pi\)
−0.478508 + 0.878083i \(0.658822\pi\)
\(3\) 0 0
\(4\) −11025.8 −0.0841199
\(5\) −390625. −0.447214
\(6\) 0 0
\(7\) −1.80797e7 −1.18538 −0.592692 0.805429i \(-0.701935\pi\)
−0.592692 + 0.805429i \(0.701935\pi\)
\(8\) 4.92336e7 1.03752
\(9\) 0 0
\(10\) 1.35343e8 0.427991
\(11\) 1.45296e8 0.204369 0.102184 0.994765i \(-0.467417\pi\)
0.102184 + 0.994765i \(0.467417\pi\)
\(12\) 0 0
\(13\) −3.26155e9 −1.10894 −0.554468 0.832205i \(-0.687078\pi\)
−0.554468 + 0.832205i \(0.687078\pi\)
\(14\) 6.26421e9 1.13443
\(15\) 0 0
\(16\) −1.56131e10 −0.908804
\(17\) −7.81194e9 −0.271608 −0.135804 0.990736i \(-0.543362\pi\)
−0.135804 + 0.990736i \(0.543362\pi\)
\(18\) 0 0
\(19\) −7.18160e10 −0.970098 −0.485049 0.874487i \(-0.661198\pi\)
−0.485049 + 0.874487i \(0.661198\pi\)
\(20\) 4.30694e9 0.0376196
\(21\) 0 0
\(22\) −5.03416e10 −0.195584
\(23\) −1.67169e11 −0.445111 −0.222555 0.974920i \(-0.571440\pi\)
−0.222555 + 0.974920i \(0.571440\pi\)
\(24\) 0 0
\(25\) 1.52588e11 0.200000
\(26\) 1.13005e12 1.06127
\(27\) 0 0
\(28\) 1.99343e11 0.0997144
\(29\) −1.63211e11 −0.0605854 −0.0302927 0.999541i \(-0.509644\pi\)
−0.0302927 + 0.999541i \(0.509644\pi\)
\(30\) 0 0
\(31\) −5.38766e12 −1.13456 −0.567278 0.823527i \(-0.692003\pi\)
−0.567278 + 0.823527i \(0.692003\pi\)
\(32\) −1.04356e12 −0.167780
\(33\) 0 0
\(34\) 2.70666e12 0.259934
\(35\) 7.06240e12 0.530120
\(36\) 0 0
\(37\) −3.68759e13 −1.72595 −0.862976 0.505246i \(-0.831402\pi\)
−0.862976 + 0.505246i \(0.831402\pi\)
\(38\) 2.48826e13 0.928400
\(39\) 0 0
\(40\) −1.92319e13 −0.463993
\(41\) 7.52018e12 0.147084 0.0735420 0.997292i \(-0.476570\pi\)
0.0735420 + 0.997292i \(0.476570\pi\)
\(42\) 0 0
\(43\) −5.73935e13 −0.748825 −0.374413 0.927262i \(-0.622156\pi\)
−0.374413 + 0.927262i \(0.622156\pi\)
\(44\) −1.60200e12 −0.0171915
\(45\) 0 0
\(46\) 5.79201e13 0.425978
\(47\) −1.42516e14 −0.873034 −0.436517 0.899696i \(-0.643788\pi\)
−0.436517 + 0.899696i \(0.643788\pi\)
\(48\) 0 0
\(49\) 9.42466e13 0.405134
\(50\) −5.28682e13 −0.191403
\(51\) 0 0
\(52\) 3.59611e13 0.0932836
\(53\) −8.01583e14 −1.76849 −0.884247 0.467020i \(-0.845328\pi\)
−0.884247 + 0.467020i \(0.845328\pi\)
\(54\) 0 0
\(55\) −5.67561e13 −0.0913966
\(56\) −8.90131e14 −1.22986
\(57\) 0 0
\(58\) 5.65490e13 0.0579812
\(59\) −9.64437e14 −0.855129 −0.427565 0.903985i \(-0.640628\pi\)
−0.427565 + 0.903985i \(0.640628\pi\)
\(60\) 0 0
\(61\) −1.29792e15 −0.866849 −0.433424 0.901190i \(-0.642695\pi\)
−0.433424 + 0.901190i \(0.642695\pi\)
\(62\) 1.86670e15 1.08579
\(63\) 0 0
\(64\) 2.40801e15 1.06937
\(65\) 1.27404e15 0.495931
\(66\) 0 0
\(67\) 4.71635e15 1.41896 0.709480 0.704726i \(-0.248930\pi\)
0.709480 + 0.704726i \(0.248930\pi\)
\(68\) 8.61327e13 0.0228477
\(69\) 0 0
\(70\) −2.44696e15 −0.507333
\(71\) −9.29884e15 −1.70896 −0.854482 0.519482i \(-0.826125\pi\)
−0.854482 + 0.519482i \(0.826125\pi\)
\(72\) 0 0
\(73\) −6.86407e15 −0.996180 −0.498090 0.867125i \(-0.665965\pi\)
−0.498090 + 0.867125i \(0.665965\pi\)
\(74\) 1.27767e16 1.65176
\(75\) 0 0
\(76\) 7.91827e14 0.0816046
\(77\) −2.62691e15 −0.242256
\(78\) 0 0
\(79\) 1.21446e16 0.900646 0.450323 0.892866i \(-0.351309\pi\)
0.450323 + 0.892866i \(0.351309\pi\)
\(80\) 6.09888e15 0.406429
\(81\) 0 0
\(82\) −2.60557e15 −0.140762
\(83\) 3.23986e16 1.57893 0.789465 0.613796i \(-0.210358\pi\)
0.789465 + 0.613796i \(0.210358\pi\)
\(84\) 0 0
\(85\) 3.05154e15 0.121467
\(86\) 1.98855e16 0.716638
\(87\) 0 0
\(88\) 7.15343e15 0.212037
\(89\) 4.91787e16 1.32423 0.662113 0.749404i \(-0.269660\pi\)
0.662113 + 0.749404i \(0.269660\pi\)
\(90\) 0 0
\(91\) 5.89681e16 1.31451
\(92\) 1.84316e15 0.0374427
\(93\) 0 0
\(94\) 4.93784e16 0.835507
\(95\) 2.80531e16 0.433841
\(96\) 0 0
\(97\) 1.26124e17 1.63394 0.816972 0.576678i \(-0.195651\pi\)
0.816972 + 0.576678i \(0.195651\pi\)
\(98\) −3.26543e16 −0.387720
\(99\) 0 0
\(100\) −1.68240e15 −0.0168240
\(101\) 1.89692e15 0.0174308 0.00871538 0.999962i \(-0.497226\pi\)
0.00871538 + 0.999962i \(0.497226\pi\)
\(102\) 0 0
\(103\) −8.39711e16 −0.653150 −0.326575 0.945171i \(-0.605895\pi\)
−0.326575 + 0.945171i \(0.605895\pi\)
\(104\) −1.60578e17 −1.15054
\(105\) 0 0
\(106\) 2.77730e17 1.69248
\(107\) −1.85086e17 −1.04139 −0.520694 0.853744i \(-0.674327\pi\)
−0.520694 + 0.853744i \(0.674327\pi\)
\(108\) 0 0
\(109\) −6.78355e15 −0.0326086 −0.0163043 0.999867i \(-0.505190\pi\)
−0.0163043 + 0.999867i \(0.505190\pi\)
\(110\) 1.96647e16 0.0874680
\(111\) 0 0
\(112\) 2.82281e17 1.07728
\(113\) 4.78376e17 1.69279 0.846395 0.532556i \(-0.178769\pi\)
0.846395 + 0.532556i \(0.178769\pi\)
\(114\) 0 0
\(115\) 6.53002e16 0.199060
\(116\) 1.79953e15 0.00509644
\(117\) 0 0
\(118\) 3.34155e17 0.818372
\(119\) 1.41238e17 0.321960
\(120\) 0 0
\(121\) −4.84336e17 −0.958233
\(122\) 4.49698e17 0.829588
\(123\) 0 0
\(124\) 5.94031e16 0.0954387
\(125\) −5.96046e16 −0.0894427
\(126\) 0 0
\(127\) −9.82303e17 −1.28799 −0.643997 0.765028i \(-0.722725\pi\)
−0.643997 + 0.765028i \(0.722725\pi\)
\(128\) −6.97540e17 −0.855626
\(129\) 0 0
\(130\) −4.41427e17 −0.474614
\(131\) 1.52030e18 1.53153 0.765763 0.643123i \(-0.222362\pi\)
0.765763 + 0.643123i \(0.222362\pi\)
\(132\) 0 0
\(133\) 1.29842e18 1.14994
\(134\) −1.63411e18 −1.35797
\(135\) 0 0
\(136\) −3.84610e17 −0.281799
\(137\) 1.70259e17 0.117215 0.0586077 0.998281i \(-0.481334\pi\)
0.0586077 + 0.998281i \(0.481334\pi\)
\(138\) 0 0
\(139\) 1.42834e18 0.869372 0.434686 0.900582i \(-0.356859\pi\)
0.434686 + 0.900582i \(0.356859\pi\)
\(140\) −7.78684e16 −0.0445936
\(141\) 0 0
\(142\) 3.22183e18 1.63551
\(143\) −4.73890e17 −0.226632
\(144\) 0 0
\(145\) 6.37545e16 0.0270946
\(146\) 2.37824e18 0.953360
\(147\) 0 0
\(148\) 4.06586e17 0.145187
\(149\) 1.68597e18 0.568549 0.284274 0.958743i \(-0.408247\pi\)
0.284274 + 0.958743i \(0.408247\pi\)
\(150\) 0 0
\(151\) −6.03579e18 −1.81732 −0.908658 0.417542i \(-0.862892\pi\)
−0.908658 + 0.417542i \(0.862892\pi\)
\(152\) −3.53576e18 −1.00650
\(153\) 0 0
\(154\) 9.10163e17 0.231843
\(155\) 2.10455e18 0.507388
\(156\) 0 0
\(157\) 2.55069e18 0.551456 0.275728 0.961236i \(-0.411081\pi\)
0.275728 + 0.961236i \(0.411081\pi\)
\(158\) −4.20784e18 −0.861933
\(159\) 0 0
\(160\) 4.07639e17 0.0750336
\(161\) 3.02237e18 0.527627
\(162\) 0 0
\(163\) −1.79794e18 −0.282606 −0.141303 0.989966i \(-0.545129\pi\)
−0.141303 + 0.989966i \(0.545129\pi\)
\(164\) −8.29158e16 −0.0123727
\(165\) 0 0
\(166\) −1.12254e19 −1.51106
\(167\) −1.86888e18 −0.239052 −0.119526 0.992831i \(-0.538137\pi\)
−0.119526 + 0.992831i \(0.538137\pi\)
\(168\) 0 0
\(169\) 1.98732e18 0.229737
\(170\) −1.05729e18 −0.116246
\(171\) 0 0
\(172\) 6.32807e17 0.0629912
\(173\) −6.66325e18 −0.631385 −0.315692 0.948862i \(-0.602237\pi\)
−0.315692 + 0.948862i \(0.602237\pi\)
\(174\) 0 0
\(175\) −2.75875e18 −0.237077
\(176\) −2.26852e18 −0.185731
\(177\) 0 0
\(178\) −1.70393e19 −1.26731
\(179\) 9.91594e18 0.703207 0.351603 0.936149i \(-0.385637\pi\)
0.351603 + 0.936149i \(0.385637\pi\)
\(180\) 0 0
\(181\) −1.63607e19 −1.05568 −0.527841 0.849343i \(-0.676998\pi\)
−0.527841 + 0.849343i \(0.676998\pi\)
\(182\) −2.04311e19 −1.25801
\(183\) 0 0
\(184\) −8.23031e18 −0.461811
\(185\) 1.44047e19 0.771869
\(186\) 0 0
\(187\) −1.13504e18 −0.0555083
\(188\) 1.57135e18 0.0734395
\(189\) 0 0
\(190\) −9.71976e18 −0.415193
\(191\) 1.25239e19 0.511630 0.255815 0.966726i \(-0.417656\pi\)
0.255815 + 0.966726i \(0.417656\pi\)
\(192\) 0 0
\(193\) −4.14210e19 −1.54876 −0.774379 0.632722i \(-0.781937\pi\)
−0.774379 + 0.632722i \(0.781937\pi\)
\(194\) −4.36989e19 −1.56371
\(195\) 0 0
\(196\) −1.03914e18 −0.0340799
\(197\) −5.58901e19 −1.75538 −0.877691 0.479226i \(-0.840917\pi\)
−0.877691 + 0.479226i \(0.840917\pi\)
\(198\) 0 0
\(199\) 4.36216e19 1.25733 0.628667 0.777675i \(-0.283601\pi\)
0.628667 + 0.777675i \(0.283601\pi\)
\(200\) 7.51245e18 0.207504
\(201\) 0 0
\(202\) −6.57237e17 −0.0166815
\(203\) 2.95082e18 0.0718169
\(204\) 0 0
\(205\) −2.93757e18 −0.0657780
\(206\) 2.90940e19 0.625076
\(207\) 0 0
\(208\) 5.09231e19 1.00780
\(209\) −1.04346e19 −0.198258
\(210\) 0 0
\(211\) 4.00768e19 0.702251 0.351125 0.936328i \(-0.385799\pi\)
0.351125 + 0.936328i \(0.385799\pi\)
\(212\) 8.83807e18 0.148766
\(213\) 0 0
\(214\) 6.41281e19 0.996624
\(215\) 2.24193e19 0.334885
\(216\) 0 0
\(217\) 9.74075e19 1.34488
\(218\) 2.35034e18 0.0312069
\(219\) 0 0
\(220\) 6.25780e17 0.00768827
\(221\) 2.54791e19 0.301196
\(222\) 0 0
\(223\) −1.47056e19 −0.161024 −0.0805120 0.996754i \(-0.525656\pi\)
−0.0805120 + 0.996754i \(0.525656\pi\)
\(224\) 1.88672e19 0.198884
\(225\) 0 0
\(226\) −1.65746e20 −1.62003
\(227\) 9.28542e19 0.874142 0.437071 0.899427i \(-0.356016\pi\)
0.437071 + 0.899427i \(0.356016\pi\)
\(228\) 0 0
\(229\) 8.55435e19 0.747456 0.373728 0.927538i \(-0.378079\pi\)
0.373728 + 0.927538i \(0.378079\pi\)
\(230\) −2.26250e19 −0.190503
\(231\) 0 0
\(232\) −8.03549e18 −0.0628585
\(233\) 1.52132e20 1.14735 0.573673 0.819085i \(-0.305518\pi\)
0.573673 + 0.819085i \(0.305518\pi\)
\(234\) 0 0
\(235\) 5.56702e19 0.390433
\(236\) 1.06337e19 0.0719334
\(237\) 0 0
\(238\) −4.89357e19 −0.308121
\(239\) 1.99392e20 1.21151 0.605753 0.795653i \(-0.292872\pi\)
0.605753 + 0.795653i \(0.292872\pi\)
\(240\) 0 0
\(241\) 4.27174e19 0.241802 0.120901 0.992665i \(-0.461422\pi\)
0.120901 + 0.992665i \(0.461422\pi\)
\(242\) 1.67811e20 0.917045
\(243\) 0 0
\(244\) 1.43105e19 0.0729193
\(245\) −3.68151e19 −0.181182
\(246\) 0 0
\(247\) 2.34232e20 1.07578
\(248\) −2.65254e20 −1.17712
\(249\) 0 0
\(250\) 2.06516e19 0.0855981
\(251\) 7.43273e19 0.297798 0.148899 0.988852i \(-0.452427\pi\)
0.148899 + 0.988852i \(0.452427\pi\)
\(252\) 0 0
\(253\) −2.42889e19 −0.0909668
\(254\) 3.40345e20 1.23263
\(255\) 0 0
\(256\) −7.39416e19 −0.250524
\(257\) −2.45390e20 −0.804314 −0.402157 0.915571i \(-0.631739\pi\)
−0.402157 + 0.915571i \(0.631739\pi\)
\(258\) 0 0
\(259\) 6.66708e20 2.04591
\(260\) −1.40473e19 −0.0417177
\(261\) 0 0
\(262\) −5.26750e20 −1.46570
\(263\) −6.82308e20 −1.83805 −0.919023 0.394203i \(-0.871021\pi\)
−0.919023 + 0.394203i \(0.871021\pi\)
\(264\) 0 0
\(265\) 3.13118e20 0.790895
\(266\) −4.49871e20 −1.10051
\(267\) 0 0
\(268\) −5.20014e19 −0.119363
\(269\) 6.63222e19 0.147491 0.0737453 0.997277i \(-0.476505\pi\)
0.0737453 + 0.997277i \(0.476505\pi\)
\(270\) 0 0
\(271\) 2.71020e20 0.565930 0.282965 0.959130i \(-0.408682\pi\)
0.282965 + 0.959130i \(0.408682\pi\)
\(272\) 1.21969e20 0.246839
\(273\) 0 0
\(274\) −5.89908e19 −0.112177
\(275\) 2.21704e19 0.0408738
\(276\) 0 0
\(277\) −8.88228e20 −1.53974 −0.769868 0.638203i \(-0.779678\pi\)
−0.769868 + 0.638203i \(0.779678\pi\)
\(278\) −4.94887e20 −0.832003
\(279\) 0 0
\(280\) 3.47707e20 0.550010
\(281\) −6.79681e19 −0.104304 −0.0521521 0.998639i \(-0.516608\pi\)
−0.0521521 + 0.998639i \(0.516608\pi\)
\(282\) 0 0
\(283\) −1.19124e21 −1.72113 −0.860566 0.509339i \(-0.829890\pi\)
−0.860566 + 0.509339i \(0.829890\pi\)
\(284\) 1.02527e20 0.143758
\(285\) 0 0
\(286\) 1.64192e20 0.216890
\(287\) −1.35963e20 −0.174351
\(288\) 0 0
\(289\) −7.66214e20 −0.926229
\(290\) −2.20895e19 −0.0259300
\(291\) 0 0
\(292\) 7.56817e19 0.0837986
\(293\) 9.27187e20 0.997223 0.498612 0.866825i \(-0.333843\pi\)
0.498612 + 0.866825i \(0.333843\pi\)
\(294\) 0 0
\(295\) 3.76733e20 0.382425
\(296\) −1.81554e21 −1.79071
\(297\) 0 0
\(298\) −5.84151e20 −0.544110
\(299\) 5.45229e20 0.493599
\(300\) 0 0
\(301\) 1.03766e21 0.887645
\(302\) 2.09126e21 1.73920
\(303\) 0 0
\(304\) 1.12127e21 0.881629
\(305\) 5.06999e20 0.387666
\(306\) 0 0
\(307\) −1.13596e21 −0.821650 −0.410825 0.911714i \(-0.634759\pi\)
−0.410825 + 0.911714i \(0.634759\pi\)
\(308\) 2.89637e19 0.0203785
\(309\) 0 0
\(310\) −7.29179e20 −0.485579
\(311\) −6.77029e19 −0.0438676 −0.0219338 0.999759i \(-0.506982\pi\)
−0.0219338 + 0.999759i \(0.506982\pi\)
\(312\) 0 0
\(313\) −2.90716e21 −1.78379 −0.891893 0.452247i \(-0.850623\pi\)
−0.891893 + 0.452247i \(0.850623\pi\)
\(314\) −8.83755e20 −0.527752
\(315\) 0 0
\(316\) −1.33904e20 −0.0757623
\(317\) 5.72332e20 0.315242 0.157621 0.987500i \(-0.449618\pi\)
0.157621 + 0.987500i \(0.449618\pi\)
\(318\) 0 0
\(319\) −2.37139e19 −0.0123818
\(320\) −9.40630e20 −0.478238
\(321\) 0 0
\(322\) −1.04718e21 −0.504948
\(323\) 5.61023e20 0.263487
\(324\) 0 0
\(325\) −4.97674e20 −0.221787
\(326\) 6.22945e20 0.270458
\(327\) 0 0
\(328\) 3.70245e20 0.152603
\(329\) 2.57665e21 1.03488
\(330\) 0 0
\(331\) −1.51278e21 −0.577082 −0.288541 0.957467i \(-0.593170\pi\)
−0.288541 + 0.957467i \(0.593170\pi\)
\(332\) −3.57220e20 −0.132819
\(333\) 0 0
\(334\) 6.47524e20 0.228776
\(335\) −1.84232e21 −0.634578
\(336\) 0 0
\(337\) 4.17496e21 1.36709 0.683547 0.729906i \(-0.260436\pi\)
0.683547 + 0.729906i \(0.260436\pi\)
\(338\) −6.88561e20 −0.219862
\(339\) 0 0
\(340\) −3.36456e19 −0.0102178
\(341\) −7.82803e20 −0.231868
\(342\) 0 0
\(343\) 2.50195e21 0.705144
\(344\) −2.82569e21 −0.776922
\(345\) 0 0
\(346\) 2.30866e21 0.604245
\(347\) −6.74224e21 −1.72188 −0.860942 0.508703i \(-0.830125\pi\)
−0.860942 + 0.508703i \(0.830125\pi\)
\(348\) 0 0
\(349\) 1.37021e21 0.333250 0.166625 0.986020i \(-0.446713\pi\)
0.166625 + 0.986020i \(0.446713\pi\)
\(350\) 9.55843e20 0.226886
\(351\) 0 0
\(352\) −1.51624e20 −0.0342891
\(353\) −5.52770e21 −1.22028 −0.610140 0.792294i \(-0.708887\pi\)
−0.610140 + 0.792294i \(0.708887\pi\)
\(354\) 0 0
\(355\) 3.63236e21 0.764272
\(356\) −5.42233e20 −0.111394
\(357\) 0 0
\(358\) −3.43564e21 −0.672980
\(359\) 3.91350e20 0.0748621 0.0374311 0.999299i \(-0.488083\pi\)
0.0374311 + 0.999299i \(0.488083\pi\)
\(360\) 0 0
\(361\) −3.22844e20 −0.0589090
\(362\) 5.66860e21 1.01031
\(363\) 0 0
\(364\) −6.50168e20 −0.110577
\(365\) 2.68128e21 0.445505
\(366\) 0 0
\(367\) 5.83834e21 0.926036 0.463018 0.886349i \(-0.346766\pi\)
0.463018 + 0.886349i \(0.346766\pi\)
\(368\) 2.61003e21 0.404518
\(369\) 0 0
\(370\) −4.99088e21 −0.738691
\(371\) 1.44924e22 2.09634
\(372\) 0 0
\(373\) 7.61840e21 1.05278 0.526391 0.850243i \(-0.323545\pi\)
0.526391 + 0.850243i \(0.323545\pi\)
\(374\) 3.93266e20 0.0531224
\(375\) 0 0
\(376\) −7.01656e21 −0.905790
\(377\) 5.32323e20 0.0671852
\(378\) 0 0
\(379\) −5.37453e21 −0.648496 −0.324248 0.945972i \(-0.605111\pi\)
−0.324248 + 0.945972i \(0.605111\pi\)
\(380\) −3.09307e20 −0.0364947
\(381\) 0 0
\(382\) −4.33924e21 −0.489638
\(383\) −1.25019e22 −1.37971 −0.689854 0.723949i \(-0.742325\pi\)
−0.689854 + 0.723949i \(0.742325\pi\)
\(384\) 0 0
\(385\) 1.02614e21 0.108340
\(386\) 1.43514e22 1.48219
\(387\) 0 0
\(388\) −1.39061e21 −0.137447
\(389\) 6.28931e21 0.608179 0.304089 0.952643i \(-0.401648\pi\)
0.304089 + 0.952643i \(0.401648\pi\)
\(390\) 0 0
\(391\) 1.30591e21 0.120896
\(392\) 4.64010e21 0.420335
\(393\) 0 0
\(394\) 1.93646e22 1.67993
\(395\) −4.74400e21 −0.402781
\(396\) 0 0
\(397\) 9.76024e21 0.793855 0.396927 0.917850i \(-0.370076\pi\)
0.396927 + 0.917850i \(0.370076\pi\)
\(398\) −1.51139e22 −1.20329
\(399\) 0 0
\(400\) −2.38237e21 −0.181761
\(401\) 1.49385e22 1.11578 0.557891 0.829914i \(-0.311611\pi\)
0.557891 + 0.829914i \(0.311611\pi\)
\(402\) 0 0
\(403\) 1.75721e22 1.25815
\(404\) −2.09150e19 −0.00146627
\(405\) 0 0
\(406\) −1.02239e21 −0.0687299
\(407\) −5.35792e21 −0.352731
\(408\) 0 0
\(409\) 3.26206e21 0.205989 0.102994 0.994682i \(-0.467158\pi\)
0.102994 + 0.994682i \(0.467158\pi\)
\(410\) 1.01780e21 0.0629506
\(411\) 0 0
\(412\) 9.25846e20 0.0549430
\(413\) 1.74368e22 1.01366
\(414\) 0 0
\(415\) −1.26557e22 −0.706119
\(416\) 3.40362e21 0.186057
\(417\) 0 0
\(418\) 3.61533e21 0.189736
\(419\) −1.20674e22 −0.620575 −0.310288 0.950643i \(-0.600425\pi\)
−0.310288 + 0.950643i \(0.600425\pi\)
\(420\) 0 0
\(421\) 2.42720e22 1.19869 0.599347 0.800489i \(-0.295427\pi\)
0.599347 + 0.800489i \(0.295427\pi\)
\(422\) −1.38857e22 −0.672066
\(423\) 0 0
\(424\) −3.94648e22 −1.83485
\(425\) −1.19201e21 −0.0543217
\(426\) 0 0
\(427\) 2.34660e22 1.02755
\(428\) 2.04072e21 0.0876014
\(429\) 0 0
\(430\) −7.76778e21 −0.320490
\(431\) 4.48255e21 0.181330 0.0906648 0.995881i \(-0.471101\pi\)
0.0906648 + 0.995881i \(0.471101\pi\)
\(432\) 0 0
\(433\) −2.52232e22 −0.980964 −0.490482 0.871451i \(-0.663179\pi\)
−0.490482 + 0.871451i \(0.663179\pi\)
\(434\) −3.37494e22 −1.28707
\(435\) 0 0
\(436\) 7.47939e19 0.00274303
\(437\) 1.20054e22 0.431801
\(438\) 0 0
\(439\) −1.27343e22 −0.440583 −0.220292 0.975434i \(-0.570701\pi\)
−0.220292 + 0.975434i \(0.570701\pi\)
\(440\) −2.79431e21 −0.0948258
\(441\) 0 0
\(442\) −8.82791e21 −0.288250
\(443\) −3.44286e21 −0.110278 −0.0551388 0.998479i \(-0.517560\pi\)
−0.0551388 + 0.998479i \(0.517560\pi\)
\(444\) 0 0
\(445\) −1.92104e22 −0.592212
\(446\) 5.09514e21 0.154103
\(447\) 0 0
\(448\) −4.35362e22 −1.26762
\(449\) −3.26192e22 −0.931923 −0.465961 0.884805i \(-0.654291\pi\)
−0.465961 + 0.884805i \(0.654291\pi\)
\(450\) 0 0
\(451\) 1.09265e21 0.0300594
\(452\) −5.27447e21 −0.142397
\(453\) 0 0
\(454\) −3.21718e22 −0.836568
\(455\) −2.30344e22 −0.587868
\(456\) 0 0
\(457\) 4.34642e22 1.06867 0.534335 0.845273i \(-0.320562\pi\)
0.534335 + 0.845273i \(0.320562\pi\)
\(458\) −2.96389e22 −0.715328
\(459\) 0 0
\(460\) −7.19985e20 −0.0167449
\(461\) 1.80871e22 0.412963 0.206482 0.978450i \(-0.433799\pi\)
0.206482 + 0.978450i \(0.433799\pi\)
\(462\) 0 0
\(463\) 4.20915e22 0.926308 0.463154 0.886278i \(-0.346718\pi\)
0.463154 + 0.886278i \(0.346718\pi\)
\(464\) 2.54824e21 0.0550602
\(465\) 0 0
\(466\) −5.27101e22 −1.09803
\(467\) 2.75126e22 0.562779 0.281390 0.959594i \(-0.409205\pi\)
0.281390 + 0.959594i \(0.409205\pi\)
\(468\) 0 0
\(469\) −8.52704e22 −1.68201
\(470\) −1.92884e22 −0.373650
\(471\) 0 0
\(472\) −4.74827e22 −0.887214
\(473\) −8.33902e21 −0.153037
\(474\) 0 0
\(475\) −1.09583e22 −0.194020
\(476\) −1.55726e21 −0.0270833
\(477\) 0 0
\(478\) −6.90847e22 −1.15943
\(479\) 9.42350e22 1.55368 0.776838 0.629701i \(-0.216823\pi\)
0.776838 + 0.629701i \(0.216823\pi\)
\(480\) 0 0
\(481\) 1.20273e23 1.91397
\(482\) −1.48006e22 −0.231408
\(483\) 0 0
\(484\) 5.34018e21 0.0806065
\(485\) −4.92671e22 −0.730722
\(486\) 0 0
\(487\) −6.21562e22 −0.890202 −0.445101 0.895480i \(-0.646832\pi\)
−0.445101 + 0.895480i \(0.646832\pi\)
\(488\) −6.39011e22 −0.899373
\(489\) 0 0
\(490\) 1.27556e22 0.173394
\(491\) 5.23525e21 0.0699431 0.0349715 0.999388i \(-0.488866\pi\)
0.0349715 + 0.999388i \(0.488866\pi\)
\(492\) 0 0
\(493\) 1.27500e21 0.0164555
\(494\) −8.11559e22 −1.02954
\(495\) 0 0
\(496\) 8.41182e22 1.03109
\(497\) 1.68121e23 2.02578
\(498\) 0 0
\(499\) 1.25380e23 1.46007 0.730035 0.683410i \(-0.239504\pi\)
0.730035 + 0.683410i \(0.239504\pi\)
\(500\) 6.57187e20 0.00752392
\(501\) 0 0
\(502\) −2.57527e22 −0.284998
\(503\) −9.43437e22 −1.02656 −0.513281 0.858221i \(-0.671570\pi\)
−0.513281 + 0.858221i \(0.671570\pi\)
\(504\) 0 0
\(505\) −7.40983e20 −0.00779527
\(506\) 8.41553e21 0.0870567
\(507\) 0 0
\(508\) 1.08306e22 0.108346
\(509\) 1.78875e23 1.75974 0.879868 0.475218i \(-0.157631\pi\)
0.879868 + 0.475218i \(0.157631\pi\)
\(510\) 0 0
\(511\) 1.24101e23 1.18085
\(512\) 1.17047e23 1.09538
\(513\) 0 0
\(514\) 8.50220e22 0.769741
\(515\) 3.28012e22 0.292098
\(516\) 0 0
\(517\) −2.07069e22 −0.178421
\(518\) −2.30999e23 −1.95797
\(519\) 0 0
\(520\) 6.27258e22 0.514538
\(521\) 8.97435e22 0.724240 0.362120 0.932132i \(-0.382053\pi\)
0.362120 + 0.932132i \(0.382053\pi\)
\(522\) 0 0
\(523\) 8.40919e22 0.656886 0.328443 0.944524i \(-0.393476\pi\)
0.328443 + 0.944524i \(0.393476\pi\)
\(524\) −1.67625e22 −0.128832
\(525\) 0 0
\(526\) 2.36404e23 1.75904
\(527\) 4.20881e22 0.308155
\(528\) 0 0
\(529\) −1.13105e23 −0.801876
\(530\) −1.08488e23 −0.756899
\(531\) 0 0
\(532\) −1.43160e22 −0.0967328
\(533\) −2.45275e22 −0.163107
\(534\) 0 0
\(535\) 7.22993e22 0.465722
\(536\) 2.32203e23 1.47220
\(537\) 0 0
\(538\) −2.29791e22 −0.141151
\(539\) 1.36936e22 0.0827969
\(540\) 0 0
\(541\) −3.23321e23 −1.89434 −0.947168 0.320737i \(-0.896070\pi\)
−0.947168 + 0.320737i \(0.896070\pi\)
\(542\) −9.39023e22 −0.541604
\(543\) 0 0
\(544\) 8.15220e21 0.0455705
\(545\) 2.64982e21 0.0145830
\(546\) 0 0
\(547\) 1.95314e23 1.04193 0.520967 0.853577i \(-0.325571\pi\)
0.520967 + 0.853577i \(0.325571\pi\)
\(548\) −1.87724e21 −0.00986016
\(549\) 0 0
\(550\) −7.68152e21 −0.0391169
\(551\) 1.17212e22 0.0587738
\(552\) 0 0
\(553\) −2.19572e23 −1.06761
\(554\) 3.07751e23 1.47355
\(555\) 0 0
\(556\) −1.57485e22 −0.0731315
\(557\) 2.79561e23 1.27852 0.639260 0.768991i \(-0.279241\pi\)
0.639260 + 0.768991i \(0.279241\pi\)
\(558\) 0 0
\(559\) 1.87192e23 0.830399
\(560\) −1.10266e23 −0.481775
\(561\) 0 0
\(562\) 2.35494e22 0.0998208
\(563\) −4.27440e23 −1.78465 −0.892326 0.451391i \(-0.850928\pi\)
−0.892326 + 0.451391i \(0.850928\pi\)
\(564\) 0 0
\(565\) −1.86866e23 −0.757038
\(566\) 4.12737e23 1.64715
\(567\) 0 0
\(568\) −4.57815e23 −1.77308
\(569\) −1.78853e22 −0.0682404 −0.0341202 0.999418i \(-0.510863\pi\)
−0.0341202 + 0.999418i \(0.510863\pi\)
\(570\) 0 0
\(571\) 4.80795e23 1.78055 0.890273 0.455428i \(-0.150514\pi\)
0.890273 + 0.455428i \(0.150514\pi\)
\(572\) 5.22500e21 0.0190643
\(573\) 0 0
\(574\) 4.71080e22 0.166857
\(575\) −2.55079e22 −0.0890221
\(576\) 0 0
\(577\) −6.04913e22 −0.204974 −0.102487 0.994734i \(-0.532680\pi\)
−0.102487 + 0.994734i \(0.532680\pi\)
\(578\) 2.65475e23 0.886416
\(579\) 0 0
\(580\) −7.02942e20 −0.00227920
\(581\) −5.85759e23 −1.87164
\(582\) 0 0
\(583\) −1.16467e23 −0.361425
\(584\) −3.37943e23 −1.03356
\(585\) 0 0
\(586\) −3.21249e23 −0.954359
\(587\) −2.44376e23 −0.715542 −0.357771 0.933809i \(-0.616463\pi\)
−0.357771 + 0.933809i \(0.616463\pi\)
\(588\) 0 0
\(589\) 3.86920e23 1.10063
\(590\) −1.30529e23 −0.365987
\(591\) 0 0
\(592\) 5.75749e23 1.56855
\(593\) −4.28495e23 −1.15075 −0.575375 0.817890i \(-0.695144\pi\)
−0.575375 + 0.817890i \(0.695144\pi\)
\(594\) 0 0
\(595\) −5.51711e22 −0.143985
\(596\) −1.85892e22 −0.0478263
\(597\) 0 0
\(598\) −1.88909e23 −0.472382
\(599\) −3.13787e23 −0.773583 −0.386791 0.922167i \(-0.626417\pi\)
−0.386791 + 0.922167i \(0.626417\pi\)
\(600\) 0 0
\(601\) −4.34182e23 −1.04049 −0.520246 0.854017i \(-0.674160\pi\)
−0.520246 + 0.854017i \(0.674160\pi\)
\(602\) −3.59525e23 −0.849491
\(603\) 0 0
\(604\) 6.65493e22 0.152872
\(605\) 1.89194e23 0.428535
\(606\) 0 0
\(607\) −1.44167e23 −0.317514 −0.158757 0.987318i \(-0.550749\pi\)
−0.158757 + 0.987318i \(0.550749\pi\)
\(608\) 7.49441e22 0.162763
\(609\) 0 0
\(610\) −1.75663e23 −0.371003
\(611\) 4.64823e23 0.968138
\(612\) 0 0
\(613\) −3.77031e23 −0.763770 −0.381885 0.924210i \(-0.624725\pi\)
−0.381885 + 0.924210i \(0.624725\pi\)
\(614\) 3.93584e23 0.786332
\(615\) 0 0
\(616\) −1.29332e23 −0.251345
\(617\) −1.22488e23 −0.234784 −0.117392 0.993086i \(-0.537453\pi\)
−0.117392 + 0.993086i \(0.537453\pi\)
\(618\) 0 0
\(619\) 3.03696e23 0.566329 0.283164 0.959071i \(-0.408616\pi\)
0.283164 + 0.959071i \(0.408616\pi\)
\(620\) −2.32043e22 −0.0426815
\(621\) 0 0
\(622\) 2.34575e22 0.0419820
\(623\) −8.89138e23 −1.56971
\(624\) 0 0
\(625\) 2.32831e22 0.0400000
\(626\) 1.00727e24 1.70711
\(627\) 0 0
\(628\) −2.81233e22 −0.0463884
\(629\) 2.88073e23 0.468783
\(630\) 0 0
\(631\) 2.61906e23 0.414855 0.207427 0.978250i \(-0.433491\pi\)
0.207427 + 0.978250i \(0.433491\pi\)
\(632\) 5.97924e23 0.934439
\(633\) 0 0
\(634\) −1.98300e23 −0.301692
\(635\) 3.83712e23 0.576009
\(636\) 0 0
\(637\) −3.07390e23 −0.449268
\(638\) 8.21633e21 0.0118496
\(639\) 0 0
\(640\) 2.72476e23 0.382648
\(641\) 1.36869e24 1.89675 0.948376 0.317148i \(-0.102725\pi\)
0.948376 + 0.317148i \(0.102725\pi\)
\(642\) 0 0
\(643\) −9.20999e23 −1.24299 −0.621493 0.783420i \(-0.713473\pi\)
−0.621493 + 0.783420i \(0.713473\pi\)
\(644\) −3.33239e22 −0.0443840
\(645\) 0 0
\(646\) −1.94381e23 −0.252161
\(647\) −8.42397e23 −1.07853 −0.539263 0.842137i \(-0.681297\pi\)
−0.539263 + 0.842137i \(0.681297\pi\)
\(648\) 0 0
\(649\) −1.40128e23 −0.174762
\(650\) 1.72432e23 0.212254
\(651\) 0 0
\(652\) 1.98237e22 0.0237728
\(653\) −1.66957e24 −1.97625 −0.988127 0.153636i \(-0.950902\pi\)
−0.988127 + 0.153636i \(0.950902\pi\)
\(654\) 0 0
\(655\) −5.93869e23 −0.684919
\(656\) −1.17414e23 −0.133671
\(657\) 0 0
\(658\) −8.92749e23 −0.990397
\(659\) 2.95184e23 0.323271 0.161635 0.986851i \(-0.448323\pi\)
0.161635 + 0.986851i \(0.448323\pi\)
\(660\) 0 0
\(661\) −4.40451e23 −0.470094 −0.235047 0.971984i \(-0.575524\pi\)
−0.235047 + 0.971984i \(0.575524\pi\)
\(662\) 5.24143e23 0.552277
\(663\) 0 0
\(664\) 1.59510e24 1.63817
\(665\) −5.07194e23 −0.514268
\(666\) 0 0
\(667\) 2.72838e22 0.0269672
\(668\) 2.06058e22 0.0201090
\(669\) 0 0
\(670\) 6.38323e23 0.607301
\(671\) −1.88582e23 −0.177157
\(672\) 0 0
\(673\) 1.24648e24 1.14171 0.570857 0.821050i \(-0.306611\pi\)
0.570857 + 0.821050i \(0.306611\pi\)
\(674\) −1.44653e24 −1.30833
\(675\) 0 0
\(676\) −2.19117e22 −0.0193255
\(677\) 4.62880e23 0.403148 0.201574 0.979473i \(-0.435394\pi\)
0.201574 + 0.979473i \(0.435394\pi\)
\(678\) 0 0
\(679\) −2.28028e24 −1.93685
\(680\) 1.50238e23 0.126024
\(681\) 0 0
\(682\) 2.71223e23 0.221901
\(683\) −2.48612e23 −0.200884 −0.100442 0.994943i \(-0.532026\pi\)
−0.100442 + 0.994943i \(0.532026\pi\)
\(684\) 0 0
\(685\) −6.65074e22 −0.0524204
\(686\) −8.66866e23 −0.674834
\(687\) 0 0
\(688\) 8.96092e23 0.680535
\(689\) 2.61441e24 1.96114
\(690\) 0 0
\(691\) −1.35462e24 −0.991410 −0.495705 0.868491i \(-0.665090\pi\)
−0.495705 + 0.868491i \(0.665090\pi\)
\(692\) 7.34674e22 0.0531120
\(693\) 0 0
\(694\) 2.33603e24 1.64787
\(695\) −5.57945e23 −0.388795
\(696\) 0 0
\(697\) −5.87472e22 −0.0399493
\(698\) −4.74746e23 −0.318926
\(699\) 0 0
\(700\) 3.04173e22 0.0199429
\(701\) 1.81829e23 0.117777 0.0588885 0.998265i \(-0.481244\pi\)
0.0588885 + 0.998265i \(0.481244\pi\)
\(702\) 0 0
\(703\) 2.64828e24 1.67434
\(704\) 3.49874e23 0.218546
\(705\) 0 0
\(706\) 1.91522e24 1.16783
\(707\) −3.42957e22 −0.0206621
\(708\) 0 0
\(709\) −2.23286e24 −1.31331 −0.656657 0.754190i \(-0.728030\pi\)
−0.656657 + 0.754190i \(0.728030\pi\)
\(710\) −1.25853e24 −0.731420
\(711\) 0 0
\(712\) 2.42124e24 1.37391
\(713\) 9.00647e23 0.505003
\(714\) 0 0
\(715\) 1.85113e23 0.101353
\(716\) −1.09331e23 −0.0591537
\(717\) 0 0
\(718\) −1.35594e23 −0.0716443
\(719\) −3.16369e24 −1.65196 −0.825978 0.563703i \(-0.809376\pi\)
−0.825978 + 0.563703i \(0.809376\pi\)
\(720\) 0 0
\(721\) 1.51818e24 0.774234
\(722\) 1.11858e23 0.0563769
\(723\) 0 0
\(724\) 1.80389e23 0.0888040
\(725\) −2.49041e22 −0.0121171
\(726\) 0 0
\(727\) 6.61806e23 0.314549 0.157275 0.987555i \(-0.449729\pi\)
0.157275 + 0.987555i \(0.449729\pi\)
\(728\) 2.90321e24 1.36383
\(729\) 0 0
\(730\) −9.29001e23 −0.426356
\(731\) 4.48354e23 0.203387
\(732\) 0 0
\(733\) 4.28033e23 0.189711 0.0948556 0.995491i \(-0.469761\pi\)
0.0948556 + 0.995491i \(0.469761\pi\)
\(734\) −2.02285e24 −0.886232
\(735\) 0 0
\(736\) 1.74450e23 0.0746808
\(737\) 6.85265e23 0.289991
\(738\) 0 0
\(739\) −1.82465e24 −0.754575 −0.377288 0.926096i \(-0.623143\pi\)
−0.377288 + 0.926096i \(0.623143\pi\)
\(740\) −1.58823e23 −0.0649296
\(741\) 0 0
\(742\) −5.02129e24 −2.00623
\(743\) 3.46988e24 1.37059 0.685297 0.728263i \(-0.259672\pi\)
0.685297 + 0.728263i \(0.259672\pi\)
\(744\) 0 0
\(745\) −6.58584e23 −0.254263
\(746\) −2.63960e24 −1.00753
\(747\) 0 0
\(748\) 1.25147e22 0.00466936
\(749\) 3.34631e24 1.23444
\(750\) 0 0
\(751\) 4.39459e24 1.58481 0.792407 0.609992i \(-0.208828\pi\)
0.792407 + 0.609992i \(0.208828\pi\)
\(752\) 2.22512e24 0.793416
\(753\) 0 0
\(754\) −1.84438e23 −0.0642974
\(755\) 2.35773e24 0.812728
\(756\) 0 0
\(757\) 1.47842e24 0.498291 0.249146 0.968466i \(-0.419850\pi\)
0.249146 + 0.968466i \(0.419850\pi\)
\(758\) 1.86215e24 0.620622
\(759\) 0 0
\(760\) 1.38116e24 0.450119
\(761\) −3.72845e24 −1.20160 −0.600799 0.799400i \(-0.705151\pi\)
−0.600799 + 0.799400i \(0.705151\pi\)
\(762\) 0 0
\(763\) 1.22645e23 0.0386537
\(764\) −1.38086e23 −0.0430383
\(765\) 0 0
\(766\) 4.33163e24 1.32040
\(767\) 3.14556e24 0.948283
\(768\) 0 0
\(769\) −5.86779e24 −1.73022 −0.865108 0.501585i \(-0.832750\pi\)
−0.865108 + 0.501585i \(0.832750\pi\)
\(770\) −3.55532e23 −0.103683
\(771\) 0 0
\(772\) 4.56698e23 0.130281
\(773\) 2.76247e24 0.779422 0.389711 0.920937i \(-0.372575\pi\)
0.389711 + 0.920937i \(0.372575\pi\)
\(774\) 0 0
\(775\) −8.22091e23 −0.226911
\(776\) 6.20952e24 1.69525
\(777\) 0 0
\(778\) −2.17910e24 −0.582037
\(779\) −5.40070e23 −0.142686
\(780\) 0 0
\(781\) −1.35108e24 −0.349259
\(782\) −4.52468e23 −0.115699
\(783\) 0 0
\(784\) −1.47148e24 −0.368188
\(785\) −9.96363e23 −0.246618
\(786\) 0 0
\(787\) −5.28513e24 −1.28018 −0.640089 0.768300i \(-0.721103\pi\)
−0.640089 + 0.768300i \(0.721103\pi\)
\(788\) 6.16231e23 0.147663
\(789\) 0 0
\(790\) 1.64369e24 0.385468
\(791\) −8.64892e24 −2.00660
\(792\) 0 0
\(793\) 4.23323e24 0.961279
\(794\) −3.38170e24 −0.759732
\(795\) 0 0
\(796\) −4.80962e23 −0.105767
\(797\) −6.74168e24 −1.46680 −0.733402 0.679795i \(-0.762069\pi\)
−0.733402 + 0.679795i \(0.762069\pi\)
\(798\) 0 0
\(799\) 1.11332e24 0.237123
\(800\) −1.59234e23 −0.0335561
\(801\) 0 0
\(802\) −5.17584e24 −1.06782
\(803\) −9.97320e23 −0.203588
\(804\) 0 0
\(805\) −1.18061e24 −0.235962
\(806\) −6.08834e24 −1.20407
\(807\) 0 0
\(808\) 9.33920e22 0.0180848
\(809\) 9.91715e23 0.190031 0.0950155 0.995476i \(-0.469710\pi\)
0.0950155 + 0.995476i \(0.469710\pi\)
\(810\) 0 0
\(811\) −2.93030e24 −0.549839 −0.274919 0.961467i \(-0.588651\pi\)
−0.274919 + 0.961467i \(0.588651\pi\)
\(812\) −3.25351e22 −0.00604123
\(813\) 0 0
\(814\) 1.85639e24 0.337569
\(815\) 7.02321e23 0.126385
\(816\) 0 0
\(817\) 4.12177e24 0.726434
\(818\) −1.13023e24 −0.197135
\(819\) 0 0
\(820\) 3.23890e22 0.00553324
\(821\) −6.65129e24 −1.12458 −0.562288 0.826941i \(-0.690079\pi\)
−0.562288 + 0.826941i \(0.690079\pi\)
\(822\) 0 0
\(823\) 5.08673e24 0.842442 0.421221 0.906958i \(-0.361602\pi\)
0.421221 + 0.906958i \(0.361602\pi\)
\(824\) −4.13420e24 −0.677657
\(825\) 0 0
\(826\) −6.04144e24 −0.970085
\(827\) −6.33488e24 −1.00680 −0.503398 0.864055i \(-0.667917\pi\)
−0.503398 + 0.864055i \(0.667917\pi\)
\(828\) 0 0
\(829\) −6.00803e23 −0.0935445 −0.0467723 0.998906i \(-0.514894\pi\)
−0.0467723 + 0.998906i \(0.514894\pi\)
\(830\) 4.38491e24 0.675767
\(831\) 0 0
\(832\) −7.85386e24 −1.18586
\(833\) −7.36249e23 −0.110038
\(834\) 0 0
\(835\) 7.30031e23 0.106907
\(836\) 1.15049e23 0.0166775
\(837\) 0 0
\(838\) 4.18107e24 0.593900
\(839\) 9.85513e24 1.38575 0.692876 0.721056i \(-0.256343\pi\)
0.692876 + 0.721056i \(0.256343\pi\)
\(840\) 0 0
\(841\) −7.23051e24 −0.996329
\(842\) −8.40970e24 −1.14717
\(843\) 0 0
\(844\) −4.41878e23 −0.0590733
\(845\) −7.76297e23 −0.102741
\(846\) 0 0
\(847\) 8.75667e24 1.13587
\(848\) 1.25152e25 1.60721
\(849\) 0 0
\(850\) 4.13003e23 0.0519867
\(851\) 6.16450e24 0.768239
\(852\) 0 0
\(853\) −9.21992e24 −1.12632 −0.563158 0.826349i \(-0.690414\pi\)
−0.563158 + 0.826349i \(0.690414\pi\)
\(854\) −8.13043e24 −0.983380
\(855\) 0 0
\(856\) −9.11246e24 −1.08046
\(857\) 3.70909e24 0.435442 0.217721 0.976011i \(-0.430138\pi\)
0.217721 + 0.976011i \(0.430138\pi\)
\(858\) 0 0
\(859\) −8.47452e24 −0.975379 −0.487689 0.873017i \(-0.662160\pi\)
−0.487689 + 0.873017i \(0.662160\pi\)
\(860\) −2.47190e23 −0.0281705
\(861\) 0 0
\(862\) −1.55310e24 −0.173535
\(863\) −7.39487e24 −0.818162 −0.409081 0.912498i \(-0.634151\pi\)
−0.409081 + 0.912498i \(0.634151\pi\)
\(864\) 0 0
\(865\) 2.60283e24 0.282364
\(866\) 8.73925e24 0.938798
\(867\) 0 0
\(868\) −1.07399e24 −0.113131
\(869\) 1.76456e24 0.184064
\(870\) 0 0
\(871\) −1.53826e25 −1.57353
\(872\) −3.33978e23 −0.0338321
\(873\) 0 0
\(874\) −4.15959e24 −0.413241
\(875\) 1.07764e24 0.106024
\(876\) 0 0
\(877\) 1.70613e25 1.64633 0.823164 0.567804i \(-0.192207\pi\)
0.823164 + 0.567804i \(0.192207\pi\)
\(878\) 4.41215e24 0.421645
\(879\) 0 0
\(880\) 8.86141e23 0.0830616
\(881\) −6.09883e24 −0.566176 −0.283088 0.959094i \(-0.591359\pi\)
−0.283088 + 0.959094i \(0.591359\pi\)
\(882\) 0 0
\(883\) 1.48222e25 1.34973 0.674866 0.737940i \(-0.264201\pi\)
0.674866 + 0.737940i \(0.264201\pi\)
\(884\) −2.80926e23 −0.0253366
\(885\) 0 0
\(886\) 1.19287e24 0.105537
\(887\) 8.84878e24 0.775412 0.387706 0.921783i \(-0.373268\pi\)
0.387706 + 0.921783i \(0.373268\pi\)
\(888\) 0 0
\(889\) 1.77598e25 1.52677
\(890\) 6.65597e24 0.566756
\(891\) 0 0
\(892\) 1.62140e23 0.0135453
\(893\) 1.02349e25 0.846929
\(894\) 0 0
\(895\) −3.87341e24 −0.314484
\(896\) 1.26113e25 1.01425
\(897\) 0 0
\(898\) 1.13018e25 0.891865
\(899\) 8.79328e23 0.0687374
\(900\) 0 0
\(901\) 6.26192e24 0.480338
\(902\) −3.78578e23 −0.0287673
\(903\) 0 0
\(904\) 2.35522e25 1.75630
\(905\) 6.39089e24 0.472116
\(906\) 0 0
\(907\) 1.72279e24 0.124902 0.0624510 0.998048i \(-0.480108\pi\)
0.0624510 + 0.998048i \(0.480108\pi\)
\(908\) −1.02379e24 −0.0735327
\(909\) 0 0
\(910\) 7.98089e24 0.562599
\(911\) 2.38368e24 0.166473 0.0832363 0.996530i \(-0.473474\pi\)
0.0832363 + 0.996530i \(0.473474\pi\)
\(912\) 0 0
\(913\) 4.70738e24 0.322684
\(914\) −1.50593e25 −1.02273
\(915\) 0 0
\(916\) −9.43183e23 −0.0628760
\(917\) −2.74867e25 −1.81545
\(918\) 0 0
\(919\) 1.50053e25 0.972886 0.486443 0.873712i \(-0.338294\pi\)
0.486443 + 0.873712i \(0.338294\pi\)
\(920\) 3.21497e24 0.206528
\(921\) 0 0
\(922\) −6.26677e24 −0.395213
\(923\) 3.03287e25 1.89513
\(924\) 0 0
\(925\) −5.62682e24 −0.345190
\(926\) −1.45837e25 −0.886492
\(927\) 0 0
\(928\) 1.70320e23 0.0101650
\(929\) −8.99800e23 −0.0532124 −0.0266062 0.999646i \(-0.508470\pi\)
−0.0266062 + 0.999646i \(0.508470\pi\)
\(930\) 0 0
\(931\) −6.76842e24 −0.393020
\(932\) −1.67737e24 −0.0965146
\(933\) 0 0
\(934\) −9.53248e24 −0.538589
\(935\) 4.43376e23 0.0248241
\(936\) 0 0
\(937\) 3.51867e23 0.0193460 0.00967302 0.999953i \(-0.496921\pi\)
0.00967302 + 0.999953i \(0.496921\pi\)
\(938\) 2.95442e25 1.60971
\(939\) 0 0
\(940\) −6.13807e23 −0.0328432
\(941\) −3.32160e25 −1.76131 −0.880654 0.473761i \(-0.842896\pi\)
−0.880654 + 0.473761i \(0.842896\pi\)
\(942\) 0 0
\(943\) −1.25714e24 −0.0654687
\(944\) 1.50579e25 0.777145
\(945\) 0 0
\(946\) 2.88928e24 0.146459
\(947\) 1.58693e25 0.797230 0.398615 0.917118i \(-0.369491\pi\)
0.398615 + 0.917118i \(0.369491\pi\)
\(948\) 0 0
\(949\) 2.23875e25 1.10470
\(950\) 3.79678e24 0.185680
\(951\) 0 0
\(952\) 6.95365e24 0.334040
\(953\) −2.71609e25 −1.29317 −0.646583 0.762844i \(-0.723802\pi\)
−0.646583 + 0.762844i \(0.723802\pi\)
\(954\) 0 0
\(955\) −4.89214e24 −0.228808
\(956\) −2.19845e24 −0.101912
\(957\) 0 0
\(958\) −3.26502e25 −1.48689
\(959\) −3.07824e24 −0.138945
\(960\) 0 0
\(961\) 6.47674e24 0.287215
\(962\) −4.16718e25 −1.83170
\(963\) 0 0
\(964\) −4.70992e23 −0.0203404
\(965\) 1.61801e25 0.692625
\(966\) 0 0
\(967\) −9.97959e24 −0.419747 −0.209873 0.977729i \(-0.567305\pi\)
−0.209873 + 0.977729i \(0.567305\pi\)
\(968\) −2.38456e25 −0.994187
\(969\) 0 0
\(970\) 1.70699e25 0.699313
\(971\) −9.30142e24 −0.377734 −0.188867 0.982003i \(-0.560481\pi\)
−0.188867 + 0.982003i \(0.560481\pi\)
\(972\) 0 0
\(973\) −2.58240e25 −1.03054
\(974\) 2.15357e25 0.851938
\(975\) 0 0
\(976\) 2.02645e25 0.787795
\(977\) 8.09204e24 0.311856 0.155928 0.987768i \(-0.450163\pi\)
0.155928 + 0.987768i \(0.450163\pi\)
\(978\) 0 0
\(979\) 7.14545e24 0.270631
\(980\) 4.05915e23 0.0152410
\(981\) 0 0
\(982\) −1.81389e24 −0.0669367
\(983\) 3.54828e25 1.29812 0.649058 0.760739i \(-0.275163\pi\)
0.649058 + 0.760739i \(0.275163\pi\)
\(984\) 0 0
\(985\) 2.18321e25 0.785031
\(986\) −4.41758e23 −0.0157482
\(987\) 0 0
\(988\) −2.58259e24 −0.0904942
\(989\) 9.59438e24 0.333310
\(990\) 0 0
\(991\) −3.95976e25 −1.35220 −0.676102 0.736808i \(-0.736332\pi\)
−0.676102 + 0.736808i \(0.736332\pi\)
\(992\) 5.62232e24 0.190356
\(993\) 0 0
\(994\) −5.82499e25 −1.93870
\(995\) −1.70397e25 −0.562297
\(996\) 0 0
\(997\) −3.02793e25 −0.982284 −0.491142 0.871079i \(-0.663420\pi\)
−0.491142 + 0.871079i \(0.663420\pi\)
\(998\) −4.34413e25 −1.39731
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 45.18.a.b.1.1 2
3.2 odd 2 15.18.a.a.1.2 2
15.2 even 4 75.18.b.b.49.3 4
15.8 even 4 75.18.b.b.49.2 4
15.14 odd 2 75.18.a.c.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.18.a.a.1.2 2 3.2 odd 2
45.18.a.b.1.1 2 1.1 even 1 trivial
75.18.a.c.1.1 2 15.14 odd 2
75.18.b.b.49.2 4 15.8 even 4
75.18.b.b.49.3 4 15.2 even 4