Properties

Label 45.18
Level 45
Weight 18
Dimension 875
Nonzero newspaces 6
Sturm bound 2592
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) = \( 18 \)
Nonzero newspaces: \( 6 \)
Sturm bound: \(2592\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{18}(\Gamma_1(45))\).

Total New Old
Modular forms 1256 901 355
Cusp forms 1192 875 317
Eisenstein series 64 26 38

Trace form

\( 875 q - 232 q^{2} + 4552 q^{3} + 1300050 q^{4} - 1318251 q^{5} + 23947778 q^{6} - 15452652 q^{7} + 642671472 q^{8} - 880812568 q^{9} + 2267162566 q^{10} - 3526468564 q^{11} + 3973676528 q^{12} + 2019465978 q^{13}+ \cdots + 10\!\cdots\!04 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{18}^{\mathrm{new}}(\Gamma_1(45))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
45.18.a \(\chi_{45}(1, \cdot)\) 45.18.a.a 2 1
45.18.a.b 2
45.18.a.c 3
45.18.a.d 3
45.18.a.e 3
45.18.a.f 4
45.18.a.g 6
45.18.a.h 6
45.18.b \(\chi_{45}(19, \cdot)\) 45.18.b.a 2 1
45.18.b.b 8
45.18.b.c 16
45.18.b.d 16
45.18.e \(\chi_{45}(16, \cdot)\) n/a 136 2
45.18.f \(\chi_{45}(8, \cdot)\) 45.18.f.a 68 2
45.18.j \(\chi_{45}(4, \cdot)\) n/a 200 2
45.18.l \(\chi_{45}(2, \cdot)\) n/a 400 4

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{18}^{\mathrm{old}}(\Gamma_1(45))\) into lower level spaces

\( S_{18}^{\mathrm{old}}(\Gamma_1(45)) \cong \) \(S_{18}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 3}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 1}\)