Properties

Label 45.12.a.c.1.2
Level $45$
Weight $12$
Character 45.1
Self dual yes
Analytic conductor $34.575$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,12,Mod(1,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.1");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 45.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.5754431252\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1801}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 450 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 15)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-20.7191\) of defining polynomial
Character \(\chi\) \(=\) 45.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+27.7191 q^{2} -1279.65 q^{4} +3125.00 q^{5} -72157.2 q^{7} -92239.5 q^{8} +O(q^{10})\) \(q+27.7191 q^{2} -1279.65 q^{4} +3125.00 q^{5} -72157.2 q^{7} -92239.5 q^{8} +86622.2 q^{10} +509499. q^{11} +1.85516e6 q^{13} -2.00013e6 q^{14} +63931.4 q^{16} -5.94676e6 q^{17} +6.02189e6 q^{19} -3.99891e6 q^{20} +1.41228e7 q^{22} +4.82627e7 q^{23} +9.76562e6 q^{25} +5.14234e7 q^{26} +9.23361e7 q^{28} +1.13550e7 q^{29} -1.72184e8 q^{31} +1.90679e8 q^{32} -1.64839e8 q^{34} -2.25491e8 q^{35} +6.25191e8 q^{37} +1.66921e8 q^{38} -2.88248e8 q^{40} +5.53971e8 q^{41} +1.52106e9 q^{43} -6.51981e8 q^{44} +1.33780e9 q^{46} -1.19456e9 q^{47} +3.22934e9 q^{49} +2.70694e8 q^{50} -2.37396e9 q^{52} -1.22320e9 q^{53} +1.59218e9 q^{55} +6.65575e9 q^{56} +3.14750e8 q^{58} +5.83637e9 q^{59} -6.61097e9 q^{61} -4.77277e9 q^{62} +5.15451e9 q^{64} +5.79738e9 q^{65} +1.66261e10 q^{67} +7.60978e9 q^{68} -6.25042e9 q^{70} -7.36200e9 q^{71} -6.35726e9 q^{73} +1.73297e10 q^{74} -7.70593e9 q^{76} -3.67640e10 q^{77} +2.47565e10 q^{79} +1.99786e8 q^{80} +1.53556e10 q^{82} -3.59416e10 q^{83} -1.85836e10 q^{85} +4.21625e10 q^{86} -4.69959e10 q^{88} -7.47690e10 q^{89} -1.33863e11 q^{91} -6.17594e10 q^{92} -3.31121e10 q^{94} +1.88184e10 q^{95} -1.66300e10 q^{97} +8.95144e10 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 13 q^{2} - 3111 q^{4} + 6250 q^{5} + 7784 q^{7} - 35139 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 13 q^{2} - 3111 q^{4} + 6250 q^{5} + 7784 q^{7} - 35139 q^{8} + 40625 q^{10} - 295568 q^{11} + 657492 q^{13} - 3176796 q^{14} + 2974065 q^{16} - 8579948 q^{17} + 17627976 q^{19} - 9721875 q^{20} + 25972696 q^{22} + 29841072 q^{23} + 19531250 q^{25} + 69052066 q^{26} - 54064108 q^{28} + 201881948 q^{29} - 71057008 q^{31} + 30902261 q^{32} - 126080702 q^{34} + 24325000 q^{35} + 705858484 q^{37} - 3909548 q^{38} - 109809375 q^{40} + 327655148 q^{41} + 3192552120 q^{43} + 822376568 q^{44} + 1608947832 q^{46} - 2053064720 q^{47} + 7642614770 q^{49} + 126953125 q^{50} - 180610022 q^{52} + 2304299452 q^{53} - 923650000 q^{55} + 11220431460 q^{56} - 2489635114 q^{58} + 1478770576 q^{59} - 8264891460 q^{61} - 6261263448 q^{62} + 1546316681 q^{64} + 2054662500 q^{65} + 24212177528 q^{67} + 12432065594 q^{68} - 9927487500 q^{70} + 20218888256 q^{71} + 25879583268 q^{73} + 16142374034 q^{74} - 28960704764 q^{76} - 101122045248 q^{77} + 22324995440 q^{79} + 9293953125 q^{80} + 18686740478 q^{82} - 48014508984 q^{83} - 26812337500 q^{85} + 17559698092 q^{86} - 92965609896 q^{88} - 79209683076 q^{89} - 229606712048 q^{91} - 28023036264 q^{92} - 20475612776 q^{94} + 55087425000 q^{95} - 37075227452 q^{97} + 24554976677 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 27.7191 0.612511 0.306256 0.951949i \(-0.400924\pi\)
0.306256 + 0.951949i \(0.400924\pi\)
\(3\) 0 0
\(4\) −1279.65 −0.624830
\(5\) 3125.00 0.447214
\(6\) 0 0
\(7\) −72157.2 −1.62271 −0.811355 0.584554i \(-0.801269\pi\)
−0.811355 + 0.584554i \(0.801269\pi\)
\(8\) −92239.5 −0.995227
\(9\) 0 0
\(10\) 86622.2 0.273923
\(11\) 509499. 0.953857 0.476929 0.878942i \(-0.341750\pi\)
0.476929 + 0.878942i \(0.341750\pi\)
\(12\) 0 0
\(13\) 1.85516e6 1.38578 0.692889 0.721044i \(-0.256338\pi\)
0.692889 + 0.721044i \(0.256338\pi\)
\(14\) −2.00013e6 −0.993928
\(15\) 0 0
\(16\) 63931.4 0.0152424
\(17\) −5.94676e6 −1.01581 −0.507904 0.861414i \(-0.669579\pi\)
−0.507904 + 0.861414i \(0.669579\pi\)
\(18\) 0 0
\(19\) 6.02189e6 0.557941 0.278971 0.960300i \(-0.410007\pi\)
0.278971 + 0.960300i \(0.410007\pi\)
\(20\) −3.99891e6 −0.279432
\(21\) 0 0
\(22\) 1.41228e7 0.584248
\(23\) 4.82627e7 1.56354 0.781769 0.623568i \(-0.214318\pi\)
0.781769 + 0.623568i \(0.214318\pi\)
\(24\) 0 0
\(25\) 9.76562e6 0.200000
\(26\) 5.14234e7 0.848804
\(27\) 0 0
\(28\) 9.23361e7 1.01392
\(29\) 1.13550e7 0.102801 0.0514005 0.998678i \(-0.483632\pi\)
0.0514005 + 0.998678i \(0.483632\pi\)
\(30\) 0 0
\(31\) −1.72184e8 −1.08020 −0.540098 0.841602i \(-0.681613\pi\)
−0.540098 + 0.841602i \(0.681613\pi\)
\(32\) 1.90679e8 1.00456
\(33\) 0 0
\(34\) −1.64839e8 −0.622194
\(35\) −2.25491e8 −0.725698
\(36\) 0 0
\(37\) 6.25191e8 1.48219 0.741094 0.671401i \(-0.234307\pi\)
0.741094 + 0.671401i \(0.234307\pi\)
\(38\) 1.66921e8 0.341745
\(39\) 0 0
\(40\) −2.88248e8 −0.445079
\(41\) 5.53971e8 0.746751 0.373376 0.927680i \(-0.378200\pi\)
0.373376 + 0.927680i \(0.378200\pi\)
\(42\) 0 0
\(43\) 1.52106e9 1.57787 0.788934 0.614478i \(-0.210633\pi\)
0.788934 + 0.614478i \(0.210633\pi\)
\(44\) −6.51981e8 −0.595998
\(45\) 0 0
\(46\) 1.33780e9 0.957685
\(47\) −1.19456e9 −0.759747 −0.379873 0.925038i \(-0.624032\pi\)
−0.379873 + 0.925038i \(0.624032\pi\)
\(48\) 0 0
\(49\) 3.22934e9 1.63318
\(50\) 2.70694e8 0.122502
\(51\) 0 0
\(52\) −2.37396e9 −0.865875
\(53\) −1.22320e9 −0.401774 −0.200887 0.979614i \(-0.564382\pi\)
−0.200887 + 0.979614i \(0.564382\pi\)
\(54\) 0 0
\(55\) 1.59218e9 0.426578
\(56\) 6.65575e9 1.61496
\(57\) 0 0
\(58\) 3.14750e8 0.0629667
\(59\) 5.83637e9 1.06281 0.531407 0.847117i \(-0.321664\pi\)
0.531407 + 0.847117i \(0.321664\pi\)
\(60\) 0 0
\(61\) −6.61097e9 −1.00219 −0.501096 0.865392i \(-0.667070\pi\)
−0.501096 + 0.865392i \(0.667070\pi\)
\(62\) −4.77277e9 −0.661632
\(63\) 0 0
\(64\) 5.15451e9 0.600064
\(65\) 5.79738e9 0.619739
\(66\) 0 0
\(67\) 1.66261e10 1.50445 0.752226 0.658905i \(-0.228980\pi\)
0.752226 + 0.658905i \(0.228980\pi\)
\(68\) 7.60978e9 0.634707
\(69\) 0 0
\(70\) −6.25042e9 −0.444498
\(71\) −7.36200e9 −0.484256 −0.242128 0.970244i \(-0.577845\pi\)
−0.242128 + 0.970244i \(0.577845\pi\)
\(72\) 0 0
\(73\) −6.35726e9 −0.358917 −0.179458 0.983766i \(-0.557435\pi\)
−0.179458 + 0.983766i \(0.557435\pi\)
\(74\) 1.73297e10 0.907857
\(75\) 0 0
\(76\) −7.70593e9 −0.348618
\(77\) −3.67640e10 −1.54783
\(78\) 0 0
\(79\) 2.47565e10 0.905191 0.452595 0.891716i \(-0.350498\pi\)
0.452595 + 0.891716i \(0.350498\pi\)
\(80\) 1.99786e8 0.00681663
\(81\) 0 0
\(82\) 1.53556e10 0.457393
\(83\) −3.59416e10 −1.00154 −0.500769 0.865581i \(-0.666950\pi\)
−0.500769 + 0.865581i \(0.666950\pi\)
\(84\) 0 0
\(85\) −1.85836e10 −0.454283
\(86\) 4.21625e10 0.966462
\(87\) 0 0
\(88\) −4.69959e10 −0.949304
\(89\) −7.47690e10 −1.41931 −0.709653 0.704551i \(-0.751148\pi\)
−0.709653 + 0.704551i \(0.751148\pi\)
\(90\) 0 0
\(91\) −1.33863e11 −2.24871
\(92\) −6.17594e10 −0.976945
\(93\) 0 0
\(94\) −3.31121e10 −0.465354
\(95\) 1.88184e10 0.249519
\(96\) 0 0
\(97\) −1.66300e10 −0.196629 −0.0983144 0.995155i \(-0.531345\pi\)
−0.0983144 + 0.995155i \(0.531345\pi\)
\(98\) 8.95144e10 1.00034
\(99\) 0 0
\(100\) −1.24966e10 −0.124966
\(101\) 5.30247e10 0.502008 0.251004 0.967986i \(-0.419239\pi\)
0.251004 + 0.967986i \(0.419239\pi\)
\(102\) 0 0
\(103\) 1.00437e9 0.00853666 0.00426833 0.999991i \(-0.498641\pi\)
0.00426833 + 0.999991i \(0.498641\pi\)
\(104\) −1.71119e11 −1.37916
\(105\) 0 0
\(106\) −3.39061e10 −0.246091
\(107\) 1.65238e11 1.13893 0.569466 0.822015i \(-0.307150\pi\)
0.569466 + 0.822015i \(0.307150\pi\)
\(108\) 0 0
\(109\) 7.04515e10 0.438576 0.219288 0.975660i \(-0.429627\pi\)
0.219288 + 0.975660i \(0.429627\pi\)
\(110\) 4.41339e10 0.261284
\(111\) 0 0
\(112\) −4.61312e9 −0.0247341
\(113\) −2.07466e11 −1.05929 −0.529646 0.848219i \(-0.677675\pi\)
−0.529646 + 0.848219i \(0.677675\pi\)
\(114\) 0 0
\(115\) 1.50821e11 0.699235
\(116\) −1.45304e10 −0.0642331
\(117\) 0 0
\(118\) 1.61779e11 0.650985
\(119\) 4.29102e11 1.64836
\(120\) 0 0
\(121\) −2.57228e10 −0.0901567
\(122\) −1.83250e11 −0.613854
\(123\) 0 0
\(124\) 2.20335e11 0.674938
\(125\) 3.05176e10 0.0894427
\(126\) 0 0
\(127\) 1.17811e11 0.316422 0.158211 0.987405i \(-0.449427\pi\)
0.158211 + 0.987405i \(0.449427\pi\)
\(128\) −2.47632e11 −0.637017
\(129\) 0 0
\(130\) 1.60698e11 0.379597
\(131\) −4.60288e11 −1.04241 −0.521204 0.853432i \(-0.674517\pi\)
−0.521204 + 0.853432i \(0.674517\pi\)
\(132\) 0 0
\(133\) −4.34523e11 −0.905376
\(134\) 4.60860e11 0.921494
\(135\) 0 0
\(136\) 5.48526e11 1.01096
\(137\) 5.80435e11 1.02752 0.513760 0.857934i \(-0.328252\pi\)
0.513760 + 0.857934i \(0.328252\pi\)
\(138\) 0 0
\(139\) 6.94847e11 1.13582 0.567908 0.823092i \(-0.307753\pi\)
0.567908 + 0.823092i \(0.307753\pi\)
\(140\) 2.88550e11 0.453438
\(141\) 0 0
\(142\) −2.04068e11 −0.296612
\(143\) 9.45203e11 1.32183
\(144\) 0 0
\(145\) 3.54843e10 0.0459740
\(146\) −1.76217e11 −0.219841
\(147\) 0 0
\(148\) −8.00027e11 −0.926115
\(149\) 1.12749e11 0.125774 0.0628869 0.998021i \(-0.479969\pi\)
0.0628869 + 0.998021i \(0.479969\pi\)
\(150\) 0 0
\(151\) 2.45742e11 0.254746 0.127373 0.991855i \(-0.459346\pi\)
0.127373 + 0.991855i \(0.459346\pi\)
\(152\) −5.55457e11 −0.555278
\(153\) 0 0
\(154\) −1.01907e12 −0.948065
\(155\) −5.38074e11 −0.483078
\(156\) 0 0
\(157\) −5.83317e11 −0.488042 −0.244021 0.969770i \(-0.578467\pi\)
−0.244021 + 0.969770i \(0.578467\pi\)
\(158\) 6.86227e11 0.554439
\(159\) 0 0
\(160\) 5.95871e11 0.449254
\(161\) −3.48250e12 −2.53717
\(162\) 0 0
\(163\) 2.65801e12 1.80936 0.904681 0.426089i \(-0.140109\pi\)
0.904681 + 0.426089i \(0.140109\pi\)
\(164\) −7.08890e11 −0.466592
\(165\) 0 0
\(166\) −9.96269e11 −0.613454
\(167\) 1.68070e12 1.00126 0.500632 0.865660i \(-0.333101\pi\)
0.500632 + 0.865660i \(0.333101\pi\)
\(168\) 0 0
\(169\) 1.64947e12 0.920380
\(170\) −5.15121e11 −0.278253
\(171\) 0 0
\(172\) −1.94643e12 −0.985900
\(173\) 2.11009e12 1.03525 0.517627 0.855606i \(-0.326815\pi\)
0.517627 + 0.855606i \(0.326815\pi\)
\(174\) 0 0
\(175\) −7.04661e11 −0.324542
\(176\) 3.25730e10 0.0145391
\(177\) 0 0
\(178\) −2.07253e12 −0.869341
\(179\) −8.73323e10 −0.0355208 −0.0177604 0.999842i \(-0.505654\pi\)
−0.0177604 + 0.999842i \(0.505654\pi\)
\(180\) 0 0
\(181\) 2.60066e12 0.995066 0.497533 0.867445i \(-0.334239\pi\)
0.497533 + 0.867445i \(0.334239\pi\)
\(182\) −3.71057e12 −1.37736
\(183\) 0 0
\(184\) −4.45173e12 −1.55607
\(185\) 1.95372e12 0.662854
\(186\) 0 0
\(187\) −3.02987e12 −0.968935
\(188\) 1.52862e12 0.474713
\(189\) 0 0
\(190\) 5.21630e11 0.152833
\(191\) 2.28556e12 0.650593 0.325296 0.945612i \(-0.394536\pi\)
0.325296 + 0.945612i \(0.394536\pi\)
\(192\) 0 0
\(193\) 3.11630e12 0.837671 0.418836 0.908062i \(-0.362438\pi\)
0.418836 + 0.908062i \(0.362438\pi\)
\(194\) −4.60968e11 −0.120437
\(195\) 0 0
\(196\) −4.13243e12 −1.02046
\(197\) −3.68099e12 −0.883894 −0.441947 0.897041i \(-0.645712\pi\)
−0.441947 + 0.897041i \(0.645712\pi\)
\(198\) 0 0
\(199\) −2.20305e12 −0.500417 −0.250208 0.968192i \(-0.580499\pi\)
−0.250208 + 0.968192i \(0.580499\pi\)
\(200\) −9.00776e11 −0.199045
\(201\) 0 0
\(202\) 1.46980e12 0.307485
\(203\) −8.19343e11 −0.166816
\(204\) 0 0
\(205\) 1.73116e12 0.333957
\(206\) 2.78402e10 0.00522880
\(207\) 0 0
\(208\) 1.18603e11 0.0211226
\(209\) 3.06815e12 0.532196
\(210\) 0 0
\(211\) −1.08697e13 −1.78921 −0.894607 0.446853i \(-0.852545\pi\)
−0.894607 + 0.446853i \(0.852545\pi\)
\(212\) 1.56528e12 0.251040
\(213\) 0 0
\(214\) 4.58024e12 0.697609
\(215\) 4.75332e12 0.705644
\(216\) 0 0
\(217\) 1.24243e13 1.75284
\(218\) 1.95285e12 0.268633
\(219\) 0 0
\(220\) −2.03744e12 −0.266539
\(221\) −1.10322e13 −1.40768
\(222\) 0 0
\(223\) 9.89456e12 1.20149 0.600744 0.799441i \(-0.294871\pi\)
0.600744 + 0.799441i \(0.294871\pi\)
\(224\) −1.37588e13 −1.63011
\(225\) 0 0
\(226\) −5.75078e12 −0.648829
\(227\) −5.42930e12 −0.597862 −0.298931 0.954275i \(-0.596630\pi\)
−0.298931 + 0.954275i \(0.596630\pi\)
\(228\) 0 0
\(229\) 2.17366e12 0.228085 0.114042 0.993476i \(-0.463620\pi\)
0.114042 + 0.993476i \(0.463620\pi\)
\(230\) 4.18062e12 0.428290
\(231\) 0 0
\(232\) −1.04738e12 −0.102310
\(233\) 1.98130e13 1.89013 0.945067 0.326876i \(-0.105996\pi\)
0.945067 + 0.326876i \(0.105996\pi\)
\(234\) 0 0
\(235\) −3.73299e12 −0.339769
\(236\) −7.46853e12 −0.664078
\(237\) 0 0
\(238\) 1.18943e13 1.00964
\(239\) −1.03457e12 −0.0858169 −0.0429085 0.999079i \(-0.513662\pi\)
−0.0429085 + 0.999079i \(0.513662\pi\)
\(240\) 0 0
\(241\) 1.36081e13 1.07821 0.539106 0.842238i \(-0.318762\pi\)
0.539106 + 0.842238i \(0.318762\pi\)
\(242\) −7.13011e11 −0.0552220
\(243\) 0 0
\(244\) 8.45973e12 0.626199
\(245\) 1.00917e13 0.730382
\(246\) 0 0
\(247\) 1.11716e13 0.773182
\(248\) 1.58821e13 1.07504
\(249\) 0 0
\(250\) 8.45920e11 0.0547847
\(251\) 2.28023e13 1.44469 0.722344 0.691534i \(-0.243065\pi\)
0.722344 + 0.691534i \(0.243065\pi\)
\(252\) 0 0
\(253\) 2.45898e13 1.49139
\(254\) 3.26562e12 0.193812
\(255\) 0 0
\(256\) −1.74206e13 −0.990244
\(257\) −6.13077e12 −0.341101 −0.170550 0.985349i \(-0.554555\pi\)
−0.170550 + 0.985349i \(0.554555\pi\)
\(258\) 0 0
\(259\) −4.51121e13 −2.40516
\(260\) −7.41863e12 −0.387231
\(261\) 0 0
\(262\) −1.27588e13 −0.638486
\(263\) 3.25384e13 1.59456 0.797278 0.603613i \(-0.206273\pi\)
0.797278 + 0.603613i \(0.206273\pi\)
\(264\) 0 0
\(265\) −3.82251e12 −0.179679
\(266\) −1.20446e13 −0.554553
\(267\) 0 0
\(268\) −2.12756e13 −0.940027
\(269\) −3.66970e13 −1.58852 −0.794261 0.607577i \(-0.792142\pi\)
−0.794261 + 0.607577i \(0.792142\pi\)
\(270\) 0 0
\(271\) 1.87361e13 0.778659 0.389329 0.921099i \(-0.372707\pi\)
0.389329 + 0.921099i \(0.372707\pi\)
\(272\) −3.80185e11 −0.0154834
\(273\) 0 0
\(274\) 1.60891e13 0.629368
\(275\) 4.97557e12 0.190771
\(276\) 0 0
\(277\) −3.03044e13 −1.11652 −0.558260 0.829666i \(-0.688531\pi\)
−0.558260 + 0.829666i \(0.688531\pi\)
\(278\) 1.92605e13 0.695700
\(279\) 0 0
\(280\) 2.07992e13 0.722234
\(281\) −4.93501e13 −1.68037 −0.840183 0.542304i \(-0.817552\pi\)
−0.840183 + 0.542304i \(0.817552\pi\)
\(282\) 0 0
\(283\) −5.45122e12 −0.178512 −0.0892562 0.996009i \(-0.528449\pi\)
−0.0892562 + 0.996009i \(0.528449\pi\)
\(284\) 9.42079e12 0.302578
\(285\) 0 0
\(286\) 2.62002e13 0.809638
\(287\) −3.99730e13 −1.21176
\(288\) 0 0
\(289\) 1.09207e12 0.0318649
\(290\) 9.83592e11 0.0281596
\(291\) 0 0
\(292\) 8.13507e12 0.224262
\(293\) −4.85807e13 −1.31429 −0.657146 0.753763i \(-0.728237\pi\)
−0.657146 + 0.753763i \(0.728237\pi\)
\(294\) 0 0
\(295\) 1.82387e13 0.475305
\(296\) −5.76673e13 −1.47511
\(297\) 0 0
\(298\) 3.12531e12 0.0770378
\(299\) 8.95352e13 2.16672
\(300\) 0 0
\(301\) −1.09756e14 −2.56042
\(302\) 6.81176e12 0.156035
\(303\) 0 0
\(304\) 3.84988e11 0.00850439
\(305\) −2.06593e13 −0.448194
\(306\) 0 0
\(307\) −6.68455e13 −1.39898 −0.699489 0.714643i \(-0.746589\pi\)
−0.699489 + 0.714643i \(0.746589\pi\)
\(308\) 4.70451e13 0.967132
\(309\) 0 0
\(310\) −1.49149e13 −0.295891
\(311\) −7.26443e13 −1.41586 −0.707928 0.706284i \(-0.750370\pi\)
−0.707928 + 0.706284i \(0.750370\pi\)
\(312\) 0 0
\(313\) 6.27938e13 1.18147 0.590735 0.806866i \(-0.298838\pi\)
0.590735 + 0.806866i \(0.298838\pi\)
\(314\) −1.61690e13 −0.298931
\(315\) 0 0
\(316\) −3.16797e13 −0.565590
\(317\) 4.20135e13 0.737161 0.368581 0.929596i \(-0.379844\pi\)
0.368581 + 0.929596i \(0.379844\pi\)
\(318\) 0 0
\(319\) 5.78534e12 0.0980574
\(320\) 1.61078e13 0.268357
\(321\) 0 0
\(322\) −9.65318e13 −1.55404
\(323\) −3.58108e13 −0.566761
\(324\) 0 0
\(325\) 1.81168e13 0.277156
\(326\) 7.36778e13 1.10825
\(327\) 0 0
\(328\) −5.10980e13 −0.743187
\(329\) 8.61960e13 1.23285
\(330\) 0 0
\(331\) 1.36334e14 1.88604 0.943019 0.332740i \(-0.107973\pi\)
0.943019 + 0.332740i \(0.107973\pi\)
\(332\) 4.59927e13 0.625792
\(333\) 0 0
\(334\) 4.65874e13 0.613286
\(335\) 5.19565e13 0.672811
\(336\) 0 0
\(337\) 9.94099e13 1.24585 0.622924 0.782282i \(-0.285944\pi\)
0.622924 + 0.782282i \(0.285944\pi\)
\(338\) 4.57218e13 0.563743
\(339\) 0 0
\(340\) 2.37806e13 0.283850
\(341\) −8.77273e13 −1.03035
\(342\) 0 0
\(343\) −9.03418e13 −1.02747
\(344\) −1.40302e14 −1.57034
\(345\) 0 0
\(346\) 5.84897e13 0.634105
\(347\) −7.96482e13 −0.849892 −0.424946 0.905219i \(-0.639707\pi\)
−0.424946 + 0.905219i \(0.639707\pi\)
\(348\) 0 0
\(349\) −2.33239e13 −0.241135 −0.120568 0.992705i \(-0.538471\pi\)
−0.120568 + 0.992705i \(0.538471\pi\)
\(350\) −1.95326e13 −0.198786
\(351\) 0 0
\(352\) 9.71505e13 0.958209
\(353\) 7.20065e13 0.699215 0.349608 0.936896i \(-0.386315\pi\)
0.349608 + 0.936896i \(0.386315\pi\)
\(354\) 0 0
\(355\) −2.30062e13 −0.216566
\(356\) 9.56782e13 0.886825
\(357\) 0 0
\(358\) −2.42077e12 −0.0217569
\(359\) −1.02696e13 −0.0908941 −0.0454470 0.998967i \(-0.514471\pi\)
−0.0454470 + 0.998967i \(0.514471\pi\)
\(360\) 0 0
\(361\) −8.02270e13 −0.688702
\(362\) 7.20880e13 0.609489
\(363\) 0 0
\(364\) 1.71299e14 1.40506
\(365\) −1.98664e13 −0.160513
\(366\) 0 0
\(367\) 1.03116e14 0.808470 0.404235 0.914655i \(-0.367538\pi\)
0.404235 + 0.914655i \(0.367538\pi\)
\(368\) 3.08550e12 0.0238321
\(369\) 0 0
\(370\) 5.41554e13 0.406006
\(371\) 8.82631e13 0.651962
\(372\) 0 0
\(373\) 1.30172e14 0.933509 0.466755 0.884387i \(-0.345423\pi\)
0.466755 + 0.884387i \(0.345423\pi\)
\(374\) −8.39852e13 −0.593484
\(375\) 0 0
\(376\) 1.10185e14 0.756120
\(377\) 2.10653e13 0.142459
\(378\) 0 0
\(379\) −6.26815e13 −0.411740 −0.205870 0.978579i \(-0.566002\pi\)
−0.205870 + 0.978579i \(0.566002\pi\)
\(380\) −2.40810e13 −0.155907
\(381\) 0 0
\(382\) 6.33537e13 0.398495
\(383\) −1.06310e14 −0.659145 −0.329572 0.944130i \(-0.606905\pi\)
−0.329572 + 0.944130i \(0.606905\pi\)
\(384\) 0 0
\(385\) −1.14888e14 −0.692212
\(386\) 8.63809e13 0.513083
\(387\) 0 0
\(388\) 2.12806e13 0.122860
\(389\) 7.42336e13 0.422549 0.211275 0.977427i \(-0.432239\pi\)
0.211275 + 0.977427i \(0.432239\pi\)
\(390\) 0 0
\(391\) −2.87007e14 −1.58825
\(392\) −2.97873e14 −1.62539
\(393\) 0 0
\(394\) −1.02034e14 −0.541395
\(395\) 7.73640e13 0.404814
\(396\) 0 0
\(397\) −1.48552e14 −0.756018 −0.378009 0.925802i \(-0.623391\pi\)
−0.378009 + 0.925802i \(0.623391\pi\)
\(398\) −6.10665e13 −0.306511
\(399\) 0 0
\(400\) 6.24331e11 0.00304849
\(401\) 9.20974e13 0.443561 0.221781 0.975097i \(-0.428813\pi\)
0.221781 + 0.975097i \(0.428813\pi\)
\(402\) 0 0
\(403\) −3.19429e14 −1.49691
\(404\) −6.78531e13 −0.313669
\(405\) 0 0
\(406\) −2.27115e13 −0.102177
\(407\) 3.18534e14 1.41380
\(408\) 0 0
\(409\) −3.23531e13 −0.139778 −0.0698889 0.997555i \(-0.522264\pi\)
−0.0698889 + 0.997555i \(0.522264\pi\)
\(410\) 4.79862e13 0.204553
\(411\) 0 0
\(412\) −1.28524e12 −0.00533396
\(413\) −4.21137e14 −1.72464
\(414\) 0 0
\(415\) −1.12317e14 −0.447902
\(416\) 3.53740e14 1.39210
\(417\) 0 0
\(418\) 8.50463e13 0.325976
\(419\) 1.61755e14 0.611900 0.305950 0.952048i \(-0.401026\pi\)
0.305950 + 0.952048i \(0.401026\pi\)
\(420\) 0 0
\(421\) −1.14462e14 −0.421803 −0.210902 0.977507i \(-0.567640\pi\)
−0.210902 + 0.977507i \(0.567640\pi\)
\(422\) −3.01297e14 −1.09591
\(423\) 0 0
\(424\) 1.12828e14 0.399856
\(425\) −5.80738e13 −0.203161
\(426\) 0 0
\(427\) 4.77029e14 1.62627
\(428\) −2.11447e14 −0.711639
\(429\) 0 0
\(430\) 1.31758e14 0.432215
\(431\) −1.01052e14 −0.327279 −0.163639 0.986520i \(-0.552323\pi\)
−0.163639 + 0.986520i \(0.552323\pi\)
\(432\) 0 0
\(433\) 1.21838e14 0.384680 0.192340 0.981328i \(-0.438392\pi\)
0.192340 + 0.981328i \(0.438392\pi\)
\(434\) 3.44390e14 1.07364
\(435\) 0 0
\(436\) −9.01534e13 −0.274035
\(437\) 2.90633e14 0.872362
\(438\) 0 0
\(439\) 2.85736e14 0.836393 0.418197 0.908357i \(-0.362662\pi\)
0.418197 + 0.908357i \(0.362662\pi\)
\(440\) −1.46862e14 −0.424542
\(441\) 0 0
\(442\) −3.05803e14 −0.862222
\(443\) −4.82498e14 −1.34362 −0.671808 0.740725i \(-0.734482\pi\)
−0.671808 + 0.740725i \(0.734482\pi\)
\(444\) 0 0
\(445\) −2.33653e14 −0.634733
\(446\) 2.74268e14 0.735925
\(447\) 0 0
\(448\) −3.71935e14 −0.973729
\(449\) −6.86974e14 −1.77658 −0.888291 0.459281i \(-0.848107\pi\)
−0.888291 + 0.459281i \(0.848107\pi\)
\(450\) 0 0
\(451\) 2.82248e14 0.712294
\(452\) 2.65485e14 0.661878
\(453\) 0 0
\(454\) −1.50495e14 −0.366197
\(455\) −4.18323e14 −1.00566
\(456\) 0 0
\(457\) −2.14744e14 −0.503944 −0.251972 0.967734i \(-0.581079\pi\)
−0.251972 + 0.967734i \(0.581079\pi\)
\(458\) 6.02519e13 0.139705
\(459\) 0 0
\(460\) −1.92998e14 −0.436903
\(461\) 3.22127e14 0.720563 0.360281 0.932844i \(-0.382681\pi\)
0.360281 + 0.932844i \(0.382681\pi\)
\(462\) 0 0
\(463\) 8.81227e13 0.192483 0.0962415 0.995358i \(-0.469318\pi\)
0.0962415 + 0.995358i \(0.469318\pi\)
\(464\) 7.25940e11 0.00156694
\(465\) 0 0
\(466\) 5.49199e14 1.15773
\(467\) −3.86746e14 −0.805718 −0.402859 0.915262i \(-0.631984\pi\)
−0.402859 + 0.915262i \(0.631984\pi\)
\(468\) 0 0
\(469\) −1.19969e15 −2.44129
\(470\) −1.03475e14 −0.208112
\(471\) 0 0
\(472\) −5.38344e14 −1.05774
\(473\) 7.74980e14 1.50506
\(474\) 0 0
\(475\) 5.88076e13 0.111588
\(476\) −5.49101e14 −1.02994
\(477\) 0 0
\(478\) −2.86774e13 −0.0525638
\(479\) 5.88123e14 1.06567 0.532835 0.846219i \(-0.321127\pi\)
0.532835 + 0.846219i \(0.321127\pi\)
\(480\) 0 0
\(481\) 1.15983e15 2.05398
\(482\) 3.77205e14 0.660417
\(483\) 0 0
\(484\) 3.29162e13 0.0563326
\(485\) −5.19687e13 −0.0879350
\(486\) 0 0
\(487\) 3.77139e14 0.623867 0.311933 0.950104i \(-0.399023\pi\)
0.311933 + 0.950104i \(0.399023\pi\)
\(488\) 6.09792e14 0.997408
\(489\) 0 0
\(490\) 2.79732e14 0.447367
\(491\) 3.71374e13 0.0587305 0.0293652 0.999569i \(-0.490651\pi\)
0.0293652 + 0.999569i \(0.490651\pi\)
\(492\) 0 0
\(493\) −6.75253e13 −0.104426
\(494\) 3.09667e14 0.473583
\(495\) 0 0
\(496\) −1.10079e13 −0.0164648
\(497\) 5.31222e14 0.785806
\(498\) 0 0
\(499\) 2.72085e14 0.393688 0.196844 0.980435i \(-0.436931\pi\)
0.196844 + 0.980435i \(0.436931\pi\)
\(500\) −3.90519e13 −0.0558865
\(501\) 0 0
\(502\) 6.32060e14 0.884888
\(503\) −1.30904e15 −1.81272 −0.906358 0.422511i \(-0.861149\pi\)
−0.906358 + 0.422511i \(0.861149\pi\)
\(504\) 0 0
\(505\) 1.65702e14 0.224505
\(506\) 6.81606e14 0.913494
\(507\) 0 0
\(508\) −1.50757e14 −0.197710
\(509\) −1.41934e15 −1.84135 −0.920677 0.390326i \(-0.872362\pi\)
−0.920677 + 0.390326i \(0.872362\pi\)
\(510\) 0 0
\(511\) 4.58722e14 0.582418
\(512\) 2.42674e13 0.0304817
\(513\) 0 0
\(514\) −1.69939e14 −0.208928
\(515\) 3.13865e12 0.00381771
\(516\) 0 0
\(517\) −6.08626e14 −0.724690
\(518\) −1.25047e15 −1.47319
\(519\) 0 0
\(520\) −5.34748e14 −0.616780
\(521\) 5.15525e14 0.588359 0.294180 0.955750i \(-0.404954\pi\)
0.294180 + 0.955750i \(0.404954\pi\)
\(522\) 0 0
\(523\) 1.15496e15 1.29064 0.645322 0.763911i \(-0.276723\pi\)
0.645322 + 0.763911i \(0.276723\pi\)
\(524\) 5.89008e14 0.651328
\(525\) 0 0
\(526\) 9.01935e14 0.976683
\(527\) 1.02393e15 1.09727
\(528\) 0 0
\(529\) 1.37648e15 1.44465
\(530\) −1.05957e14 −0.110055
\(531\) 0 0
\(532\) 5.56038e14 0.565706
\(533\) 1.02771e15 1.03483
\(534\) 0 0
\(535\) 5.16367e14 0.509346
\(536\) −1.53358e15 −1.49727
\(537\) 0 0
\(538\) −1.01721e15 −0.972988
\(539\) 1.64534e15 1.55782
\(540\) 0 0
\(541\) −1.08911e15 −1.01038 −0.505190 0.863008i \(-0.668578\pi\)
−0.505190 + 0.863008i \(0.668578\pi\)
\(542\) 5.19347e14 0.476937
\(543\) 0 0
\(544\) −1.13392e15 −1.02044
\(545\) 2.20161e14 0.196137
\(546\) 0 0
\(547\) 9.36391e14 0.817574 0.408787 0.912630i \(-0.365952\pi\)
0.408787 + 0.912630i \(0.365952\pi\)
\(548\) −7.42754e14 −0.642025
\(549\) 0 0
\(550\) 1.37918e14 0.116850
\(551\) 6.83784e13 0.0573569
\(552\) 0 0
\(553\) −1.78636e15 −1.46886
\(554\) −8.40010e14 −0.683881
\(555\) 0 0
\(556\) −8.89163e14 −0.709692
\(557\) 3.48191e14 0.275178 0.137589 0.990489i \(-0.456065\pi\)
0.137589 + 0.990489i \(0.456065\pi\)
\(558\) 0 0
\(559\) 2.82182e15 2.18658
\(560\) −1.44160e13 −0.0110614
\(561\) 0 0
\(562\) −1.36794e15 −1.02924
\(563\) −8.78985e14 −0.654916 −0.327458 0.944866i \(-0.606192\pi\)
−0.327458 + 0.944866i \(0.606192\pi\)
\(564\) 0 0
\(565\) −6.48332e14 −0.473730
\(566\) −1.51103e14 −0.109341
\(567\) 0 0
\(568\) 6.79067e14 0.481944
\(569\) 1.45202e14 0.102060 0.0510299 0.998697i \(-0.483750\pi\)
0.0510299 + 0.998697i \(0.483750\pi\)
\(570\) 0 0
\(571\) −1.99915e15 −1.37831 −0.689156 0.724613i \(-0.742019\pi\)
−0.689156 + 0.724613i \(0.742019\pi\)
\(572\) −1.20953e15 −0.825921
\(573\) 0 0
\(574\) −1.10802e15 −0.742216
\(575\) 4.71315e14 0.312708
\(576\) 0 0
\(577\) −7.69862e13 −0.0501125 −0.0250562 0.999686i \(-0.507976\pi\)
−0.0250562 + 0.999686i \(0.507976\pi\)
\(578\) 3.02712e13 0.0195176
\(579\) 0 0
\(580\) −4.54075e13 −0.0287259
\(581\) 2.59345e15 1.62521
\(582\) 0 0
\(583\) −6.23221e14 −0.383235
\(584\) 5.86390e14 0.357204
\(585\) 0 0
\(586\) −1.34661e15 −0.805019
\(587\) −8.86073e14 −0.524759 −0.262379 0.964965i \(-0.584507\pi\)
−0.262379 + 0.964965i \(0.584507\pi\)
\(588\) 0 0
\(589\) −1.03687e15 −0.602685
\(590\) 5.05559e14 0.291129
\(591\) 0 0
\(592\) 3.99694e13 0.0225922
\(593\) −9.32426e14 −0.522172 −0.261086 0.965316i \(-0.584081\pi\)
−0.261086 + 0.965316i \(0.584081\pi\)
\(594\) 0 0
\(595\) 1.34094e15 0.737169
\(596\) −1.44280e14 −0.0785872
\(597\) 0 0
\(598\) 2.48183e15 1.32714
\(599\) −1.16299e15 −0.616208 −0.308104 0.951353i \(-0.599695\pi\)
−0.308104 + 0.951353i \(0.599695\pi\)
\(600\) 0 0
\(601\) −2.63081e15 −1.36861 −0.684306 0.729195i \(-0.739895\pi\)
−0.684306 + 0.729195i \(0.739895\pi\)
\(602\) −3.04233e15 −1.56829
\(603\) 0 0
\(604\) −3.14465e14 −0.159173
\(605\) −8.03836e13 −0.0403193
\(606\) 0 0
\(607\) 1.56499e14 0.0770857 0.0385429 0.999257i \(-0.487728\pi\)
0.0385429 + 0.999257i \(0.487728\pi\)
\(608\) 1.14825e15 0.560487
\(609\) 0 0
\(610\) −5.72656e14 −0.274524
\(611\) −2.21610e15 −1.05284
\(612\) 0 0
\(613\) −1.63056e15 −0.760859 −0.380429 0.924810i \(-0.624224\pi\)
−0.380429 + 0.924810i \(0.624224\pi\)
\(614\) −1.85290e15 −0.856890
\(615\) 0 0
\(616\) 3.39109e15 1.54044
\(617\) −3.55060e15 −1.59858 −0.799289 0.600947i \(-0.794790\pi\)
−0.799289 + 0.600947i \(0.794790\pi\)
\(618\) 0 0
\(619\) −7.99938e14 −0.353800 −0.176900 0.984229i \(-0.556607\pi\)
−0.176900 + 0.984229i \(0.556607\pi\)
\(620\) 6.88547e14 0.301842
\(621\) 0 0
\(622\) −2.01363e15 −0.867228
\(623\) 5.39512e15 2.30312
\(624\) 0 0
\(625\) 9.53674e13 0.0400000
\(626\) 1.74059e15 0.723664
\(627\) 0 0
\(628\) 7.46443e14 0.304943
\(629\) −3.71786e15 −1.50562
\(630\) 0 0
\(631\) 3.38323e14 0.134639 0.0673194 0.997731i \(-0.478555\pi\)
0.0673194 + 0.997731i \(0.478555\pi\)
\(632\) −2.28353e15 −0.900870
\(633\) 0 0
\(634\) 1.16457e15 0.451520
\(635\) 3.68160e14 0.141508
\(636\) 0 0
\(637\) 5.99095e15 2.26323
\(638\) 1.60364e14 0.0600613
\(639\) 0 0
\(640\) −7.73849e14 −0.284883
\(641\) −2.78171e15 −1.01529 −0.507647 0.861565i \(-0.669485\pi\)
−0.507647 + 0.861565i \(0.669485\pi\)
\(642\) 0 0
\(643\) −1.37901e15 −0.494774 −0.247387 0.968917i \(-0.579572\pi\)
−0.247387 + 0.968917i \(0.579572\pi\)
\(644\) 4.45639e15 1.58530
\(645\) 0 0
\(646\) −9.92642e14 −0.347147
\(647\) 4.51705e15 1.56632 0.783162 0.621818i \(-0.213606\pi\)
0.783162 + 0.621818i \(0.213606\pi\)
\(648\) 0 0
\(649\) 2.97362e15 1.01377
\(650\) 5.02182e14 0.169761
\(651\) 0 0
\(652\) −3.40133e15 −1.13054
\(653\) 4.67633e15 1.54128 0.770642 0.637268i \(-0.219936\pi\)
0.770642 + 0.637268i \(0.219936\pi\)
\(654\) 0 0
\(655\) −1.43840e15 −0.466179
\(656\) 3.54162e13 0.0113823
\(657\) 0 0
\(658\) 2.38927e15 0.755133
\(659\) 2.44697e15 0.766935 0.383468 0.923554i \(-0.374730\pi\)
0.383468 + 0.923554i \(0.374730\pi\)
\(660\) 0 0
\(661\) −1.00863e15 −0.310902 −0.155451 0.987844i \(-0.549683\pi\)
−0.155451 + 0.987844i \(0.549683\pi\)
\(662\) 3.77906e15 1.15522
\(663\) 0 0
\(664\) 3.31523e15 0.996758
\(665\) −1.35789e15 −0.404896
\(666\) 0 0
\(667\) 5.48022e14 0.160733
\(668\) −2.15071e15 −0.625620
\(669\) 0 0
\(670\) 1.44019e15 0.412105
\(671\) −3.36828e15 −0.955948
\(672\) 0 0
\(673\) 3.14110e15 0.877000 0.438500 0.898731i \(-0.355510\pi\)
0.438500 + 0.898731i \(0.355510\pi\)
\(674\) 2.75555e15 0.763096
\(675\) 0 0
\(676\) −2.11075e15 −0.575081
\(677\) 1.77722e15 0.480291 0.240145 0.970737i \(-0.422805\pi\)
0.240145 + 0.970737i \(0.422805\pi\)
\(678\) 0 0
\(679\) 1.19997e15 0.319071
\(680\) 1.71414e15 0.452114
\(681\) 0 0
\(682\) −2.43172e15 −0.631102
\(683\) 4.74129e15 1.22063 0.610313 0.792160i \(-0.291044\pi\)
0.610313 + 0.792160i \(0.291044\pi\)
\(684\) 0 0
\(685\) 1.81386e15 0.459521
\(686\) −2.50419e15 −0.629340
\(687\) 0 0
\(688\) 9.72438e13 0.0240506
\(689\) −2.26924e15 −0.556770
\(690\) 0 0
\(691\) 2.44203e15 0.589688 0.294844 0.955545i \(-0.404732\pi\)
0.294844 + 0.955545i \(0.404732\pi\)
\(692\) −2.70018e15 −0.646858
\(693\) 0 0
\(694\) −2.20777e15 −0.520568
\(695\) 2.17140e15 0.507952
\(696\) 0 0
\(697\) −3.29433e15 −0.758555
\(698\) −6.46517e14 −0.147698
\(699\) 0 0
\(700\) 9.01720e14 0.202783
\(701\) −3.91146e15 −0.872749 −0.436375 0.899765i \(-0.643738\pi\)
−0.436375 + 0.899765i \(0.643738\pi\)
\(702\) 0 0
\(703\) 3.76483e15 0.826973
\(704\) 2.62621e15 0.572375
\(705\) 0 0
\(706\) 1.99596e15 0.428277
\(707\) −3.82611e15 −0.814613
\(708\) 0 0
\(709\) −7.52555e15 −1.57755 −0.788776 0.614681i \(-0.789285\pi\)
−0.788776 + 0.614681i \(0.789285\pi\)
\(710\) −6.37712e14 −0.132649
\(711\) 0 0
\(712\) 6.89665e15 1.41253
\(713\) −8.31004e15 −1.68893
\(714\) 0 0
\(715\) 2.95376e15 0.591142
\(716\) 1.11755e14 0.0221945
\(717\) 0 0
\(718\) −2.84665e14 −0.0556737
\(719\) −3.82053e15 −0.741507 −0.370753 0.928731i \(-0.620901\pi\)
−0.370753 + 0.928731i \(0.620901\pi\)
\(720\) 0 0
\(721\) −7.24724e13 −0.0138525
\(722\) −2.22382e15 −0.421838
\(723\) 0 0
\(724\) −3.32794e15 −0.621747
\(725\) 1.10888e14 0.0205602
\(726\) 0 0
\(727\) −7.15305e15 −1.30633 −0.653163 0.757217i \(-0.726558\pi\)
−0.653163 + 0.757217i \(0.726558\pi\)
\(728\) 1.23475e16 2.23798
\(729\) 0 0
\(730\) −5.50679e14 −0.0983158
\(731\) −9.04540e15 −1.60281
\(732\) 0 0
\(733\) 3.23209e15 0.564172 0.282086 0.959389i \(-0.408974\pi\)
0.282086 + 0.959389i \(0.408974\pi\)
\(734\) 2.85829e15 0.495197
\(735\) 0 0
\(736\) 9.20266e15 1.57067
\(737\) 8.47096e15 1.43503
\(738\) 0 0
\(739\) −7.04037e15 −1.17504 −0.587518 0.809211i \(-0.699895\pi\)
−0.587518 + 0.809211i \(0.699895\pi\)
\(740\) −2.50008e15 −0.414171
\(741\) 0 0
\(742\) 2.44657e15 0.399334
\(743\) −1.76769e15 −0.286396 −0.143198 0.989694i \(-0.545739\pi\)
−0.143198 + 0.989694i \(0.545739\pi\)
\(744\) 0 0
\(745\) 3.52342e14 0.0562477
\(746\) 3.60825e15 0.571785
\(747\) 0 0
\(748\) 3.87717e15 0.605420
\(749\) −1.19231e16 −1.84816
\(750\) 0 0
\(751\) −6.97015e15 −1.06469 −0.532344 0.846528i \(-0.678689\pi\)
−0.532344 + 0.846528i \(0.678689\pi\)
\(752\) −7.63698e13 −0.0115804
\(753\) 0 0
\(754\) 5.83912e14 0.0872579
\(755\) 7.67945e14 0.113926
\(756\) 0 0
\(757\) −1.10779e16 −1.61968 −0.809841 0.586650i \(-0.800447\pi\)
−0.809841 + 0.586650i \(0.800447\pi\)
\(758\) −1.73747e15 −0.252196
\(759\) 0 0
\(760\) −1.73580e15 −0.248328
\(761\) −1.03991e15 −0.147700 −0.0738500 0.997269i \(-0.523529\pi\)
−0.0738500 + 0.997269i \(0.523529\pi\)
\(762\) 0 0
\(763\) −5.08359e15 −0.711681
\(764\) −2.92472e15 −0.406510
\(765\) 0 0
\(766\) −2.94682e15 −0.403734
\(767\) 1.08274e16 1.47282
\(768\) 0 0
\(769\) −5.06484e15 −0.679158 −0.339579 0.940578i \(-0.610285\pi\)
−0.339579 + 0.940578i \(0.610285\pi\)
\(770\) −3.18458e15 −0.423987
\(771\) 0 0
\(772\) −3.98777e15 −0.523402
\(773\) 9.32127e15 1.21475 0.607376 0.794414i \(-0.292222\pi\)
0.607376 + 0.794414i \(0.292222\pi\)
\(774\) 0 0
\(775\) −1.68148e15 −0.216039
\(776\) 1.53394e15 0.195690
\(777\) 0 0
\(778\) 2.05769e15 0.258816
\(779\) 3.33596e15 0.416643
\(780\) 0 0
\(781\) −3.75093e15 −0.461911
\(782\) −7.95557e15 −0.972823
\(783\) 0 0
\(784\) 2.06456e14 0.0248937
\(785\) −1.82287e15 −0.218259
\(786\) 0 0
\(787\) 8.41800e15 0.993912 0.496956 0.867776i \(-0.334451\pi\)
0.496956 + 0.867776i \(0.334451\pi\)
\(788\) 4.71038e15 0.552283
\(789\) 0 0
\(790\) 2.14446e15 0.247953
\(791\) 1.49702e16 1.71892
\(792\) 0 0
\(793\) −1.22644e16 −1.38882
\(794\) −4.11774e15 −0.463069
\(795\) 0 0
\(796\) 2.81913e15 0.312676
\(797\) −1.32426e16 −1.45866 −0.729328 0.684164i \(-0.760167\pi\)
−0.729328 + 0.684164i \(0.760167\pi\)
\(798\) 0 0
\(799\) 7.10375e15 0.771757
\(800\) 1.86210e15 0.200913
\(801\) 0 0
\(802\) 2.55286e15 0.271686
\(803\) −3.23901e15 −0.342356
\(804\) 0 0
\(805\) −1.08828e16 −1.13466
\(806\) −8.85427e15 −0.916875
\(807\) 0 0
\(808\) −4.89097e15 −0.499611
\(809\) 2.72166e15 0.276132 0.138066 0.990423i \(-0.455911\pi\)
0.138066 + 0.990423i \(0.455911\pi\)
\(810\) 0 0
\(811\) 1.27431e16 1.27544 0.637722 0.770267i \(-0.279877\pi\)
0.637722 + 0.770267i \(0.279877\pi\)
\(812\) 1.04847e15 0.104232
\(813\) 0 0
\(814\) 8.82947e15 0.865965
\(815\) 8.30630e15 0.809171
\(816\) 0 0
\(817\) 9.15968e15 0.880358
\(818\) −8.96800e14 −0.0856155
\(819\) 0 0
\(820\) −2.21528e15 −0.208666
\(821\) −2.99243e15 −0.279986 −0.139993 0.990152i \(-0.544708\pi\)
−0.139993 + 0.990152i \(0.544708\pi\)
\(822\) 0 0
\(823\) 1.31983e16 1.21848 0.609239 0.792987i \(-0.291475\pi\)
0.609239 + 0.792987i \(0.291475\pi\)
\(824\) −9.26423e13 −0.00849591
\(825\) 0 0
\(826\) −1.16735e16 −1.05636
\(827\) 8.07855e15 0.726195 0.363097 0.931751i \(-0.381719\pi\)
0.363097 + 0.931751i \(0.381719\pi\)
\(828\) 0 0
\(829\) −9.24683e15 −0.820244 −0.410122 0.912031i \(-0.634514\pi\)
−0.410122 + 0.912031i \(0.634514\pi\)
\(830\) −3.11334e15 −0.274345
\(831\) 0 0
\(832\) 9.56245e15 0.831555
\(833\) −1.92041e16 −1.65900
\(834\) 0 0
\(835\) 5.25218e15 0.447779
\(836\) −3.92616e15 −0.332532
\(837\) 0 0
\(838\) 4.48370e15 0.374796
\(839\) 7.02444e14 0.0583339 0.0291669 0.999575i \(-0.490715\pi\)
0.0291669 + 0.999575i \(0.490715\pi\)
\(840\) 0 0
\(841\) −1.20716e16 −0.989432
\(842\) −3.17278e15 −0.258359
\(843\) 0 0
\(844\) 1.39094e16 1.11795
\(845\) 5.15459e15 0.411606
\(846\) 0 0
\(847\) 1.85608e15 0.146298
\(848\) −7.82012e13 −0.00612402
\(849\) 0 0
\(850\) −1.60975e15 −0.124439
\(851\) 3.01734e16 2.31746
\(852\) 0 0
\(853\) 4.32915e15 0.328234 0.164117 0.986441i \(-0.447523\pi\)
0.164117 + 0.986441i \(0.447523\pi\)
\(854\) 1.32228e16 0.996106
\(855\) 0 0
\(856\) −1.52414e16 −1.13350
\(857\) −2.43435e16 −1.79882 −0.899412 0.437103i \(-0.856005\pi\)
−0.899412 + 0.437103i \(0.856005\pi\)
\(858\) 0 0
\(859\) 1.46780e16 1.07079 0.535394 0.844603i \(-0.320163\pi\)
0.535394 + 0.844603i \(0.320163\pi\)
\(860\) −6.08260e15 −0.440908
\(861\) 0 0
\(862\) −2.80106e15 −0.200462
\(863\) −2.68085e16 −1.90640 −0.953199 0.302342i \(-0.902232\pi\)
−0.953199 + 0.302342i \(0.902232\pi\)
\(864\) 0 0
\(865\) 6.59403e15 0.462980
\(866\) 3.37724e15 0.235621
\(867\) 0 0
\(868\) −1.58988e16 −1.09523
\(869\) 1.26134e16 0.863422
\(870\) 0 0
\(871\) 3.08441e16 2.08484
\(872\) −6.49841e15 −0.436482
\(873\) 0 0
\(874\) 8.05608e15 0.534332
\(875\) −2.20206e15 −0.145140
\(876\) 0 0
\(877\) 1.33110e16 0.866386 0.433193 0.901301i \(-0.357387\pi\)
0.433193 + 0.901301i \(0.357387\pi\)
\(878\) 7.92035e15 0.512300
\(879\) 0 0
\(880\) 1.01791e14 0.00650209
\(881\) 1.89533e16 1.20314 0.601570 0.798820i \(-0.294542\pi\)
0.601570 + 0.798820i \(0.294542\pi\)
\(882\) 0 0
\(883\) −3.10076e15 −0.194395 −0.0971975 0.995265i \(-0.530988\pi\)
−0.0971975 + 0.995265i \(0.530988\pi\)
\(884\) 1.41174e16 0.879563
\(885\) 0 0
\(886\) −1.33744e16 −0.822980
\(887\) 2.17069e16 1.32745 0.663723 0.747978i \(-0.268975\pi\)
0.663723 + 0.747978i \(0.268975\pi\)
\(888\) 0 0
\(889\) −8.50094e15 −0.513461
\(890\) −6.47665e15 −0.388781
\(891\) 0 0
\(892\) −1.26616e16 −0.750726
\(893\) −7.19350e15 −0.423894
\(894\) 0 0
\(895\) −2.72913e14 −0.0158854
\(896\) 1.78684e16 1.03369
\(897\) 0 0
\(898\) −1.90423e16 −1.08818
\(899\) −1.95514e15 −0.111045
\(900\) 0 0
\(901\) 7.27411e15 0.408125
\(902\) 7.82365e15 0.436288
\(903\) 0 0
\(904\) 1.91366e16 1.05424
\(905\) 8.12707e15 0.445007
\(906\) 0 0
\(907\) −7.15520e15 −0.387063 −0.193532 0.981094i \(-0.561994\pi\)
−0.193532 + 0.981094i \(0.561994\pi\)
\(908\) 6.94761e15 0.373562
\(909\) 0 0
\(910\) −1.15955e16 −0.615975
\(911\) −2.19413e16 −1.15854 −0.579270 0.815135i \(-0.696662\pi\)
−0.579270 + 0.815135i \(0.696662\pi\)
\(912\) 0 0
\(913\) −1.83122e16 −0.955325
\(914\) −5.95252e15 −0.308672
\(915\) 0 0
\(916\) −2.78153e15 −0.142514
\(917\) 3.32131e16 1.69152
\(918\) 0 0
\(919\) −3.69170e15 −0.185777 −0.0928884 0.995677i \(-0.529610\pi\)
−0.0928884 + 0.995677i \(0.529610\pi\)
\(920\) −1.39116e16 −0.695898
\(921\) 0 0
\(922\) 8.92906e15 0.441353
\(923\) −1.36577e16 −0.671071
\(924\) 0 0
\(925\) 6.10538e15 0.296438
\(926\) 2.44268e15 0.117898
\(927\) 0 0
\(928\) 2.16515e15 0.103270
\(929\) −2.85838e16 −1.35530 −0.677648 0.735387i \(-0.737000\pi\)
−0.677648 + 0.735387i \(0.737000\pi\)
\(930\) 0 0
\(931\) 1.94467e16 0.911221
\(932\) −2.53537e16 −1.18101
\(933\) 0 0
\(934\) −1.07203e16 −0.493512
\(935\) −9.46833e15 −0.433321
\(936\) 0 0
\(937\) 1.92375e16 0.870125 0.435062 0.900400i \(-0.356726\pi\)
0.435062 + 0.900400i \(0.356726\pi\)
\(938\) −3.32544e16 −1.49532
\(939\) 0 0
\(940\) 4.77693e15 0.212298
\(941\) 2.64255e16 1.16756 0.583781 0.811911i \(-0.301573\pi\)
0.583781 + 0.811911i \(0.301573\pi\)
\(942\) 0 0
\(943\) 2.67361e16 1.16757
\(944\) 3.73128e14 0.0161999
\(945\) 0 0
\(946\) 2.14817e16 0.921867
\(947\) 1.92888e16 0.822961 0.411481 0.911418i \(-0.365012\pi\)
0.411481 + 0.911418i \(0.365012\pi\)
\(948\) 0 0
\(949\) −1.17937e16 −0.497379
\(950\) 1.63009e15 0.0683490
\(951\) 0 0
\(952\) −3.95801e16 −1.64049
\(953\) −1.47724e16 −0.608750 −0.304375 0.952552i \(-0.598448\pi\)
−0.304375 + 0.952552i \(0.598448\pi\)
\(954\) 0 0
\(955\) 7.14238e15 0.290954
\(956\) 1.32389e15 0.0536210
\(957\) 0 0
\(958\) 1.63022e16 0.652735
\(959\) −4.18826e16 −1.66737
\(960\) 0 0
\(961\) 4.23870e15 0.166822
\(962\) 3.21495e16 1.25809
\(963\) 0 0
\(964\) −1.74137e16 −0.673699
\(965\) 9.73843e15 0.374618
\(966\) 0 0
\(967\) −6.09293e15 −0.231729 −0.115865 0.993265i \(-0.536964\pi\)
−0.115865 + 0.993265i \(0.536964\pi\)
\(968\) 2.37265e15 0.0897263
\(969\) 0 0
\(970\) −1.44052e15 −0.0538612
\(971\) −2.81975e16 −1.04835 −0.524174 0.851611i \(-0.675626\pi\)
−0.524174 + 0.851611i \(0.675626\pi\)
\(972\) 0 0
\(973\) −5.01383e16 −1.84310
\(974\) 1.04539e16 0.382125
\(975\) 0 0
\(976\) −4.22649e14 −0.0152759
\(977\) 1.84959e16 0.664745 0.332372 0.943148i \(-0.392151\pi\)
0.332372 + 0.943148i \(0.392151\pi\)
\(978\) 0 0
\(979\) −3.80947e16 −1.35382
\(980\) −1.29138e16 −0.456365
\(981\) 0 0
\(982\) 1.02942e15 0.0359731
\(983\) 2.21617e16 0.770121 0.385060 0.922891i \(-0.374181\pi\)
0.385060 + 0.922891i \(0.374181\pi\)
\(984\) 0 0
\(985\) −1.15031e16 −0.395289
\(986\) −1.87174e15 −0.0639621
\(987\) 0 0
\(988\) −1.42958e16 −0.483108
\(989\) 7.34106e16 2.46706
\(990\) 0 0
\(991\) 7.87374e15 0.261683 0.130842 0.991403i \(-0.458232\pi\)
0.130842 + 0.991403i \(0.458232\pi\)
\(992\) −3.28317e16 −1.08512
\(993\) 0 0
\(994\) 1.47250e16 0.481315
\(995\) −6.88453e15 −0.223793
\(996\) 0 0
\(997\) −6.16649e15 −0.198251 −0.0991254 0.995075i \(-0.531604\pi\)
−0.0991254 + 0.995075i \(0.531604\pi\)
\(998\) 7.54196e15 0.241138
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 45.12.a.c.1.2 2
3.2 odd 2 15.12.a.c.1.1 2
5.2 odd 4 225.12.b.i.199.4 4
5.3 odd 4 225.12.b.i.199.1 4
5.4 even 2 225.12.a.i.1.1 2
12.11 even 2 240.12.a.m.1.2 2
15.2 even 4 75.12.b.d.49.1 4
15.8 even 4 75.12.b.d.49.4 4
15.14 odd 2 75.12.a.c.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.12.a.c.1.1 2 3.2 odd 2
45.12.a.c.1.2 2 1.1 even 1 trivial
75.12.a.c.1.2 2 15.14 odd 2
75.12.b.d.49.1 4 15.2 even 4
75.12.b.d.49.4 4 15.8 even 4
225.12.a.i.1.1 2 5.4 even 2
225.12.b.i.199.1 4 5.3 odd 4
225.12.b.i.199.4 4 5.2 odd 4
240.12.a.m.1.2 2 12.11 even 2