Properties

Label 45.14.a.b.1.1
Level $45$
Weight $14$
Character 45.1
Self dual yes
Analytic conductor $48.254$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [45,14,Mod(1,45)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("45.1"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(45, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 14, names="a")
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 45.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-131] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.2539180284\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3121}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 780 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 15)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(28.4330\) of defining polynomial
Character \(\chi\) \(=\) 45.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-149.299 q^{2} +14098.2 q^{4} +15625.0 q^{5} +384225. q^{7} -881782. q^{8} -2.33279e6 q^{10} -6.10216e6 q^{11} +1.13332e6 q^{13} -5.73644e7 q^{14} +1.61570e7 q^{16} +2.69912e7 q^{17} -3.29943e8 q^{19} +2.20284e8 q^{20} +9.11046e8 q^{22} -4.70204e8 q^{23} +2.44141e8 q^{25} -1.69203e8 q^{26} +5.41687e9 q^{28} +4.24890e9 q^{29} +7.67054e9 q^{31} +4.81134e9 q^{32} -4.02976e9 q^{34} +6.00352e9 q^{35} -2.83184e10 q^{37} +4.92601e10 q^{38} -1.37778e10 q^{40} +2.11336e10 q^{41} -6.93928e10 q^{43} -8.60292e10 q^{44} +7.02010e10 q^{46} -1.01233e11 q^{47} +5.07401e10 q^{49} -3.64499e10 q^{50} +1.59777e10 q^{52} +1.81846e11 q^{53} -9.53463e10 q^{55} -3.38803e11 q^{56} -6.34357e11 q^{58} -3.10938e11 q^{59} +1.76596e11 q^{61} -1.14520e12 q^{62} -8.50686e11 q^{64} +1.77081e10 q^{65} +6.25757e10 q^{67} +3.80526e11 q^{68} -8.96319e11 q^{70} -1.13419e12 q^{71} -1.17191e11 q^{73} +4.22790e12 q^{74} -4.65158e12 q^{76} -2.34461e12 q^{77} +3.99281e12 q^{79} +2.52452e11 q^{80} -3.15523e12 q^{82} -8.58275e11 q^{83} +4.21738e11 q^{85} +1.03603e13 q^{86} +5.38077e12 q^{88} +9.67991e11 q^{89} +4.35450e11 q^{91} -6.62901e12 q^{92} +1.51139e13 q^{94} -5.15536e12 q^{95} +2.50052e12 q^{97} -7.57544e12 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 131 q^{2} + 6241 q^{4} + 31250 q^{5} + 496272 q^{7} - 1175463 q^{8} - 2046875 q^{10} - 6245888 q^{11} + 1761164 q^{13} - 55314084 q^{14} + 75148705 q^{16} - 48151604 q^{17} + 38475344 q^{19} + 97515625 q^{20}+ \cdots - 9118668656251 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −149.299 −1.64954 −0.824768 0.565472i \(-0.808694\pi\)
−0.824768 + 0.565472i \(0.808694\pi\)
\(3\) 0 0
\(4\) 14098.2 1.72097
\(5\) 15625.0 0.447214
\(6\) 0 0
\(7\) 384225. 1.23438 0.617190 0.786814i \(-0.288271\pi\)
0.617190 + 0.786814i \(0.288271\pi\)
\(8\) −881782. −1.18926
\(9\) 0 0
\(10\) −2.33279e6 −0.737694
\(11\) −6.10216e6 −1.03856 −0.519280 0.854604i \(-0.673800\pi\)
−0.519280 + 0.854604i \(0.673800\pi\)
\(12\) 0 0
\(13\) 1.13332e6 0.0651209 0.0325605 0.999470i \(-0.489634\pi\)
0.0325605 + 0.999470i \(0.489634\pi\)
\(14\) −5.73644e7 −2.03615
\(15\) 0 0
\(16\) 1.61570e7 0.240757
\(17\) 2.69912e7 0.271209 0.135605 0.990763i \(-0.456702\pi\)
0.135605 + 0.990763i \(0.456702\pi\)
\(18\) 0 0
\(19\) −3.29943e8 −1.60894 −0.804471 0.593992i \(-0.797551\pi\)
−0.804471 + 0.593992i \(0.797551\pi\)
\(20\) 2.20284e8 0.769639
\(21\) 0 0
\(22\) 9.11046e8 1.71314
\(23\) −4.70204e8 −0.662301 −0.331151 0.943578i \(-0.607437\pi\)
−0.331151 + 0.943578i \(0.607437\pi\)
\(24\) 0 0
\(25\) 2.44141e8 0.200000
\(26\) −1.69203e8 −0.107419
\(27\) 0 0
\(28\) 5.41687e9 2.12433
\(29\) 4.24890e9 1.32645 0.663224 0.748421i \(-0.269188\pi\)
0.663224 + 0.748421i \(0.269188\pi\)
\(30\) 0 0
\(31\) 7.67054e9 1.55230 0.776149 0.630550i \(-0.217170\pi\)
0.776149 + 0.630550i \(0.217170\pi\)
\(32\) 4.81134e9 0.792121
\(33\) 0 0
\(34\) −4.02976e9 −0.447369
\(35\) 6.00352e9 0.552031
\(36\) 0 0
\(37\) −2.83184e10 −1.81450 −0.907251 0.420590i \(-0.861823\pi\)
−0.907251 + 0.420590i \(0.861823\pi\)
\(38\) 4.92601e10 2.65401
\(39\) 0 0
\(40\) −1.37778e10 −0.531852
\(41\) 2.11336e10 0.694831 0.347415 0.937711i \(-0.387059\pi\)
0.347415 + 0.937711i \(0.387059\pi\)
\(42\) 0 0
\(43\) −6.93928e10 −1.67405 −0.837026 0.547162i \(-0.815708\pi\)
−0.837026 + 0.547162i \(0.815708\pi\)
\(44\) −8.60292e10 −1.78732
\(45\) 0 0
\(46\) 7.02010e10 1.09249
\(47\) −1.01233e11 −1.36989 −0.684943 0.728597i \(-0.740173\pi\)
−0.684943 + 0.728597i \(0.740173\pi\)
\(48\) 0 0
\(49\) 5.07401e10 0.523693
\(50\) −3.64499e10 −0.329907
\(51\) 0 0
\(52\) 1.59777e10 0.112071
\(53\) 1.81846e11 1.12697 0.563484 0.826127i \(-0.309461\pi\)
0.563484 + 0.826127i \(0.309461\pi\)
\(54\) 0 0
\(55\) −9.53463e10 −0.464458
\(56\) −3.38803e11 −1.46800
\(57\) 0 0
\(58\) −6.34357e11 −2.18802
\(59\) −3.10938e11 −0.959701 −0.479850 0.877350i \(-0.659309\pi\)
−0.479850 + 0.877350i \(0.659309\pi\)
\(60\) 0 0
\(61\) 1.76596e11 0.438870 0.219435 0.975627i \(-0.429579\pi\)
0.219435 + 0.975627i \(0.429579\pi\)
\(62\) −1.14520e12 −2.56057
\(63\) 0 0
\(64\) −8.50686e11 −1.54739
\(65\) 1.77081e10 0.0291230
\(66\) 0 0
\(67\) 6.25757e10 0.0845123 0.0422561 0.999107i \(-0.486545\pi\)
0.0422561 + 0.999107i \(0.486545\pi\)
\(68\) 3.80526e11 0.466742
\(69\) 0 0
\(70\) −8.96319e11 −0.910595
\(71\) −1.13419e12 −1.05076 −0.525382 0.850867i \(-0.676077\pi\)
−0.525382 + 0.850867i \(0.676077\pi\)
\(72\) 0 0
\(73\) −1.17191e11 −0.0906350 −0.0453175 0.998973i \(-0.514430\pi\)
−0.0453175 + 0.998973i \(0.514430\pi\)
\(74\) 4.22790e12 2.99308
\(75\) 0 0
\(76\) −4.65158e12 −2.76893
\(77\) −2.34461e12 −1.28198
\(78\) 0 0
\(79\) 3.99281e12 1.84800 0.924002 0.382387i \(-0.124898\pi\)
0.924002 + 0.382387i \(0.124898\pi\)
\(80\) 2.52452e11 0.107670
\(81\) 0 0
\(82\) −3.15523e12 −1.14615
\(83\) −8.58275e11 −0.288150 −0.144075 0.989567i \(-0.546021\pi\)
−0.144075 + 0.989567i \(0.546021\pi\)
\(84\) 0 0
\(85\) 4.21738e11 0.121289
\(86\) 1.03603e13 2.76141
\(87\) 0 0
\(88\) 5.38077e12 1.23512
\(89\) 9.67991e11 0.206460 0.103230 0.994657i \(-0.467082\pi\)
0.103230 + 0.994657i \(0.467082\pi\)
\(90\) 0 0
\(91\) 4.35450e11 0.0803839
\(92\) −6.62901e12 −1.13980
\(93\) 0 0
\(94\) 1.51139e13 2.25967
\(95\) −5.15536e12 −0.719541
\(96\) 0 0
\(97\) 2.50052e12 0.304799 0.152400 0.988319i \(-0.451300\pi\)
0.152400 + 0.988319i \(0.451300\pi\)
\(98\) −7.57544e12 −0.863850
\(99\) 0 0
\(100\) 3.44193e12 0.344193
\(101\) 3.51016e12 0.329032 0.164516 0.986374i \(-0.447394\pi\)
0.164516 + 0.986374i \(0.447394\pi\)
\(102\) 0 0
\(103\) −1.08186e13 −0.892747 −0.446373 0.894847i \(-0.647285\pi\)
−0.446373 + 0.894847i \(0.647285\pi\)
\(104\) −9.99340e11 −0.0774456
\(105\) 0 0
\(106\) −2.71495e13 −1.85897
\(107\) −1.49010e13 −0.959892 −0.479946 0.877298i \(-0.659344\pi\)
−0.479946 + 0.877298i \(0.659344\pi\)
\(108\) 0 0
\(109\) −2.01251e13 −1.14939 −0.574694 0.818369i \(-0.694879\pi\)
−0.574694 + 0.818369i \(0.694879\pi\)
\(110\) 1.42351e13 0.766139
\(111\) 0 0
\(112\) 6.20791e12 0.297186
\(113\) −2.87905e13 −1.30088 −0.650442 0.759556i \(-0.725417\pi\)
−0.650442 + 0.759556i \(0.725417\pi\)
\(114\) 0 0
\(115\) −7.34694e12 −0.296190
\(116\) 5.99017e13 2.28277
\(117\) 0 0
\(118\) 4.64227e13 1.58306
\(119\) 1.03707e13 0.334775
\(120\) 0 0
\(121\) 2.71366e12 0.0786051
\(122\) −2.63655e13 −0.723932
\(123\) 0 0
\(124\) 1.08140e14 2.67145
\(125\) 3.81470e12 0.0894427
\(126\) 0 0
\(127\) 7.01983e13 1.48458 0.742288 0.670081i \(-0.233741\pi\)
0.742288 + 0.670081i \(0.233741\pi\)
\(128\) 8.75919e13 1.76035
\(129\) 0 0
\(130\) −2.64380e12 −0.0480393
\(131\) −9.26965e13 −1.60251 −0.801254 0.598325i \(-0.795833\pi\)
−0.801254 + 0.598325i \(0.795833\pi\)
\(132\) 0 0
\(133\) −1.26772e14 −1.98604
\(134\) −9.34249e12 −0.139406
\(135\) 0 0
\(136\) −2.38004e13 −0.322538
\(137\) 4.89202e13 0.632127 0.316064 0.948738i \(-0.397639\pi\)
0.316064 + 0.948738i \(0.397639\pi\)
\(138\) 0 0
\(139\) 4.48733e13 0.527706 0.263853 0.964563i \(-0.415007\pi\)
0.263853 + 0.964563i \(0.415007\pi\)
\(140\) 8.46386e13 0.950027
\(141\) 0 0
\(142\) 1.69333e14 1.73327
\(143\) −6.91570e12 −0.0676319
\(144\) 0 0
\(145\) 6.63891e13 0.593205
\(146\) 1.74965e13 0.149506
\(147\) 0 0
\(148\) −3.99237e14 −3.12270
\(149\) −1.30203e14 −0.974789 −0.487395 0.873182i \(-0.662053\pi\)
−0.487395 + 0.873182i \(0.662053\pi\)
\(150\) 0 0
\(151\) −1.94653e14 −1.33632 −0.668160 0.744018i \(-0.732918\pi\)
−0.668160 + 0.744018i \(0.732918\pi\)
\(152\) 2.90938e14 1.91345
\(153\) 0 0
\(154\) 3.50047e14 2.11466
\(155\) 1.19852e14 0.694209
\(156\) 0 0
\(157\) −7.93587e13 −0.422909 −0.211454 0.977388i \(-0.567820\pi\)
−0.211454 + 0.977388i \(0.567820\pi\)
\(158\) −5.96123e14 −3.04835
\(159\) 0 0
\(160\) 7.51772e13 0.354247
\(161\) −1.80664e14 −0.817531
\(162\) 0 0
\(163\) −1.62086e14 −0.676904 −0.338452 0.940984i \(-0.609903\pi\)
−0.338452 + 0.940984i \(0.609903\pi\)
\(164\) 2.97945e14 1.19578
\(165\) 0 0
\(166\) 1.28139e14 0.475314
\(167\) −2.62269e14 −0.935600 −0.467800 0.883834i \(-0.654953\pi\)
−0.467800 + 0.883834i \(0.654953\pi\)
\(168\) 0 0
\(169\) −3.01591e14 −0.995759
\(170\) −6.29650e13 −0.200070
\(171\) 0 0
\(172\) −9.78310e14 −2.88099
\(173\) −7.87595e13 −0.223359 −0.111679 0.993744i \(-0.535623\pi\)
−0.111679 + 0.993744i \(0.535623\pi\)
\(174\) 0 0
\(175\) 9.38050e13 0.246876
\(176\) −9.85923e13 −0.250041
\(177\) 0 0
\(178\) −1.44520e14 −0.340563
\(179\) 7.53329e14 1.71175 0.855874 0.517184i \(-0.173020\pi\)
0.855874 + 0.517184i \(0.173020\pi\)
\(180\) 0 0
\(181\) −4.79674e14 −1.01399 −0.506997 0.861948i \(-0.669245\pi\)
−0.506997 + 0.861948i \(0.669245\pi\)
\(182\) −6.50122e13 −0.132596
\(183\) 0 0
\(184\) 4.14618e14 0.787647
\(185\) −4.42475e14 −0.811470
\(186\) 0 0
\(187\) −1.64705e14 −0.281667
\(188\) −1.42719e15 −2.35753
\(189\) 0 0
\(190\) 7.69689e14 1.18691
\(191\) −4.70960e14 −0.701888 −0.350944 0.936397i \(-0.614139\pi\)
−0.350944 + 0.936397i \(0.614139\pi\)
\(192\) 0 0
\(193\) −1.24350e14 −0.173191 −0.0865954 0.996244i \(-0.527599\pi\)
−0.0865954 + 0.996244i \(0.527599\pi\)
\(194\) −3.73324e14 −0.502777
\(195\) 0 0
\(196\) 7.15342e14 0.901258
\(197\) 4.20205e12 0.00512190 0.00256095 0.999997i \(-0.499185\pi\)
0.00256095 + 0.999997i \(0.499185\pi\)
\(198\) 0 0
\(199\) 1.09925e15 1.25474 0.627370 0.778722i \(-0.284132\pi\)
0.627370 + 0.778722i \(0.284132\pi\)
\(200\) −2.15279e14 −0.237852
\(201\) 0 0
\(202\) −5.24063e14 −0.542749
\(203\) 1.63254e15 1.63734
\(204\) 0 0
\(205\) 3.30213e14 0.310738
\(206\) 1.61520e15 1.47262
\(207\) 0 0
\(208\) 1.83110e13 0.0156783
\(209\) 2.01336e15 1.67098
\(210\) 0 0
\(211\) −4.43736e14 −0.346170 −0.173085 0.984907i \(-0.555373\pi\)
−0.173085 + 0.984907i \(0.555373\pi\)
\(212\) 2.56370e15 1.93947
\(213\) 0 0
\(214\) 2.22471e15 1.58337
\(215\) −1.08426e15 −0.748659
\(216\) 0 0
\(217\) 2.94722e15 1.91613
\(218\) 3.00466e15 1.89595
\(219\) 0 0
\(220\) −1.34421e15 −0.799316
\(221\) 3.05897e13 0.0176614
\(222\) 0 0
\(223\) −2.15493e15 −1.17342 −0.586708 0.809799i \(-0.699576\pi\)
−0.586708 + 0.809799i \(0.699576\pi\)
\(224\) 1.84864e15 0.977777
\(225\) 0 0
\(226\) 4.29838e15 2.14586
\(227\) −3.86902e15 −1.87686 −0.938431 0.345466i \(-0.887721\pi\)
−0.938431 + 0.345466i \(0.887721\pi\)
\(228\) 0 0
\(229\) −1.09844e15 −0.503324 −0.251662 0.967815i \(-0.580977\pi\)
−0.251662 + 0.967815i \(0.580977\pi\)
\(230\) 1.09689e15 0.488576
\(231\) 0 0
\(232\) −3.74661e15 −1.57749
\(233\) −4.34127e15 −1.77747 −0.888737 0.458417i \(-0.848417\pi\)
−0.888737 + 0.458417i \(0.848417\pi\)
\(234\) 0 0
\(235\) −1.58176e15 −0.612631
\(236\) −4.38365e15 −1.65161
\(237\) 0 0
\(238\) −1.54834e15 −0.552224
\(239\) 1.70803e15 0.592801 0.296400 0.955064i \(-0.404214\pi\)
0.296400 + 0.955064i \(0.404214\pi\)
\(240\) 0 0
\(241\) 2.87167e15 0.944114 0.472057 0.881568i \(-0.343512\pi\)
0.472057 + 0.881568i \(0.343512\pi\)
\(242\) −4.05146e14 −0.129662
\(243\) 0 0
\(244\) 2.48967e15 0.755281
\(245\) 7.92814e14 0.234203
\(246\) 0 0
\(247\) −3.73931e14 −0.104776
\(248\) −6.76374e15 −1.84608
\(249\) 0 0
\(250\) −5.69530e14 −0.147539
\(251\) 9.41402e14 0.237627 0.118813 0.992917i \(-0.462091\pi\)
0.118813 + 0.992917i \(0.462091\pi\)
\(252\) 0 0
\(253\) 2.86926e15 0.687839
\(254\) −1.04805e16 −2.44886
\(255\) 0 0
\(256\) −6.10855e15 −1.35637
\(257\) 3.31316e15 0.717260 0.358630 0.933480i \(-0.383244\pi\)
0.358630 + 0.933480i \(0.383244\pi\)
\(258\) 0 0
\(259\) −1.08806e16 −2.23978
\(260\) 2.49652e14 0.0501196
\(261\) 0 0
\(262\) 1.38395e16 2.64339
\(263\) 3.12580e15 0.582437 0.291219 0.956657i \(-0.405939\pi\)
0.291219 + 0.956657i \(0.405939\pi\)
\(264\) 0 0
\(265\) 2.84135e15 0.503995
\(266\) 1.89270e16 3.27605
\(267\) 0 0
\(268\) 8.82202e14 0.145443
\(269\) −2.51897e15 −0.405352 −0.202676 0.979246i \(-0.564964\pi\)
−0.202676 + 0.979246i \(0.564964\pi\)
\(270\) 0 0
\(271\) −9.26522e14 −0.142087 −0.0710436 0.997473i \(-0.522633\pi\)
−0.0710436 + 0.997473i \(0.522633\pi\)
\(272\) 4.36096e14 0.0652957
\(273\) 0 0
\(274\) −7.30373e15 −1.04272
\(275\) −1.48979e15 −0.207712
\(276\) 0 0
\(277\) −4.03418e14 −0.0536583 −0.0268292 0.999640i \(-0.508541\pi\)
−0.0268292 + 0.999640i \(0.508541\pi\)
\(278\) −6.69953e15 −0.870469
\(279\) 0 0
\(280\) −5.29380e15 −0.656508
\(281\) 8.56272e15 1.03758 0.518789 0.854903i \(-0.326383\pi\)
0.518789 + 0.854903i \(0.326383\pi\)
\(282\) 0 0
\(283\) −3.74874e15 −0.433784 −0.216892 0.976196i \(-0.569592\pi\)
−0.216892 + 0.976196i \(0.569592\pi\)
\(284\) −1.59899e16 −1.80833
\(285\) 0 0
\(286\) 1.03251e15 0.111561
\(287\) 8.12008e15 0.857685
\(288\) 0 0
\(289\) −9.17605e15 −0.926445
\(290\) −9.91182e15 −0.978513
\(291\) 0 0
\(292\) −1.65218e15 −0.155980
\(293\) −2.47408e15 −0.228441 −0.114221 0.993455i \(-0.536437\pi\)
−0.114221 + 0.993455i \(0.536437\pi\)
\(294\) 0 0
\(295\) −4.85841e15 −0.429191
\(296\) 2.49706e16 2.15791
\(297\) 0 0
\(298\) 1.94392e16 1.60795
\(299\) −5.32892e14 −0.0431297
\(300\) 0 0
\(301\) −2.66625e16 −2.06642
\(302\) 2.90614e16 2.20431
\(303\) 0 0
\(304\) −5.33087e15 −0.387365
\(305\) 2.75931e15 0.196269
\(306\) 0 0
\(307\) 3.12228e15 0.212849 0.106425 0.994321i \(-0.466060\pi\)
0.106425 + 0.994321i \(0.466060\pi\)
\(308\) −3.30546e16 −2.20624
\(309\) 0 0
\(310\) −1.78938e16 −1.14512
\(311\) −8.71900e15 −0.546417 −0.273209 0.961955i \(-0.588085\pi\)
−0.273209 + 0.961955i \(0.588085\pi\)
\(312\) 0 0
\(313\) 1.94308e16 1.16803 0.584013 0.811744i \(-0.301482\pi\)
0.584013 + 0.811744i \(0.301482\pi\)
\(314\) 1.18482e16 0.697603
\(315\) 0 0
\(316\) 5.62913e16 3.18035
\(317\) −2.73728e16 −1.51508 −0.757538 0.652791i \(-0.773598\pi\)
−0.757538 + 0.652791i \(0.773598\pi\)
\(318\) 0 0
\(319\) −2.59275e16 −1.37759
\(320\) −1.32920e16 −0.692013
\(321\) 0 0
\(322\) 2.69730e16 1.34855
\(323\) −8.90556e15 −0.436360
\(324\) 0 0
\(325\) 2.76689e14 0.0130242
\(326\) 2.41993e16 1.11658
\(327\) 0 0
\(328\) −1.86352e16 −0.826333
\(329\) −3.88961e16 −1.69096
\(330\) 0 0
\(331\) 1.48805e16 0.621923 0.310961 0.950423i \(-0.399349\pi\)
0.310961 + 0.950423i \(0.399349\pi\)
\(332\) −1.21001e16 −0.495897
\(333\) 0 0
\(334\) 3.91565e16 1.54330
\(335\) 9.77746e14 0.0377950
\(336\) 0 0
\(337\) −9.51124e15 −0.353706 −0.176853 0.984237i \(-0.556592\pi\)
−0.176853 + 0.984237i \(0.556592\pi\)
\(338\) 4.50271e16 1.64254
\(339\) 0 0
\(340\) 5.94573e15 0.208733
\(341\) −4.68069e16 −1.61215
\(342\) 0 0
\(343\) −1.77316e16 −0.587943
\(344\) 6.11893e16 1.99088
\(345\) 0 0
\(346\) 1.17587e16 0.368438
\(347\) −2.02295e16 −0.622076 −0.311038 0.950398i \(-0.600677\pi\)
−0.311038 + 0.950398i \(0.600677\pi\)
\(348\) 0 0
\(349\) 8.80222e15 0.260751 0.130376 0.991465i \(-0.458382\pi\)
0.130376 + 0.991465i \(0.458382\pi\)
\(350\) −1.40050e16 −0.407231
\(351\) 0 0
\(352\) −2.93596e16 −0.822664
\(353\) −1.67276e16 −0.460148 −0.230074 0.973173i \(-0.573897\pi\)
−0.230074 + 0.973173i \(0.573897\pi\)
\(354\) 0 0
\(355\) −1.77217e16 −0.469916
\(356\) 1.36469e16 0.355311
\(357\) 0 0
\(358\) −1.12471e17 −2.82359
\(359\) 7.94820e16 1.95954 0.979772 0.200119i \(-0.0641328\pi\)
0.979772 + 0.200119i \(0.0641328\pi\)
\(360\) 0 0
\(361\) 6.68093e16 1.58869
\(362\) 7.16148e16 1.67262
\(363\) 0 0
\(364\) 6.13904e15 0.138338
\(365\) −1.83111e15 −0.0405332
\(366\) 0 0
\(367\) −6.97003e16 −1.48904 −0.744518 0.667602i \(-0.767321\pi\)
−0.744518 + 0.667602i \(0.767321\pi\)
\(368\) −7.59707e15 −0.159454
\(369\) 0 0
\(370\) 6.60610e16 1.33855
\(371\) 6.98700e16 1.39111
\(372\) 0 0
\(373\) 2.07893e16 0.399698 0.199849 0.979827i \(-0.435955\pi\)
0.199849 + 0.979827i \(0.435955\pi\)
\(374\) 2.45902e16 0.464619
\(375\) 0 0
\(376\) 8.92650e16 1.62915
\(377\) 4.81537e15 0.0863795
\(378\) 0 0
\(379\) 7.77269e16 1.34715 0.673576 0.739118i \(-0.264757\pi\)
0.673576 + 0.739118i \(0.264757\pi\)
\(380\) −7.26810e16 −1.23830
\(381\) 0 0
\(382\) 7.03139e16 1.15779
\(383\) −6.62740e16 −1.07288 −0.536440 0.843938i \(-0.680231\pi\)
−0.536440 + 0.843938i \(0.680231\pi\)
\(384\) 0 0
\(385\) −3.66345e16 −0.573317
\(386\) 1.85654e16 0.285684
\(387\) 0 0
\(388\) 3.52527e16 0.524549
\(389\) 3.03230e15 0.0443711 0.0221855 0.999754i \(-0.492938\pi\)
0.0221855 + 0.999754i \(0.492938\pi\)
\(390\) 0 0
\(391\) −1.26914e16 −0.179622
\(392\) −4.47417e16 −0.622806
\(393\) 0 0
\(394\) −6.27362e14 −0.00844876
\(395\) 6.23877e16 0.826453
\(396\) 0 0
\(397\) 3.47691e16 0.445712 0.222856 0.974851i \(-0.428462\pi\)
0.222856 + 0.974851i \(0.428462\pi\)
\(398\) −1.64118e17 −2.06974
\(399\) 0 0
\(400\) 3.94457e15 0.0481515
\(401\) −4.47291e16 −0.537220 −0.268610 0.963249i \(-0.586564\pi\)
−0.268610 + 0.963249i \(0.586564\pi\)
\(402\) 0 0
\(403\) 8.69317e15 0.101087
\(404\) 4.94867e16 0.566252
\(405\) 0 0
\(406\) −2.43736e17 −2.70085
\(407\) 1.72803e17 1.88447
\(408\) 0 0
\(409\) 4.58740e16 0.484579 0.242290 0.970204i \(-0.422102\pi\)
0.242290 + 0.970204i \(0.422102\pi\)
\(410\) −4.93004e16 −0.512573
\(411\) 0 0
\(412\) −1.52522e17 −1.53639
\(413\) −1.19470e17 −1.18463
\(414\) 0 0
\(415\) −1.34105e16 −0.128865
\(416\) 5.45279e15 0.0515836
\(417\) 0 0
\(418\) −3.00593e17 −2.75634
\(419\) −7.04588e16 −0.636128 −0.318064 0.948069i \(-0.603033\pi\)
−0.318064 + 0.948069i \(0.603033\pi\)
\(420\) 0 0
\(421\) −2.11625e16 −0.185239 −0.0926196 0.995702i \(-0.529524\pi\)
−0.0926196 + 0.995702i \(0.529524\pi\)
\(422\) 6.62493e16 0.571019
\(423\) 0 0
\(424\) −1.60349e17 −1.34026
\(425\) 6.58966e15 0.0542419
\(426\) 0 0
\(427\) 6.78526e16 0.541733
\(428\) −2.10077e17 −1.65194
\(429\) 0 0
\(430\) 1.61879e17 1.23494
\(431\) −4.09241e16 −0.307523 −0.153761 0.988108i \(-0.549139\pi\)
−0.153761 + 0.988108i \(0.549139\pi\)
\(432\) 0 0
\(433\) 8.57212e16 0.625053 0.312527 0.949909i \(-0.398825\pi\)
0.312527 + 0.949909i \(0.398825\pi\)
\(434\) −4.40016e17 −3.16072
\(435\) 0 0
\(436\) −2.83727e17 −1.97806
\(437\) 1.55141e17 1.06560
\(438\) 0 0
\(439\) 3.70635e16 0.247131 0.123565 0.992336i \(-0.460567\pi\)
0.123565 + 0.992336i \(0.460567\pi\)
\(440\) 8.40746e16 0.552360
\(441\) 0 0
\(442\) −4.56700e15 −0.0291331
\(443\) 1.55015e16 0.0974431 0.0487215 0.998812i \(-0.484485\pi\)
0.0487215 + 0.998812i \(0.484485\pi\)
\(444\) 0 0
\(445\) 1.51249e16 0.0923318
\(446\) 3.21729e17 1.93559
\(447\) 0 0
\(448\) −3.26855e17 −1.91006
\(449\) 2.75973e17 1.58952 0.794759 0.606925i \(-0.207597\pi\)
0.794759 + 0.606925i \(0.207597\pi\)
\(450\) 0 0
\(451\) −1.28961e17 −0.721623
\(452\) −4.05892e17 −2.23878
\(453\) 0 0
\(454\) 5.77640e17 3.09595
\(455\) 6.80391e15 0.0359488
\(456\) 0 0
\(457\) 2.05141e17 1.05341 0.526703 0.850049i \(-0.323428\pi\)
0.526703 + 0.850049i \(0.323428\pi\)
\(458\) 1.63997e17 0.830250
\(459\) 0 0
\(460\) −1.03578e17 −0.509733
\(461\) −2.29523e17 −1.11370 −0.556852 0.830612i \(-0.687991\pi\)
−0.556852 + 0.830612i \(0.687991\pi\)
\(462\) 0 0
\(463\) 1.90465e17 0.898544 0.449272 0.893395i \(-0.351683\pi\)
0.449272 + 0.893395i \(0.351683\pi\)
\(464\) 6.86493e16 0.319352
\(465\) 0 0
\(466\) 6.48147e17 2.93201
\(467\) 1.67739e17 0.748297 0.374148 0.927369i \(-0.377935\pi\)
0.374148 + 0.927369i \(0.377935\pi\)
\(468\) 0 0
\(469\) 2.40432e16 0.104320
\(470\) 2.36155e17 1.01056
\(471\) 0 0
\(472\) 2.74179e17 1.14133
\(473\) 4.23446e17 1.73860
\(474\) 0 0
\(475\) −8.05524e16 −0.321788
\(476\) 1.46208e17 0.576137
\(477\) 0 0
\(478\) −2.55007e17 −0.977845
\(479\) 3.71727e17 1.40619 0.703095 0.711096i \(-0.251801\pi\)
0.703095 + 0.711096i \(0.251801\pi\)
\(480\) 0 0
\(481\) −3.20938e16 −0.118162
\(482\) −4.28738e17 −1.55735
\(483\) 0 0
\(484\) 3.82576e16 0.135277
\(485\) 3.90706e16 0.136310
\(486\) 0 0
\(487\) 4.87760e16 0.165679 0.0828397 0.996563i \(-0.473601\pi\)
0.0828397 + 0.996563i \(0.473601\pi\)
\(488\) −1.55719e17 −0.521930
\(489\) 0 0
\(490\) −1.18366e17 −0.386326
\(491\) 6.19444e16 0.199513 0.0997567 0.995012i \(-0.468194\pi\)
0.0997567 + 0.995012i \(0.468194\pi\)
\(492\) 0 0
\(493\) 1.14683e17 0.359745
\(494\) 5.58274e16 0.172831
\(495\) 0 0
\(496\) 1.23933e17 0.373727
\(497\) −4.35783e17 −1.29704
\(498\) 0 0
\(499\) −2.79726e17 −0.811108 −0.405554 0.914071i \(-0.632921\pi\)
−0.405554 + 0.914071i \(0.632921\pi\)
\(500\) 5.37802e16 0.153928
\(501\) 0 0
\(502\) −1.40550e17 −0.391974
\(503\) −3.38759e17 −0.932609 −0.466304 0.884624i \(-0.654415\pi\)
−0.466304 + 0.884624i \(0.654415\pi\)
\(504\) 0 0
\(505\) 5.48462e16 0.147147
\(506\) −4.28378e17 −1.13461
\(507\) 0 0
\(508\) 9.89666e17 2.55490
\(509\) 3.81496e17 0.972354 0.486177 0.873860i \(-0.338391\pi\)
0.486177 + 0.873860i \(0.338391\pi\)
\(510\) 0 0
\(511\) −4.50278e16 −0.111878
\(512\) 1.94447e17 0.477032
\(513\) 0 0
\(514\) −4.94651e17 −1.18315
\(515\) −1.69040e17 −0.399249
\(516\) 0 0
\(517\) 6.17738e17 1.42271
\(518\) 1.62447e18 3.69460
\(519\) 0 0
\(520\) −1.56147e16 −0.0346347
\(521\) 3.97604e17 0.870975 0.435487 0.900195i \(-0.356576\pi\)
0.435487 + 0.900195i \(0.356576\pi\)
\(522\) 0 0
\(523\) 6.78177e16 0.144905 0.0724523 0.997372i \(-0.476918\pi\)
0.0724523 + 0.997372i \(0.476918\pi\)
\(524\) −1.30685e18 −2.75786
\(525\) 0 0
\(526\) −4.66679e17 −0.960750
\(527\) 2.07037e17 0.420998
\(528\) 0 0
\(529\) −2.82944e17 −0.561357
\(530\) −4.24210e17 −0.831358
\(531\) 0 0
\(532\) −1.78726e18 −3.41792
\(533\) 2.39511e16 0.0452480
\(534\) 0 0
\(535\) −2.32829e17 −0.429277
\(536\) −5.51781e16 −0.100507
\(537\) 0 0
\(538\) 3.76079e17 0.668643
\(539\) −3.09624e17 −0.543886
\(540\) 0 0
\(541\) −9.53886e17 −1.63574 −0.817870 0.575403i \(-0.804845\pi\)
−0.817870 + 0.575403i \(0.804845\pi\)
\(542\) 1.38329e17 0.234378
\(543\) 0 0
\(544\) 1.29864e17 0.214830
\(545\) −3.14455e17 −0.514022
\(546\) 0 0
\(547\) 5.54825e17 0.885601 0.442800 0.896620i \(-0.353985\pi\)
0.442800 + 0.896620i \(0.353985\pi\)
\(548\) 6.89684e17 1.08787
\(549\) 0 0
\(550\) 2.22423e17 0.342628
\(551\) −1.40190e18 −2.13418
\(552\) 0 0
\(553\) 1.53414e18 2.28114
\(554\) 6.02299e16 0.0885113
\(555\) 0 0
\(556\) 6.32630e17 0.908163
\(557\) −8.83747e17 −1.25392 −0.626959 0.779052i \(-0.715701\pi\)
−0.626959 + 0.779052i \(0.715701\pi\)
\(558\) 0 0
\(559\) −7.86442e16 −0.109016
\(560\) 9.69986e16 0.132906
\(561\) 0 0
\(562\) −1.27840e18 −1.71152
\(563\) −1.34034e18 −1.77383 −0.886913 0.461937i \(-0.847154\pi\)
−0.886913 + 0.461937i \(0.847154\pi\)
\(564\) 0 0
\(565\) −4.49851e17 −0.581773
\(566\) 5.59682e17 0.715541
\(567\) 0 0
\(568\) 1.00010e18 1.24963
\(569\) 2.62408e16 0.0324151 0.0162075 0.999869i \(-0.494841\pi\)
0.0162075 + 0.999869i \(0.494841\pi\)
\(570\) 0 0
\(571\) 6.67128e17 0.805517 0.402758 0.915306i \(-0.368051\pi\)
0.402758 + 0.915306i \(0.368051\pi\)
\(572\) −9.74986e16 −0.116392
\(573\) 0 0
\(574\) −1.21232e18 −1.41478
\(575\) −1.14796e17 −0.132460
\(576\) 0 0
\(577\) −1.37034e17 −0.154591 −0.0772955 0.997008i \(-0.524628\pi\)
−0.0772955 + 0.997008i \(0.524628\pi\)
\(578\) 1.36997e18 1.52820
\(579\) 0 0
\(580\) 9.35964e17 1.02089
\(581\) −3.29771e17 −0.355687
\(582\) 0 0
\(583\) −1.10966e18 −1.17042
\(584\) 1.03337e17 0.107788
\(585\) 0 0
\(586\) 3.69378e17 0.376822
\(587\) −1.19496e17 −0.120561 −0.0602805 0.998181i \(-0.519200\pi\)
−0.0602805 + 0.998181i \(0.519200\pi\)
\(588\) 0 0
\(589\) −2.53084e18 −2.49756
\(590\) 7.25355e17 0.707966
\(591\) 0 0
\(592\) −4.57539e17 −0.436855
\(593\) 1.87526e18 1.77095 0.885475 0.464687i \(-0.153833\pi\)
0.885475 + 0.464687i \(0.153833\pi\)
\(594\) 0 0
\(595\) 1.62042e17 0.149716
\(596\) −1.83562e18 −1.67758
\(597\) 0 0
\(598\) 7.95601e16 0.0711439
\(599\) 5.19643e17 0.459654 0.229827 0.973231i \(-0.426184\pi\)
0.229827 + 0.973231i \(0.426184\pi\)
\(600\) 0 0
\(601\) 5.26704e17 0.455913 0.227957 0.973671i \(-0.426796\pi\)
0.227957 + 0.973671i \(0.426796\pi\)
\(602\) 3.98067e18 3.40863
\(603\) 0 0
\(604\) −2.74424e18 −2.29976
\(605\) 4.24009e16 0.0351533
\(606\) 0 0
\(607\) 1.87571e18 1.52209 0.761043 0.648701i \(-0.224688\pi\)
0.761043 + 0.648701i \(0.224688\pi\)
\(608\) −1.58747e18 −1.27448
\(609\) 0 0
\(610\) −4.11962e17 −0.323752
\(611\) −1.14729e17 −0.0892082
\(612\) 0 0
\(613\) −4.47233e17 −0.340440 −0.170220 0.985406i \(-0.554448\pi\)
−0.170220 + 0.985406i \(0.554448\pi\)
\(614\) −4.66152e17 −0.351102
\(615\) 0 0
\(616\) 2.06743e18 1.52460
\(617\) 8.44420e17 0.616176 0.308088 0.951358i \(-0.400311\pi\)
0.308088 + 0.951358i \(0.400311\pi\)
\(618\) 0 0
\(619\) 2.36925e18 1.69286 0.846430 0.532500i \(-0.178747\pi\)
0.846430 + 0.532500i \(0.178747\pi\)
\(620\) 1.68969e18 1.19471
\(621\) 0 0
\(622\) 1.30174e18 0.901334
\(623\) 3.71927e17 0.254850
\(624\) 0 0
\(625\) 5.96046e16 0.0400000
\(626\) −2.90100e18 −1.92670
\(627\) 0 0
\(628\) −1.11881e18 −0.727811
\(629\) −7.64348e17 −0.492110
\(630\) 0 0
\(631\) −2.91193e18 −1.83649 −0.918247 0.396009i \(-0.870395\pi\)
−0.918247 + 0.396009i \(0.870395\pi\)
\(632\) −3.52079e18 −2.19775
\(633\) 0 0
\(634\) 4.08673e18 2.49917
\(635\) 1.09685e18 0.663922
\(636\) 0 0
\(637\) 5.75048e16 0.0341034
\(638\) 3.87095e18 2.27239
\(639\) 0 0
\(640\) 1.36862e18 0.787252
\(641\) 3.49512e17 0.199014 0.0995072 0.995037i \(-0.468273\pi\)
0.0995072 + 0.995037i \(0.468273\pi\)
\(642\) 0 0
\(643\) −3.11686e18 −1.73919 −0.869593 0.493769i \(-0.835619\pi\)
−0.869593 + 0.493769i \(0.835619\pi\)
\(644\) −2.54703e18 −1.40694
\(645\) 0 0
\(646\) 1.32959e18 0.719791
\(647\) −1.99766e18 −1.07064 −0.535321 0.844649i \(-0.679809\pi\)
−0.535321 + 0.844649i \(0.679809\pi\)
\(648\) 0 0
\(649\) 1.89739e18 0.996706
\(650\) −4.13094e16 −0.0214838
\(651\) 0 0
\(652\) −2.28512e18 −1.16493
\(653\) 1.08626e18 0.548276 0.274138 0.961690i \(-0.411607\pi\)
0.274138 + 0.961690i \(0.411607\pi\)
\(654\) 0 0
\(655\) −1.44838e18 −0.716663
\(656\) 3.41455e17 0.167286
\(657\) 0 0
\(658\) 5.80715e18 2.78930
\(659\) 1.64776e17 0.0783678 0.0391839 0.999232i \(-0.487524\pi\)
0.0391839 + 0.999232i \(0.487524\pi\)
\(660\) 0 0
\(661\) −4.20993e18 −1.96320 −0.981601 0.190942i \(-0.938846\pi\)
−0.981601 + 0.190942i \(0.938846\pi\)
\(662\) −2.22165e18 −1.02588
\(663\) 0 0
\(664\) 7.56811e17 0.342685
\(665\) −1.98082e18 −0.888186
\(666\) 0 0
\(667\) −1.99785e18 −0.878508
\(668\) −3.69751e18 −1.61013
\(669\) 0 0
\(670\) −1.45976e17 −0.0623442
\(671\) −1.07762e18 −0.455793
\(672\) 0 0
\(673\) −2.30935e18 −0.958057 −0.479029 0.877799i \(-0.659011\pi\)
−0.479029 + 0.877799i \(0.659011\pi\)
\(674\) 1.42002e18 0.583451
\(675\) 0 0
\(676\) −4.25187e18 −1.71367
\(677\) 4.16216e18 1.66147 0.830736 0.556667i \(-0.187920\pi\)
0.830736 + 0.556667i \(0.187920\pi\)
\(678\) 0 0
\(679\) 9.60762e17 0.376238
\(680\) −3.71881e17 −0.144243
\(681\) 0 0
\(682\) 6.98822e18 2.65930
\(683\) 5.67684e17 0.213979 0.106990 0.994260i \(-0.465879\pi\)
0.106990 + 0.994260i \(0.465879\pi\)
\(684\) 0 0
\(685\) 7.64378e17 0.282696
\(686\) 2.64730e18 0.969833
\(687\) 0 0
\(688\) −1.12118e18 −0.403041
\(689\) 2.06090e17 0.0733892
\(690\) 0 0
\(691\) 1.60571e18 0.561126 0.280563 0.959836i \(-0.409479\pi\)
0.280563 + 0.959836i \(0.409479\pi\)
\(692\) −1.11036e18 −0.384393
\(693\) 0 0
\(694\) 3.02024e18 1.02614
\(695\) 7.01145e17 0.235997
\(696\) 0 0
\(697\) 5.70423e17 0.188445
\(698\) −1.31416e18 −0.430119
\(699\) 0 0
\(700\) 1.32248e18 0.424865
\(701\) 2.88624e18 0.918681 0.459341 0.888260i \(-0.348086\pi\)
0.459341 + 0.888260i \(0.348086\pi\)
\(702\) 0 0
\(703\) 9.34345e18 2.91943
\(704\) 5.19102e18 1.60705
\(705\) 0 0
\(706\) 2.49741e18 0.759030
\(707\) 1.34869e18 0.406150
\(708\) 0 0
\(709\) 3.41704e18 1.01030 0.505150 0.863032i \(-0.331437\pi\)
0.505150 + 0.863032i \(0.331437\pi\)
\(710\) 2.64582e18 0.775142
\(711\) 0 0
\(712\) −8.53557e17 −0.245535
\(713\) −3.60672e18 −1.02809
\(714\) 0 0
\(715\) −1.08058e17 −0.0302459
\(716\) 1.06205e19 2.94586
\(717\) 0 0
\(718\) −1.18666e19 −3.23234
\(719\) 4.01107e18 1.08274 0.541368 0.840786i \(-0.317907\pi\)
0.541368 + 0.840786i \(0.317907\pi\)
\(720\) 0 0
\(721\) −4.15677e18 −1.10199
\(722\) −9.97455e18 −2.62060
\(723\) 0 0
\(724\) −6.76252e18 −1.74505
\(725\) 1.03733e18 0.265289
\(726\) 0 0
\(727\) −2.32433e18 −0.583881 −0.291941 0.956436i \(-0.594301\pi\)
−0.291941 + 0.956436i \(0.594301\pi\)
\(728\) −3.83972e17 −0.0955973
\(729\) 0 0
\(730\) 2.73383e17 0.0668609
\(731\) −1.87300e18 −0.454019
\(732\) 0 0
\(733\) −2.96621e17 −0.0706359 −0.0353180 0.999376i \(-0.511244\pi\)
−0.0353180 + 0.999376i \(0.511244\pi\)
\(734\) 1.04062e19 2.45622
\(735\) 0 0
\(736\) −2.26231e18 −0.524622
\(737\) −3.81847e17 −0.0877710
\(738\) 0 0
\(739\) 8.38574e18 1.89388 0.946940 0.321410i \(-0.104157\pi\)
0.946940 + 0.321410i \(0.104157\pi\)
\(740\) −6.23808e18 −1.39651
\(741\) 0 0
\(742\) −1.04315e19 −2.29468
\(743\) −1.06547e18 −0.232335 −0.116168 0.993230i \(-0.537061\pi\)
−0.116168 + 0.993230i \(0.537061\pi\)
\(744\) 0 0
\(745\) −2.03442e18 −0.435939
\(746\) −3.10382e18 −0.659316
\(747\) 0 0
\(748\) −2.32203e18 −0.484739
\(749\) −5.72536e18 −1.18487
\(750\) 0 0
\(751\) −9.57457e18 −1.94742 −0.973710 0.227792i \(-0.926849\pi\)
−0.973710 + 0.227792i \(0.926849\pi\)
\(752\) −1.63561e18 −0.329810
\(753\) 0 0
\(754\) −7.18929e17 −0.142486
\(755\) −3.04145e18 −0.597620
\(756\) 0 0
\(757\) 4.59607e18 0.887695 0.443847 0.896102i \(-0.353613\pi\)
0.443847 + 0.896102i \(0.353613\pi\)
\(758\) −1.16045e19 −2.22217
\(759\) 0 0
\(760\) 4.54590e18 0.855720
\(761\) −3.11769e18 −0.581879 −0.290940 0.956741i \(-0.593968\pi\)
−0.290940 + 0.956741i \(0.593968\pi\)
\(762\) 0 0
\(763\) −7.73258e18 −1.41878
\(764\) −6.63967e18 −1.20792
\(765\) 0 0
\(766\) 9.89464e18 1.76975
\(767\) −3.52392e17 −0.0624966
\(768\) 0 0
\(769\) 4.30427e18 0.750547 0.375274 0.926914i \(-0.377549\pi\)
0.375274 + 0.926914i \(0.377549\pi\)
\(770\) 5.46948e18 0.945707
\(771\) 0 0
\(772\) −1.75311e18 −0.298056
\(773\) 6.51519e18 1.09840 0.549200 0.835691i \(-0.314933\pi\)
0.549200 + 0.835691i \(0.314933\pi\)
\(774\) 0 0
\(775\) 1.87269e18 0.310460
\(776\) −2.20491e18 −0.362485
\(777\) 0 0
\(778\) −4.52719e17 −0.0731916
\(779\) −6.97289e18 −1.11794
\(780\) 0 0
\(781\) 6.92099e18 1.09128
\(782\) 1.89481e18 0.296293
\(783\) 0 0
\(784\) 8.19806e17 0.126083
\(785\) −1.23998e18 −0.189131
\(786\) 0 0
\(787\) −7.49401e18 −1.12429 −0.562145 0.827039i \(-0.690024\pi\)
−0.562145 + 0.827039i \(0.690024\pi\)
\(788\) 5.92412e16 0.00881462
\(789\) 0 0
\(790\) −9.31442e18 −1.36326
\(791\) −1.10620e19 −1.60579
\(792\) 0 0
\(793\) 2.00139e17 0.0285796
\(794\) −5.19098e18 −0.735218
\(795\) 0 0
\(796\) 1.54975e19 2.15936
\(797\) 8.43590e18 1.16588 0.582938 0.812516i \(-0.301903\pi\)
0.582938 + 0.812516i \(0.301903\pi\)
\(798\) 0 0
\(799\) −2.73239e18 −0.371526
\(800\) 1.17464e18 0.158424
\(801\) 0 0
\(802\) 6.67801e18 0.886163
\(803\) 7.15119e17 0.0941298
\(804\) 0 0
\(805\) −2.82288e18 −0.365611
\(806\) −1.29788e18 −0.166747
\(807\) 0 0
\(808\) −3.09519e18 −0.391304
\(809\) 2.98965e18 0.374934 0.187467 0.982271i \(-0.439972\pi\)
0.187467 + 0.982271i \(0.439972\pi\)
\(810\) 0 0
\(811\) −1.10858e19 −1.36814 −0.684072 0.729415i \(-0.739792\pi\)
−0.684072 + 0.729415i \(0.739792\pi\)
\(812\) 2.30157e19 2.81780
\(813\) 0 0
\(814\) −2.57993e19 −3.10849
\(815\) −2.53260e18 −0.302720
\(816\) 0 0
\(817\) 2.28956e19 2.69345
\(818\) −6.84893e18 −0.799330
\(819\) 0 0
\(820\) 4.65539e18 0.534769
\(821\) −1.97742e18 −0.225356 −0.112678 0.993632i \(-0.535943\pi\)
−0.112678 + 0.993632i \(0.535943\pi\)
\(822\) 0 0
\(823\) −1.12620e19 −1.26333 −0.631665 0.775242i \(-0.717628\pi\)
−0.631665 + 0.775242i \(0.717628\pi\)
\(824\) 9.53963e18 1.06171
\(825\) 0 0
\(826\) 1.78368e19 1.95410
\(827\) 1.16025e19 1.26115 0.630574 0.776129i \(-0.282819\pi\)
0.630574 + 0.776129i \(0.282819\pi\)
\(828\) 0 0
\(829\) −4.67038e18 −0.499745 −0.249872 0.968279i \(-0.580389\pi\)
−0.249872 + 0.968279i \(0.580389\pi\)
\(830\) 2.00218e18 0.212567
\(831\) 0 0
\(832\) −9.64098e17 −0.100767
\(833\) 1.36954e18 0.142030
\(834\) 0 0
\(835\) −4.09795e18 −0.418413
\(836\) 2.83847e19 2.87570
\(837\) 0 0
\(838\) 1.05194e19 1.04931
\(839\) 8.73017e17 0.0864112 0.0432056 0.999066i \(-0.486243\pi\)
0.0432056 + 0.999066i \(0.486243\pi\)
\(840\) 0 0
\(841\) 7.79256e18 0.759462
\(842\) 3.15953e18 0.305559
\(843\) 0 0
\(844\) −6.25586e18 −0.595746
\(845\) −4.71235e18 −0.445317
\(846\) 0 0
\(847\) 1.04266e18 0.0970285
\(848\) 2.93808e18 0.271326
\(849\) 0 0
\(850\) −9.83828e17 −0.0894739
\(851\) 1.33154e19 1.20175
\(852\) 0 0
\(853\) 1.24079e19 1.10288 0.551442 0.834213i \(-0.314078\pi\)
0.551442 + 0.834213i \(0.314078\pi\)
\(854\) −1.01303e19 −0.893607
\(855\) 0 0
\(856\) 1.31395e19 1.14156
\(857\) −7.04934e18 −0.607817 −0.303909 0.952701i \(-0.598292\pi\)
−0.303909 + 0.952701i \(0.598292\pi\)
\(858\) 0 0
\(859\) −2.37855e17 −0.0202003 −0.0101001 0.999949i \(-0.503215\pi\)
−0.0101001 + 0.999949i \(0.503215\pi\)
\(860\) −1.52861e19 −1.28842
\(861\) 0 0
\(862\) 6.10992e18 0.507269
\(863\) −1.21210e19 −0.998774 −0.499387 0.866379i \(-0.666441\pi\)
−0.499387 + 0.866379i \(0.666441\pi\)
\(864\) 0 0
\(865\) −1.23062e18 −0.0998892
\(866\) −1.27981e19 −1.03105
\(867\) 0 0
\(868\) 4.15503e19 3.29759
\(869\) −2.43648e19 −1.91926
\(870\) 0 0
\(871\) 7.09183e16 0.00550352
\(872\) 1.77460e19 1.36692
\(873\) 0 0
\(874\) −2.31623e19 −1.75775
\(875\) 1.46570e18 0.110406
\(876\) 0 0
\(877\) −3.74100e18 −0.277645 −0.138823 0.990317i \(-0.544332\pi\)
−0.138823 + 0.990317i \(0.544332\pi\)
\(878\) −5.53354e18 −0.407651
\(879\) 0 0
\(880\) −1.54051e18 −0.111822
\(881\) 1.36085e19 0.980544 0.490272 0.871570i \(-0.336898\pi\)
0.490272 + 0.871570i \(0.336898\pi\)
\(882\) 0 0
\(883\) 9.87005e18 0.700769 0.350384 0.936606i \(-0.386051\pi\)
0.350384 + 0.936606i \(0.386051\pi\)
\(884\) 4.31258e17 0.0303947
\(885\) 0 0
\(886\) −2.31436e18 −0.160736
\(887\) −1.35100e19 −0.931432 −0.465716 0.884934i \(-0.654203\pi\)
−0.465716 + 0.884934i \(0.654203\pi\)
\(888\) 0 0
\(889\) 2.69720e19 1.83253
\(890\) −2.25813e18 −0.152305
\(891\) 0 0
\(892\) −3.03805e19 −2.01941
\(893\) 3.34010e19 2.20407
\(894\) 0 0
\(895\) 1.17708e19 0.765517
\(896\) 3.36550e19 2.17294
\(897\) 0 0
\(898\) −4.12025e19 −2.62197
\(899\) 3.25914e19 2.05904
\(900\) 0 0
\(901\) 4.90826e18 0.305644
\(902\) 1.92537e19 1.19034
\(903\) 0 0
\(904\) 2.53869e19 1.54709
\(905\) −7.49491e18 −0.453472
\(906\) 0 0
\(907\) −7.78812e18 −0.464500 −0.232250 0.972656i \(-0.574609\pi\)
−0.232250 + 0.972656i \(0.574609\pi\)
\(908\) −5.45460e19 −3.23002
\(909\) 0 0
\(910\) −1.01582e18 −0.0592988
\(911\) −6.24185e17 −0.0361779 −0.0180890 0.999836i \(-0.505758\pi\)
−0.0180890 + 0.999836i \(0.505758\pi\)
\(912\) 0 0
\(913\) 5.23733e18 0.299261
\(914\) −3.06272e19 −1.73763
\(915\) 0 0
\(916\) −1.54860e19 −0.866203
\(917\) −3.56164e19 −1.97810
\(918\) 0 0
\(919\) −3.08457e19 −1.68906 −0.844528 0.535511i \(-0.820119\pi\)
−0.844528 + 0.535511i \(0.820119\pi\)
\(920\) 6.47840e18 0.352247
\(921\) 0 0
\(922\) 3.42675e19 1.83709
\(923\) −1.28539e18 −0.0684267
\(924\) 0 0
\(925\) −6.91367e18 −0.362900
\(926\) −2.84363e19 −1.48218
\(927\) 0 0
\(928\) 2.04429e19 1.05071
\(929\) 2.60942e19 1.33181 0.665905 0.746037i \(-0.268046\pi\)
0.665905 + 0.746037i \(0.268046\pi\)
\(930\) 0 0
\(931\) −1.67413e19 −0.842592
\(932\) −6.12039e19 −3.05897
\(933\) 0 0
\(934\) −2.50432e19 −1.23434
\(935\) −2.57351e18 −0.125965
\(936\) 0 0
\(937\) −1.43219e19 −0.691340 −0.345670 0.938356i \(-0.612348\pi\)
−0.345670 + 0.938356i \(0.612348\pi\)
\(938\) −3.58962e18 −0.172080
\(939\) 0 0
\(940\) −2.22999e19 −1.05432
\(941\) 6.74040e18 0.316485 0.158242 0.987400i \(-0.449417\pi\)
0.158242 + 0.987400i \(0.449417\pi\)
\(942\) 0 0
\(943\) −9.93712e18 −0.460187
\(944\) −5.02381e18 −0.231055
\(945\) 0 0
\(946\) −6.32200e19 −2.86789
\(947\) 4.26475e18 0.192140 0.0960701 0.995375i \(-0.469373\pi\)
0.0960701 + 0.995375i \(0.469373\pi\)
\(948\) 0 0
\(949\) −1.32815e17 −0.00590223
\(950\) 1.20264e19 0.530801
\(951\) 0 0
\(952\) −9.14471e18 −0.398134
\(953\) −2.39618e17 −0.0103613 −0.00518067 0.999987i \(-0.501649\pi\)
−0.00518067 + 0.999987i \(0.501649\pi\)
\(954\) 0 0
\(955\) −7.35876e18 −0.313894
\(956\) 2.40800e19 1.02019
\(957\) 0 0
\(958\) −5.54985e19 −2.31956
\(959\) 1.87964e19 0.780285
\(960\) 0 0
\(961\) 3.44197e19 1.40963
\(962\) 4.79157e18 0.194912
\(963\) 0 0
\(964\) 4.04853e19 1.62479
\(965\) −1.94298e18 −0.0774533
\(966\) 0 0
\(967\) 1.50588e19 0.592268 0.296134 0.955146i \(-0.404302\pi\)
0.296134 + 0.955146i \(0.404302\pi\)
\(968\) −2.39286e18 −0.0934817
\(969\) 0 0
\(970\) −5.83319e18 −0.224849
\(971\) −1.51669e19 −0.580728 −0.290364 0.956916i \(-0.593776\pi\)
−0.290364 + 0.956916i \(0.593776\pi\)
\(972\) 0 0
\(973\) 1.72415e19 0.651389
\(974\) −7.28221e18 −0.273294
\(975\) 0 0
\(976\) 2.85325e18 0.105661
\(977\) −5.43050e18 −0.199768 −0.0998838 0.994999i \(-0.531847\pi\)
−0.0998838 + 0.994999i \(0.531847\pi\)
\(978\) 0 0
\(979\) −5.90684e18 −0.214421
\(980\) 1.11772e19 0.403055
\(981\) 0 0
\(982\) −9.24822e18 −0.329104
\(983\) 4.45646e19 1.57540 0.787702 0.616057i \(-0.211271\pi\)
0.787702 + 0.616057i \(0.211271\pi\)
\(984\) 0 0
\(985\) 6.56571e16 0.00229058
\(986\) −1.71221e19 −0.593412
\(987\) 0 0
\(988\) −5.27173e18 −0.180315
\(989\) 3.26288e19 1.10873
\(990\) 0 0
\(991\) 8.11044e18 0.271998 0.135999 0.990709i \(-0.456576\pi\)
0.135999 + 0.990709i \(0.456576\pi\)
\(992\) 3.69056e19 1.22961
\(993\) 0 0
\(994\) 6.50619e19 2.13951
\(995\) 1.71759e19 0.561136
\(996\) 0 0
\(997\) 3.75569e19 1.21107 0.605537 0.795817i \(-0.292958\pi\)
0.605537 + 0.795817i \(0.292958\pi\)
\(998\) 4.17627e19 1.33795
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 45.14.a.b.1.1 2
3.2 odd 2 15.14.a.c.1.2 2
15.2 even 4 75.14.b.e.49.4 4
15.8 even 4 75.14.b.e.49.1 4
15.14 odd 2 75.14.a.c.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.14.a.c.1.2 2 3.2 odd 2
45.14.a.b.1.1 2 1.1 even 1 trivial
75.14.a.c.1.1 2 15.14 odd 2
75.14.b.e.49.1 4 15.8 even 4
75.14.b.e.49.4 4 15.2 even 4