Properties

Label 45.12.a.c.1.1
Level $45$
Weight $12$
Character 45.1
Self dual yes
Analytic conductor $34.575$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,12,Mod(1,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.1");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 45.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.5754431252\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1801}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 450 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 15)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(21.7191\) of defining polynomial
Character \(\chi\) \(=\) 45.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-14.7191 q^{2} -1831.35 q^{4} +3125.00 q^{5} +79941.2 q^{7} +57100.5 q^{8} -45997.2 q^{10} -805067. q^{11} -1.19767e6 q^{13} -1.17666e6 q^{14} +2.91013e6 q^{16} -2.63319e6 q^{17} +1.16061e7 q^{19} -5.72296e6 q^{20} +1.18499e7 q^{22} -1.84216e7 q^{23} +9.76562e6 q^{25} +1.76286e7 q^{26} -1.46400e8 q^{28} +1.90527e8 q^{29} +1.01127e8 q^{31} -1.59776e8 q^{32} +3.87581e7 q^{34} +2.49816e8 q^{35} +8.06675e7 q^{37} -1.70831e8 q^{38} +1.78439e8 q^{40} -2.26316e8 q^{41} +1.67149e9 q^{43} +1.47436e9 q^{44} +2.71150e8 q^{46} -8.58507e8 q^{47} +4.41327e9 q^{49} -1.43741e8 q^{50} +2.19335e9 q^{52} +3.52750e9 q^{53} -2.51583e9 q^{55} +4.56468e9 q^{56} -2.80438e9 q^{58} -4.35760e9 q^{59} -1.65393e9 q^{61} -1.48849e9 q^{62} -3.60819e9 q^{64} -3.74272e9 q^{65} +7.58610e9 q^{67} +4.82228e9 q^{68} -3.67707e9 q^{70} +2.75809e10 q^{71} +3.22368e10 q^{73} -1.18735e9 q^{74} -2.12548e10 q^{76} -6.43580e10 q^{77} -2.43149e9 q^{79} +9.09417e9 q^{80} +3.33116e9 q^{82} -1.20729e10 q^{83} -8.22871e9 q^{85} -2.46028e10 q^{86} -4.59697e10 q^{88} -4.44073e9 q^{89} -9.57433e10 q^{91} +3.37364e10 q^{92} +1.26364e10 q^{94} +3.62690e10 q^{95} -2.04453e10 q^{97} -6.49594e10 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 13 q^{2} - 3111 q^{4} + 6250 q^{5} + 7784 q^{7} - 35139 q^{8} + 40625 q^{10} - 295568 q^{11} + 657492 q^{13} - 3176796 q^{14} + 2974065 q^{16} - 8579948 q^{17} + 17627976 q^{19} - 9721875 q^{20} + 25972696 q^{22}+ \cdots + 24554976677 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −14.7191 −0.325249 −0.162625 0.986688i \(-0.551996\pi\)
−0.162625 + 0.986688i \(0.551996\pi\)
\(3\) 0 0
\(4\) −1831.35 −0.894213
\(5\) 3125.00 0.447214
\(6\) 0 0
\(7\) 79941.2 1.79776 0.898880 0.438195i \(-0.144382\pi\)
0.898880 + 0.438195i \(0.144382\pi\)
\(8\) 57100.5 0.616091
\(9\) 0 0
\(10\) −45997.2 −0.145456
\(11\) −805067. −1.50720 −0.753602 0.657331i \(-0.771685\pi\)
−0.753602 + 0.657331i \(0.771685\pi\)
\(12\) 0 0
\(13\) −1.19767e6 −0.894641 −0.447321 0.894374i \(-0.647622\pi\)
−0.447321 + 0.894374i \(0.647622\pi\)
\(14\) −1.17666e6 −0.584720
\(15\) 0 0
\(16\) 2.91013e6 0.693830
\(17\) −2.63319e6 −0.449793 −0.224896 0.974383i \(-0.572204\pi\)
−0.224896 + 0.974383i \(0.572204\pi\)
\(18\) 0 0
\(19\) 1.16061e7 1.07533 0.537664 0.843159i \(-0.319307\pi\)
0.537664 + 0.843159i \(0.319307\pi\)
\(20\) −5.72296e6 −0.399904
\(21\) 0 0
\(22\) 1.18499e7 0.490217
\(23\) −1.84216e7 −0.596794 −0.298397 0.954442i \(-0.596452\pi\)
−0.298397 + 0.954442i \(0.596452\pi\)
\(24\) 0 0
\(25\) 9.76562e6 0.200000
\(26\) 1.76286e7 0.290981
\(27\) 0 0
\(28\) −1.46400e8 −1.60758
\(29\) 1.90527e8 1.72491 0.862457 0.506130i \(-0.168924\pi\)
0.862457 + 0.506130i \(0.168924\pi\)
\(30\) 0 0
\(31\) 1.01127e8 0.634419 0.317209 0.948356i \(-0.397254\pi\)
0.317209 + 0.948356i \(0.397254\pi\)
\(32\) −1.59776e8 −0.841759
\(33\) 0 0
\(34\) 3.87581e7 0.146295
\(35\) 2.49816e8 0.803983
\(36\) 0 0
\(37\) 8.06675e7 0.191245 0.0956223 0.995418i \(-0.469516\pi\)
0.0956223 + 0.995418i \(0.469516\pi\)
\(38\) −1.70831e8 −0.349749
\(39\) 0 0
\(40\) 1.78439e8 0.275524
\(41\) −2.26316e8 −0.305073 −0.152537 0.988298i \(-0.548744\pi\)
−0.152537 + 0.988298i \(0.548744\pi\)
\(42\) 0 0
\(43\) 1.67149e9 1.73391 0.866956 0.498385i \(-0.166073\pi\)
0.866956 + 0.498385i \(0.166073\pi\)
\(44\) 1.47436e9 1.34776
\(45\) 0 0
\(46\) 2.71150e8 0.194107
\(47\) −8.58507e8 −0.546016 −0.273008 0.962012i \(-0.588019\pi\)
−0.273008 + 0.962012i \(0.588019\pi\)
\(48\) 0 0
\(49\) 4.41327e9 2.23194
\(50\) −1.43741e8 −0.0650498
\(51\) 0 0
\(52\) 2.19335e9 0.800000
\(53\) 3.52750e9 1.15864 0.579322 0.815099i \(-0.303317\pi\)
0.579322 + 0.815099i \(0.303317\pi\)
\(54\) 0 0
\(55\) −2.51583e9 −0.674042
\(56\) 4.56468e9 1.10758
\(57\) 0 0
\(58\) −2.80438e9 −0.561027
\(59\) −4.35760e9 −0.793527 −0.396763 0.917921i \(-0.629867\pi\)
−0.396763 + 0.917921i \(0.629867\pi\)
\(60\) 0 0
\(61\) −1.65393e9 −0.250727 −0.125364 0.992111i \(-0.540010\pi\)
−0.125364 + 0.992111i \(0.540010\pi\)
\(62\) −1.48849e9 −0.206344
\(63\) 0 0
\(64\) −3.60819e9 −0.420049
\(65\) −3.74272e9 −0.400096
\(66\) 0 0
\(67\) 7.58610e9 0.686447 0.343224 0.939254i \(-0.388481\pi\)
0.343224 + 0.939254i \(0.388481\pi\)
\(68\) 4.82228e9 0.402211
\(69\) 0 0
\(70\) −3.67707e9 −0.261495
\(71\) 2.75809e10 1.81421 0.907104 0.420905i \(-0.138288\pi\)
0.907104 + 0.420905i \(0.138288\pi\)
\(72\) 0 0
\(73\) 3.22368e10 1.82002 0.910011 0.414584i \(-0.136073\pi\)
0.910011 + 0.414584i \(0.136073\pi\)
\(74\) −1.18735e9 −0.0622022
\(75\) 0 0
\(76\) −2.12548e10 −0.961572
\(77\) −6.43580e10 −2.70959
\(78\) 0 0
\(79\) −2.43149e9 −0.0889046 −0.0444523 0.999012i \(-0.514154\pi\)
−0.0444523 + 0.999012i \(0.514154\pi\)
\(80\) 9.09417e9 0.310290
\(81\) 0 0
\(82\) 3.33116e9 0.0992247
\(83\) −1.20729e10 −0.336421 −0.168210 0.985751i \(-0.553799\pi\)
−0.168210 + 0.985751i \(0.553799\pi\)
\(84\) 0 0
\(85\) −8.22871e9 −0.201154
\(86\) −2.46028e10 −0.563953
\(87\) 0 0
\(88\) −4.59697e10 −0.928575
\(89\) −4.44073e9 −0.0842964 −0.0421482 0.999111i \(-0.513420\pi\)
−0.0421482 + 0.999111i \(0.513420\pi\)
\(90\) 0 0
\(91\) −9.57433e10 −1.60835
\(92\) 3.37364e10 0.533661
\(93\) 0 0
\(94\) 1.26364e10 0.177591
\(95\) 3.62690e10 0.480901
\(96\) 0 0
\(97\) −2.04453e10 −0.241740 −0.120870 0.992668i \(-0.538568\pi\)
−0.120870 + 0.992668i \(0.538568\pi\)
\(98\) −6.49594e10 −0.725937
\(99\) 0 0
\(100\) −1.78843e10 −0.178843
\(101\) 1.55947e11 1.47642 0.738209 0.674572i \(-0.235672\pi\)
0.738209 + 0.674572i \(0.235672\pi\)
\(102\) 0 0
\(103\) −5.10325e10 −0.433752 −0.216876 0.976199i \(-0.569587\pi\)
−0.216876 + 0.976199i \(0.569587\pi\)
\(104\) −6.83876e10 −0.551181
\(105\) 0 0
\(106\) −5.19217e10 −0.376848
\(107\) −1.06665e10 −0.0735207 −0.0367603 0.999324i \(-0.511704\pi\)
−0.0367603 + 0.999324i \(0.511704\pi\)
\(108\) 0 0
\(109\) −3.12513e10 −0.194546 −0.0972729 0.995258i \(-0.531012\pi\)
−0.0972729 + 0.995258i \(0.531012\pi\)
\(110\) 3.70308e10 0.219232
\(111\) 0 0
\(112\) 2.32640e11 1.24734
\(113\) 3.96346e10 0.202369 0.101184 0.994868i \(-0.467737\pi\)
0.101184 + 0.994868i \(0.467737\pi\)
\(114\) 0 0
\(115\) −5.75676e10 −0.266895
\(116\) −3.48921e11 −1.54244
\(117\) 0 0
\(118\) 6.41400e10 0.258094
\(119\) −2.10500e11 −0.808620
\(120\) 0 0
\(121\) 3.62821e11 1.27166
\(122\) 2.43443e10 0.0815489
\(123\) 0 0
\(124\) −1.85198e11 −0.567305
\(125\) 3.05176e10 0.0894427
\(126\) 0 0
\(127\) 2.63460e10 0.0707611 0.0353806 0.999374i \(-0.488736\pi\)
0.0353806 + 0.999374i \(0.488736\pi\)
\(128\) 3.80331e11 0.978379
\(129\) 0 0
\(130\) 5.50895e10 0.130131
\(131\) 2.19917e11 0.498044 0.249022 0.968498i \(-0.419891\pi\)
0.249022 + 0.968498i \(0.419891\pi\)
\(132\) 0 0
\(133\) 9.27805e11 1.93318
\(134\) −1.11661e11 −0.223266
\(135\) 0 0
\(136\) −1.50356e11 −0.277113
\(137\) 5.54041e11 0.980795 0.490398 0.871499i \(-0.336852\pi\)
0.490398 + 0.871499i \(0.336852\pi\)
\(138\) 0 0
\(139\) −6.17540e11 −1.00945 −0.504723 0.863281i \(-0.668406\pi\)
−0.504723 + 0.863281i \(0.668406\pi\)
\(140\) −4.57501e11 −0.718932
\(141\) 0 0
\(142\) −4.05966e11 −0.590070
\(143\) 9.64205e11 1.34841
\(144\) 0 0
\(145\) 5.95397e11 0.771405
\(146\) −4.74497e11 −0.591961
\(147\) 0 0
\(148\) −1.47730e11 −0.171013
\(149\) 6.68742e11 0.745992 0.372996 0.927833i \(-0.378330\pi\)
0.372996 + 0.927833i \(0.378330\pi\)
\(150\) 0 0
\(151\) 1.38243e12 1.43308 0.716541 0.697545i \(-0.245724\pi\)
0.716541 + 0.697545i \(0.245724\pi\)
\(152\) 6.62713e11 0.662500
\(153\) 0 0
\(154\) 9.47292e11 0.881292
\(155\) 3.16020e11 0.283721
\(156\) 0 0
\(157\) −7.93661e11 −0.664029 −0.332014 0.943274i \(-0.607728\pi\)
−0.332014 + 0.943274i \(0.607728\pi\)
\(158\) 3.57894e10 0.0289161
\(159\) 0 0
\(160\) −4.99301e11 −0.376446
\(161\) −1.47265e12 −1.07289
\(162\) 0 0
\(163\) −4.67399e11 −0.318168 −0.159084 0.987265i \(-0.550854\pi\)
−0.159084 + 0.987265i \(0.550854\pi\)
\(164\) 4.14463e11 0.272800
\(165\) 0 0
\(166\) 1.77702e11 0.109421
\(167\) −2.87482e12 −1.71266 −0.856328 0.516432i \(-0.827260\pi\)
−0.856328 + 0.516432i \(0.827260\pi\)
\(168\) 0 0
\(169\) −3.57745e11 −0.199617
\(170\) 1.21119e11 0.0654250
\(171\) 0 0
\(172\) −3.06108e12 −1.55049
\(173\) −1.53085e12 −0.751068 −0.375534 0.926809i \(-0.622541\pi\)
−0.375534 + 0.926809i \(0.622541\pi\)
\(174\) 0 0
\(175\) 7.80676e11 0.359552
\(176\) −2.34285e12 −1.04574
\(177\) 0 0
\(178\) 6.53635e10 0.0274173
\(179\) 1.91337e12 0.778228 0.389114 0.921190i \(-0.372781\pi\)
0.389114 + 0.921190i \(0.372781\pi\)
\(180\) 0 0
\(181\) −1.70819e12 −0.653587 −0.326794 0.945096i \(-0.605968\pi\)
−0.326794 + 0.945096i \(0.605968\pi\)
\(182\) 1.40925e12 0.523115
\(183\) 0 0
\(184\) −1.05188e12 −0.367680
\(185\) 2.52086e11 0.0855272
\(186\) 0 0
\(187\) 2.11989e12 0.677930
\(188\) 1.57223e12 0.488255
\(189\) 0 0
\(190\) −5.33847e11 −0.156413
\(191\) −3.16020e12 −0.899562 −0.449781 0.893139i \(-0.648498\pi\)
−0.449781 + 0.893139i \(0.648498\pi\)
\(192\) 0 0
\(193\) 2.77296e12 0.745382 0.372691 0.927956i \(-0.378435\pi\)
0.372691 + 0.927956i \(0.378435\pi\)
\(194\) 3.00936e11 0.0786256
\(195\) 0 0
\(196\) −8.08224e12 −1.99583
\(197\) −3.86504e12 −0.928089 −0.464044 0.885812i \(-0.653602\pi\)
−0.464044 + 0.885812i \(0.653602\pi\)
\(198\) 0 0
\(199\) −1.01839e12 −0.231325 −0.115663 0.993289i \(-0.536899\pi\)
−0.115663 + 0.993289i \(0.536899\pi\)
\(200\) 5.57622e11 0.123218
\(201\) 0 0
\(202\) −2.29540e12 −0.480204
\(203\) 1.52310e13 3.10098
\(204\) 0 0
\(205\) −7.07237e11 −0.136433
\(206\) 7.51152e11 0.141078
\(207\) 0 0
\(208\) −3.48538e12 −0.620729
\(209\) −9.34367e12 −1.62074
\(210\) 0 0
\(211\) 2.05668e12 0.338543 0.169271 0.985569i \(-0.445859\pi\)
0.169271 + 0.985569i \(0.445859\pi\)
\(212\) −6.46009e12 −1.03608
\(213\) 0 0
\(214\) 1.57001e11 0.0239125
\(215\) 5.22340e12 0.775429
\(216\) 0 0
\(217\) 8.08418e12 1.14053
\(218\) 4.59990e11 0.0632759
\(219\) 0 0
\(220\) 4.60737e12 0.602737
\(221\) 3.15369e12 0.402403
\(222\) 0 0
\(223\) 9.99986e12 1.21428 0.607138 0.794597i \(-0.292318\pi\)
0.607138 + 0.794597i \(0.292318\pi\)
\(224\) −1.27727e13 −1.51328
\(225\) 0 0
\(226\) −5.83386e11 −0.0658202
\(227\) 6.77123e12 0.745634 0.372817 0.927905i \(-0.378392\pi\)
0.372817 + 0.927905i \(0.378392\pi\)
\(228\) 0 0
\(229\) 1.01933e13 1.06959 0.534796 0.844981i \(-0.320389\pi\)
0.534796 + 0.844981i \(0.320389\pi\)
\(230\) 8.47343e11 0.0868072
\(231\) 0 0
\(232\) 1.08792e13 1.06270
\(233\) −6.74446e12 −0.643412 −0.321706 0.946840i \(-0.604256\pi\)
−0.321706 + 0.946840i \(0.604256\pi\)
\(234\) 0 0
\(235\) −2.68283e12 −0.244186
\(236\) 7.98029e12 0.709582
\(237\) 0 0
\(238\) 3.09837e12 0.263003
\(239\) 1.76501e13 1.46406 0.732030 0.681272i \(-0.238573\pi\)
0.732030 + 0.681272i \(0.238573\pi\)
\(240\) 0 0
\(241\) −1.37662e13 −1.09074 −0.545369 0.838196i \(-0.683611\pi\)
−0.545369 + 0.838196i \(0.683611\pi\)
\(242\) −5.34039e12 −0.413608
\(243\) 0 0
\(244\) 3.02891e12 0.224204
\(245\) 1.37915e13 0.998154
\(246\) 0 0
\(247\) −1.39003e13 −0.962033
\(248\) 5.77438e12 0.390860
\(249\) 0 0
\(250\) −4.49191e11 −0.0290912
\(251\) −3.02252e13 −1.91498 −0.957490 0.288467i \(-0.906855\pi\)
−0.957490 + 0.288467i \(0.906855\pi\)
\(252\) 0 0
\(253\) 1.48306e13 0.899491
\(254\) −3.87790e11 −0.0230150
\(255\) 0 0
\(256\) 1.79144e12 0.101832
\(257\) −6.88263e12 −0.382933 −0.191466 0.981499i \(-0.561324\pi\)
−0.191466 + 0.981499i \(0.561324\pi\)
\(258\) 0 0
\(259\) 6.44866e12 0.343812
\(260\) 6.85423e12 0.357771
\(261\) 0 0
\(262\) −3.23698e12 −0.161988
\(263\) 3.29948e13 1.61692 0.808462 0.588549i \(-0.200301\pi\)
0.808462 + 0.588549i \(0.200301\pi\)
\(264\) 0 0
\(265\) 1.10235e13 0.518162
\(266\) −1.36564e13 −0.628765
\(267\) 0 0
\(268\) −1.38928e13 −0.613830
\(269\) 2.97478e13 1.28771 0.643855 0.765148i \(-0.277334\pi\)
0.643855 + 0.765148i \(0.277334\pi\)
\(270\) 0 0
\(271\) −4.30410e13 −1.78876 −0.894378 0.447312i \(-0.852381\pi\)
−0.894378 + 0.447312i \(0.852381\pi\)
\(272\) −7.66293e12 −0.312080
\(273\) 0 0
\(274\) −8.15498e12 −0.319003
\(275\) −7.86198e12 −0.301441
\(276\) 0 0
\(277\) 1.46706e13 0.540518 0.270259 0.962788i \(-0.412891\pi\)
0.270259 + 0.962788i \(0.412891\pi\)
\(278\) 9.08963e12 0.328322
\(279\) 0 0
\(280\) 1.42646e13 0.495327
\(281\) −4.18378e13 −1.42457 −0.712286 0.701890i \(-0.752340\pi\)
−0.712286 + 0.701890i \(0.752340\pi\)
\(282\) 0 0
\(283\) 2.34242e13 0.767078 0.383539 0.923525i \(-0.374705\pi\)
0.383539 + 0.923525i \(0.374705\pi\)
\(284\) −5.05102e13 −1.62229
\(285\) 0 0
\(286\) −1.41922e13 −0.438568
\(287\) −1.80920e13 −0.548448
\(288\) 0 0
\(289\) −2.73382e13 −0.797686
\(290\) −8.76370e12 −0.250899
\(291\) 0 0
\(292\) −5.90369e13 −1.62749
\(293\) 7.31258e12 0.197833 0.0989166 0.995096i \(-0.468462\pi\)
0.0989166 + 0.995096i \(0.468462\pi\)
\(294\) 0 0
\(295\) −1.36175e13 −0.354876
\(296\) 4.60616e12 0.117824
\(297\) 0 0
\(298\) −9.84328e12 −0.242633
\(299\) 2.20630e13 0.533917
\(300\) 0 0
\(301\) 1.33621e14 3.11716
\(302\) −2.03482e13 −0.466109
\(303\) 0 0
\(304\) 3.37752e13 0.746094
\(305\) −5.16852e12 −0.112129
\(306\) 0 0
\(307\) −5.37239e13 −1.12436 −0.562181 0.827014i \(-0.690038\pi\)
−0.562181 + 0.827014i \(0.690038\pi\)
\(308\) 1.17862e14 2.42295
\(309\) 0 0
\(310\) −4.65154e12 −0.0922799
\(311\) −5.41406e13 −1.05521 −0.527607 0.849489i \(-0.676911\pi\)
−0.527607 + 0.849489i \(0.676911\pi\)
\(312\) 0 0
\(313\) −4.29721e12 −0.0808524 −0.0404262 0.999183i \(-0.512872\pi\)
−0.0404262 + 0.999183i \(0.512872\pi\)
\(314\) 1.16820e13 0.215975
\(315\) 0 0
\(316\) 4.45291e12 0.0794996
\(317\) 2.81928e13 0.494666 0.247333 0.968931i \(-0.420446\pi\)
0.247333 + 0.968931i \(0.420446\pi\)
\(318\) 0 0
\(319\) −1.53387e14 −2.59980
\(320\) −1.12756e13 −0.187851
\(321\) 0 0
\(322\) 2.16760e13 0.348958
\(323\) −3.05610e13 −0.483675
\(324\) 0 0
\(325\) −1.16960e13 −0.178928
\(326\) 6.87969e12 0.103484
\(327\) 0 0
\(328\) −1.29227e13 −0.187953
\(329\) −6.86301e13 −0.981606
\(330\) 0 0
\(331\) −9.95469e13 −1.37713 −0.688563 0.725176i \(-0.741758\pi\)
−0.688563 + 0.725176i \(0.741758\pi\)
\(332\) 2.21097e13 0.300832
\(333\) 0 0
\(334\) 4.23148e13 0.557040
\(335\) 2.37066e13 0.306989
\(336\) 0 0
\(337\) −9.05175e13 −1.13440 −0.567202 0.823579i \(-0.691974\pi\)
−0.567202 + 0.823579i \(0.691974\pi\)
\(338\) 5.26568e12 0.0649251
\(339\) 0 0
\(340\) 1.50696e13 0.179874
\(341\) −8.14136e13 −0.956198
\(342\) 0 0
\(343\) 1.94733e14 2.21473
\(344\) 9.54428e13 1.06825
\(345\) 0 0
\(346\) 2.25327e13 0.244284
\(347\) 6.36892e13 0.679601 0.339801 0.940498i \(-0.389640\pi\)
0.339801 + 0.940498i \(0.389640\pi\)
\(348\) 0 0
\(349\) 7.08598e13 0.732588 0.366294 0.930499i \(-0.380626\pi\)
0.366294 + 0.930499i \(0.380626\pi\)
\(350\) −1.14908e13 −0.116944
\(351\) 0 0
\(352\) 1.28631e14 1.26870
\(353\) −6.62893e13 −0.643699 −0.321849 0.946791i \(-0.604304\pi\)
−0.321849 + 0.946791i \(0.604304\pi\)
\(354\) 0 0
\(355\) 8.61903e13 0.811339
\(356\) 8.13252e12 0.0753790
\(357\) 0 0
\(358\) −2.81630e13 −0.253118
\(359\) −6.80217e13 −0.602044 −0.301022 0.953617i \(-0.597328\pi\)
−0.301022 + 0.953617i \(0.597328\pi\)
\(360\) 0 0
\(361\) 1.82109e13 0.156330
\(362\) 2.51430e13 0.212579
\(363\) 0 0
\(364\) 1.75339e14 1.43821
\(365\) 1.00740e14 0.813939
\(366\) 0 0
\(367\) 2.19771e14 1.72309 0.861543 0.507685i \(-0.169499\pi\)
0.861543 + 0.507685i \(0.169499\pi\)
\(368\) −5.36094e13 −0.414074
\(369\) 0 0
\(370\) −3.71048e12 −0.0278177
\(371\) 2.81993e14 2.08296
\(372\) 0 0
\(373\) −1.67232e14 −1.19928 −0.599639 0.800271i \(-0.704689\pi\)
−0.599639 + 0.800271i \(0.704689\pi\)
\(374\) −3.12029e13 −0.220496
\(375\) 0 0
\(376\) −4.90212e13 −0.336396
\(377\) −2.28189e14 −1.54318
\(378\) 0 0
\(379\) −1.57778e14 −1.03641 −0.518205 0.855256i \(-0.673400\pi\)
−0.518205 + 0.855256i \(0.673400\pi\)
\(380\) −6.64212e13 −0.430028
\(381\) 0 0
\(382\) 4.65153e13 0.292582
\(383\) −5.49255e13 −0.340550 −0.170275 0.985397i \(-0.554466\pi\)
−0.170275 + 0.985397i \(0.554466\pi\)
\(384\) 0 0
\(385\) −2.01119e14 −1.21177
\(386\) −4.08155e13 −0.242435
\(387\) 0 0
\(388\) 3.74424e13 0.216167
\(389\) 2.32940e14 1.32593 0.662965 0.748650i \(-0.269298\pi\)
0.662965 + 0.748650i \(0.269298\pi\)
\(390\) 0 0
\(391\) 4.85076e13 0.268434
\(392\) 2.52000e14 1.37508
\(393\) 0 0
\(394\) 5.68899e13 0.301860
\(395\) −7.59842e12 −0.0397593
\(396\) 0 0
\(397\) −4.76134e13 −0.242316 −0.121158 0.992633i \(-0.538661\pi\)
−0.121158 + 0.992633i \(0.538661\pi\)
\(398\) 1.49898e13 0.0752383
\(399\) 0 0
\(400\) 2.84193e13 0.138766
\(401\) 2.99074e14 1.44040 0.720202 0.693764i \(-0.244049\pi\)
0.720202 + 0.693764i \(0.244049\pi\)
\(402\) 0 0
\(403\) −1.21116e14 −0.567577
\(404\) −2.85593e14 −1.32023
\(405\) 0 0
\(406\) −2.24186e14 −1.00859
\(407\) −6.49428e13 −0.288245
\(408\) 0 0
\(409\) −2.55879e14 −1.10550 −0.552748 0.833349i \(-0.686421\pi\)
−0.552748 + 0.833349i \(0.686421\pi\)
\(410\) 1.04099e13 0.0443747
\(411\) 0 0
\(412\) 9.34582e13 0.387867
\(413\) −3.48352e14 −1.42657
\(414\) 0 0
\(415\) −3.77279e13 −0.150452
\(416\) 1.91359e14 0.753072
\(417\) 0 0
\(418\) 1.37530e14 0.527144
\(419\) −2.21825e14 −0.839139 −0.419570 0.907723i \(-0.637819\pi\)
−0.419570 + 0.907723i \(0.637819\pi\)
\(420\) 0 0
\(421\) 9.78949e13 0.360752 0.180376 0.983598i \(-0.442269\pi\)
0.180376 + 0.983598i \(0.442269\pi\)
\(422\) −3.02725e13 −0.110111
\(423\) 0 0
\(424\) 2.01422e14 0.713831
\(425\) −2.57147e13 −0.0899586
\(426\) 0 0
\(427\) −1.32217e14 −0.450748
\(428\) 1.95340e13 0.0657432
\(429\) 0 0
\(430\) −7.68838e13 −0.252208
\(431\) −1.11415e14 −0.360842 −0.180421 0.983589i \(-0.557746\pi\)
−0.180421 + 0.983589i \(0.557746\pi\)
\(432\) 0 0
\(433\) −3.42045e14 −1.07994 −0.539970 0.841684i \(-0.681564\pi\)
−0.539970 + 0.841684i \(0.681564\pi\)
\(434\) −1.18992e14 −0.370957
\(435\) 0 0
\(436\) 5.72320e13 0.173965
\(437\) −2.13803e14 −0.641750
\(438\) 0 0
\(439\) 1.20947e14 0.354029 0.177015 0.984208i \(-0.443356\pi\)
0.177015 + 0.984208i \(0.443356\pi\)
\(440\) −1.43655e14 −0.415271
\(441\) 0 0
\(442\) −4.64195e13 −0.130881
\(443\) 1.27316e14 0.354539 0.177270 0.984162i \(-0.443274\pi\)
0.177270 + 0.984162i \(0.443274\pi\)
\(444\) 0 0
\(445\) −1.38773e13 −0.0376985
\(446\) −1.47189e14 −0.394942
\(447\) 0 0
\(448\) −2.88443e14 −0.755147
\(449\) 1.61837e14 0.418526 0.209263 0.977859i \(-0.432894\pi\)
0.209263 + 0.977859i \(0.432894\pi\)
\(450\) 0 0
\(451\) 1.82199e14 0.459807
\(452\) −7.25848e13 −0.180961
\(453\) 0 0
\(454\) −9.96664e13 −0.242517
\(455\) −2.99198e14 −0.719276
\(456\) 0 0
\(457\) −3.49165e14 −0.819391 −0.409696 0.912222i \(-0.634365\pi\)
−0.409696 + 0.912222i \(0.634365\pi\)
\(458\) −1.50036e14 −0.347884
\(459\) 0 0
\(460\) 1.05426e14 0.238661
\(461\) 4.49619e14 1.00575 0.502875 0.864359i \(-0.332276\pi\)
0.502875 + 0.864359i \(0.332276\pi\)
\(462\) 0 0
\(463\) 4.21098e13 0.0919787 0.0459894 0.998942i \(-0.485356\pi\)
0.0459894 + 0.998942i \(0.485356\pi\)
\(464\) 5.54459e14 1.19680
\(465\) 0 0
\(466\) 9.92723e13 0.209269
\(467\) 7.91358e13 0.164866 0.0824328 0.996597i \(-0.473731\pi\)
0.0824328 + 0.996597i \(0.473731\pi\)
\(468\) 0 0
\(469\) 6.06442e14 1.23407
\(470\) 3.94889e13 0.0794213
\(471\) 0 0
\(472\) −2.48821e14 −0.488885
\(473\) −1.34566e15 −2.61336
\(474\) 0 0
\(475\) 1.13341e14 0.215066
\(476\) 3.85499e14 0.723078
\(477\) 0 0
\(478\) −2.59794e14 −0.476184
\(479\) 9.62318e14 1.74371 0.871853 0.489768i \(-0.162919\pi\)
0.871853 + 0.489768i \(0.162919\pi\)
\(480\) 0 0
\(481\) −9.66132e13 −0.171095
\(482\) 2.02626e14 0.354762
\(483\) 0 0
\(484\) −6.64451e14 −1.13714
\(485\) −6.38914e13 −0.108109
\(486\) 0 0
\(487\) 4.57117e14 0.756168 0.378084 0.925771i \(-0.376583\pi\)
0.378084 + 0.925771i \(0.376583\pi\)
\(488\) −9.44399e13 −0.154471
\(489\) 0 0
\(490\) −2.02998e14 −0.324649
\(491\) −4.40122e14 −0.696025 −0.348013 0.937490i \(-0.613143\pi\)
−0.348013 + 0.937490i \(0.613143\pi\)
\(492\) 0 0
\(493\) −5.01693e14 −0.775854
\(494\) 2.04599e14 0.312900
\(495\) 0 0
\(496\) 2.94292e14 0.440179
\(497\) 2.20485e15 3.26151
\(498\) 0 0
\(499\) 6.36085e14 0.920369 0.460185 0.887823i \(-0.347783\pi\)
0.460185 + 0.887823i \(0.347783\pi\)
\(500\) −5.58883e13 −0.0799808
\(501\) 0 0
\(502\) 4.44888e14 0.622846
\(503\) 4.81639e12 0.00666957 0.00333478 0.999994i \(-0.498939\pi\)
0.00333478 + 0.999994i \(0.498939\pi\)
\(504\) 0 0
\(505\) 4.87334e14 0.660274
\(506\) −2.18294e14 −0.292559
\(507\) 0 0
\(508\) −4.82488e13 −0.0632755
\(509\) 5.73829e14 0.744449 0.372224 0.928143i \(-0.378595\pi\)
0.372224 + 0.928143i \(0.378595\pi\)
\(510\) 0 0
\(511\) 2.57705e15 3.27196
\(512\) −8.05287e14 −1.01150
\(513\) 0 0
\(514\) 1.01306e14 0.124548
\(515\) −1.59476e14 −0.193980
\(516\) 0 0
\(517\) 6.91155e14 0.822958
\(518\) −9.49185e13 −0.111825
\(519\) 0 0
\(520\) −2.13711e14 −0.246495
\(521\) −5.14705e14 −0.587422 −0.293711 0.955894i \(-0.594890\pi\)
−0.293711 + 0.955894i \(0.594890\pi\)
\(522\) 0 0
\(523\) 1.20146e15 1.34261 0.671304 0.741182i \(-0.265735\pi\)
0.671304 + 0.741182i \(0.265735\pi\)
\(524\) −4.02745e14 −0.445357
\(525\) 0 0
\(526\) −4.85654e14 −0.525903
\(527\) −2.66285e14 −0.285357
\(528\) 0 0
\(529\) −6.13454e14 −0.643836
\(530\) −1.62255e14 −0.168532
\(531\) 0 0
\(532\) −1.69913e15 −1.72868
\(533\) 2.71052e14 0.272931
\(534\) 0 0
\(535\) −3.33327e13 −0.0328795
\(536\) 4.33170e14 0.422914
\(537\) 0 0
\(538\) −4.37861e14 −0.418826
\(539\) −3.55298e15 −3.36399
\(540\) 0 0
\(541\) −1.89107e15 −1.75438 −0.877190 0.480143i \(-0.840585\pi\)
−0.877190 + 0.480143i \(0.840585\pi\)
\(542\) 6.33524e14 0.581791
\(543\) 0 0
\(544\) 4.20721e14 0.378617
\(545\) −9.76602e13 −0.0870035
\(546\) 0 0
\(547\) 1.37400e14 0.119966 0.0599830 0.998199i \(-0.480895\pi\)
0.0599830 + 0.998199i \(0.480895\pi\)
\(548\) −1.01464e15 −0.877040
\(549\) 0 0
\(550\) 1.15721e14 0.0980434
\(551\) 2.21127e15 1.85485
\(552\) 0 0
\(553\) −1.94377e14 −0.159829
\(554\) −2.15939e14 −0.175803
\(555\) 0 0
\(556\) 1.13093e15 0.902661
\(557\) 1.18622e15 0.937483 0.468742 0.883335i \(-0.344708\pi\)
0.468742 + 0.883335i \(0.344708\pi\)
\(558\) 0 0
\(559\) −2.00189e15 −1.55123
\(560\) 7.26999e14 0.557827
\(561\) 0 0
\(562\) 6.15815e14 0.463340
\(563\) 2.58208e15 1.92386 0.961929 0.273298i \(-0.0881146\pi\)
0.961929 + 0.273298i \(0.0881146\pi\)
\(564\) 0 0
\(565\) 1.23858e14 0.0905020
\(566\) −3.44783e14 −0.249491
\(567\) 0 0
\(568\) 1.57488e15 1.11772
\(569\) −6.86455e13 −0.0482497 −0.0241249 0.999709i \(-0.507680\pi\)
−0.0241249 + 0.999709i \(0.507680\pi\)
\(570\) 0 0
\(571\) −1.48521e15 −1.02397 −0.511986 0.858994i \(-0.671090\pi\)
−0.511986 + 0.858994i \(0.671090\pi\)
\(572\) −1.76579e15 −1.20576
\(573\) 0 0
\(574\) 2.66297e14 0.178382
\(575\) −1.79899e14 −0.119359
\(576\) 0 0
\(577\) −1.11682e14 −0.0726966 −0.0363483 0.999339i \(-0.511573\pi\)
−0.0363483 + 0.999339i \(0.511573\pi\)
\(578\) 4.02394e14 0.259447
\(579\) 0 0
\(580\) −1.09038e15 −0.689800
\(581\) −9.65124e14 −0.604803
\(582\) 0 0
\(583\) −2.83988e15 −1.74631
\(584\) 1.84074e15 1.12130
\(585\) 0 0
\(586\) −1.07635e14 −0.0643450
\(587\) −1.03228e15 −0.611347 −0.305673 0.952136i \(-0.598882\pi\)
−0.305673 + 0.952136i \(0.598882\pi\)
\(588\) 0 0
\(589\) 1.17368e15 0.682208
\(590\) 2.00437e14 0.115423
\(591\) 0 0
\(592\) 2.34753e14 0.132691
\(593\) −5.05946e14 −0.283337 −0.141668 0.989914i \(-0.545247\pi\)
−0.141668 + 0.989914i \(0.545247\pi\)
\(594\) 0 0
\(595\) −6.57813e14 −0.361626
\(596\) −1.22470e15 −0.667076
\(597\) 0 0
\(598\) −3.24748e14 −0.173656
\(599\) 1.86439e14 0.0987846 0.0493923 0.998779i \(-0.484272\pi\)
0.0493923 + 0.998779i \(0.484272\pi\)
\(600\) 0 0
\(601\) −6.39018e14 −0.332433 −0.166216 0.986089i \(-0.553155\pi\)
−0.166216 + 0.986089i \(0.553155\pi\)
\(602\) −1.96678e15 −1.01385
\(603\) 0 0
\(604\) −2.53172e15 −1.28148
\(605\) 1.13381e15 0.568706
\(606\) 0 0
\(607\) 3.07440e15 1.51434 0.757169 0.653219i \(-0.226582\pi\)
0.757169 + 0.653219i \(0.226582\pi\)
\(608\) −1.85438e15 −0.905166
\(609\) 0 0
\(610\) 7.60759e13 0.0364698
\(611\) 1.02821e15 0.488489
\(612\) 0 0
\(613\) 1.45823e15 0.680447 0.340223 0.940345i \(-0.389497\pi\)
0.340223 + 0.940345i \(0.389497\pi\)
\(614\) 7.90767e14 0.365698
\(615\) 0 0
\(616\) −3.67488e15 −1.66935
\(617\) −2.52038e15 −1.13474 −0.567372 0.823462i \(-0.692040\pi\)
−0.567372 + 0.823462i \(0.692040\pi\)
\(618\) 0 0
\(619\) 2.76117e15 1.22122 0.610612 0.791930i \(-0.290924\pi\)
0.610612 + 0.791930i \(0.290924\pi\)
\(620\) −5.78743e14 −0.253707
\(621\) 0 0
\(622\) 7.96900e14 0.343207
\(623\) −3.54997e14 −0.151545
\(624\) 0 0
\(625\) 9.53674e13 0.0400000
\(626\) 6.32511e13 0.0262972
\(627\) 0 0
\(628\) 1.45347e15 0.593783
\(629\) −2.12413e14 −0.0860205
\(630\) 0 0
\(631\) −5.89126e14 −0.234448 −0.117224 0.993105i \(-0.537400\pi\)
−0.117224 + 0.993105i \(0.537400\pi\)
\(632\) −1.38839e14 −0.0547733
\(633\) 0 0
\(634\) −4.14972e14 −0.160890
\(635\) 8.23314e13 0.0316453
\(636\) 0 0
\(637\) −5.28565e15 −1.99679
\(638\) 2.25772e15 0.845582
\(639\) 0 0
\(640\) 1.18854e15 0.437544
\(641\) −1.59787e15 −0.583208 −0.291604 0.956539i \(-0.594189\pi\)
−0.291604 + 0.956539i \(0.594189\pi\)
\(642\) 0 0
\(643\) 4.44445e15 1.59462 0.797310 0.603569i \(-0.206255\pi\)
0.797310 + 0.603569i \(0.206255\pi\)
\(644\) 2.69693e15 0.959395
\(645\) 0 0
\(646\) 4.49830e14 0.157315
\(647\) 8.54247e14 0.296217 0.148108 0.988971i \(-0.452682\pi\)
0.148108 + 0.988971i \(0.452682\pi\)
\(648\) 0 0
\(649\) 3.50816e15 1.19601
\(650\) 1.72155e14 0.0581963
\(651\) 0 0
\(652\) 8.55971e14 0.284510
\(653\) 2.86428e15 0.944045 0.472022 0.881587i \(-0.343524\pi\)
0.472022 + 0.881587i \(0.343524\pi\)
\(654\) 0 0
\(655\) 6.87242e14 0.222732
\(656\) −6.58609e14 −0.211669
\(657\) 0 0
\(658\) 1.01017e15 0.319267
\(659\) −4.78135e15 −1.49858 −0.749291 0.662241i \(-0.769606\pi\)
−0.749291 + 0.662241i \(0.769606\pi\)
\(660\) 0 0
\(661\) −5.52275e14 −0.170234 −0.0851172 0.996371i \(-0.527126\pi\)
−0.0851172 + 0.996371i \(0.527126\pi\)
\(662\) 1.46524e15 0.447909
\(663\) 0 0
\(664\) −6.89369e14 −0.207266
\(665\) 2.89939e15 0.864545
\(666\) 0 0
\(667\) −3.50982e15 −1.02942
\(668\) 5.26480e15 1.53148
\(669\) 0 0
\(670\) −3.48939e14 −0.0998478
\(671\) 1.33152e15 0.377897
\(672\) 0 0
\(673\) −3.31175e15 −0.924645 −0.462323 0.886712i \(-0.652984\pi\)
−0.462323 + 0.886712i \(0.652984\pi\)
\(674\) 1.33234e15 0.368964
\(675\) 0 0
\(676\) 6.55156e14 0.178500
\(677\) −6.69181e15 −1.80845 −0.904223 0.427060i \(-0.859549\pi\)
−0.904223 + 0.427060i \(0.859549\pi\)
\(678\) 0 0
\(679\) −1.63442e15 −0.434590
\(680\) −4.69863e14 −0.123929
\(681\) 0 0
\(682\) 1.19833e15 0.311003
\(683\) 7.20810e15 1.85570 0.927848 0.372959i \(-0.121657\pi\)
0.927848 + 0.372959i \(0.121657\pi\)
\(684\) 0 0
\(685\) 1.73138e15 0.438625
\(686\) −2.86629e15 −0.720340
\(687\) 0 0
\(688\) 4.86426e15 1.20304
\(689\) −4.22479e15 −1.03657
\(690\) 0 0
\(691\) 7.79467e15 1.88221 0.941106 0.338112i \(-0.109788\pi\)
0.941106 + 0.338112i \(0.109788\pi\)
\(692\) 2.80352e15 0.671615
\(693\) 0 0
\(694\) −9.37448e14 −0.221040
\(695\) −1.92981e15 −0.451438
\(696\) 0 0
\(697\) 5.95932e14 0.137220
\(698\) −1.04299e15 −0.238274
\(699\) 0 0
\(700\) −1.42969e15 −0.321516
\(701\) −6.71290e15 −1.49782 −0.748912 0.662669i \(-0.769423\pi\)
−0.748912 + 0.662669i \(0.769423\pi\)
\(702\) 0 0
\(703\) 9.36234e14 0.205651
\(704\) 2.90483e15 0.633099
\(705\) 0 0
\(706\) 9.75719e14 0.209362
\(707\) 1.24666e16 2.65424
\(708\) 0 0
\(709\) −4.10214e15 −0.859917 −0.429959 0.902849i \(-0.641472\pi\)
−0.429959 + 0.902849i \(0.641472\pi\)
\(710\) −1.26864e15 −0.263887
\(711\) 0 0
\(712\) −2.53568e14 −0.0519343
\(713\) −1.86291e15 −0.378617
\(714\) 0 0
\(715\) 3.01314e15 0.603026
\(716\) −3.50404e15 −0.695902
\(717\) 0 0
\(718\) 1.00122e15 0.195814
\(719\) 3.31818e15 0.644008 0.322004 0.946738i \(-0.395644\pi\)
0.322004 + 0.946738i \(0.395644\pi\)
\(720\) 0 0
\(721\) −4.07960e15 −0.779783
\(722\) −2.68047e14 −0.0508460
\(723\) 0 0
\(724\) 3.12829e15 0.584446
\(725\) 1.86061e15 0.344983
\(726\) 0 0
\(727\) 3.34273e15 0.610467 0.305233 0.952278i \(-0.401266\pi\)
0.305233 + 0.952278i \(0.401266\pi\)
\(728\) −5.46699e15 −0.990890
\(729\) 0 0
\(730\) −1.48280e15 −0.264733
\(731\) −4.40134e15 −0.779901
\(732\) 0 0
\(733\) −6.14966e15 −1.07344 −0.536722 0.843759i \(-0.680338\pi\)
−0.536722 + 0.843759i \(0.680338\pi\)
\(734\) −3.23483e15 −0.560432
\(735\) 0 0
\(736\) 2.94334e15 0.502357
\(737\) −6.10732e15 −1.03462
\(738\) 0 0
\(739\) −4.15701e15 −0.693804 −0.346902 0.937901i \(-0.612766\pi\)
−0.346902 + 0.937901i \(0.612766\pi\)
\(740\) −4.61657e14 −0.0764795
\(741\) 0 0
\(742\) −4.15068e15 −0.677482
\(743\) 4.90364e15 0.794474 0.397237 0.917716i \(-0.369969\pi\)
0.397237 + 0.917716i \(0.369969\pi\)
\(744\) 0 0
\(745\) 2.08982e15 0.333618
\(746\) 2.46150e15 0.390064
\(747\) 0 0
\(748\) −3.88226e15 −0.606214
\(749\) −8.52690e14 −0.132173
\(750\) 0 0
\(751\) −2.00580e15 −0.306385 −0.153192 0.988196i \(-0.548955\pi\)
−0.153192 + 0.988196i \(0.548955\pi\)
\(752\) −2.49837e15 −0.378842
\(753\) 0 0
\(754\) 3.35873e15 0.501918
\(755\) 4.32010e15 0.640894
\(756\) 0 0
\(757\) 2.85016e15 0.416718 0.208359 0.978052i \(-0.433188\pi\)
0.208359 + 0.978052i \(0.433188\pi\)
\(758\) 2.32235e15 0.337091
\(759\) 0 0
\(760\) 2.07098e15 0.296279
\(761\) −8.65962e15 −1.22994 −0.614969 0.788551i \(-0.710832\pi\)
−0.614969 + 0.788551i \(0.710832\pi\)
\(762\) 0 0
\(763\) −2.49827e15 −0.349747
\(764\) 5.78743e15 0.804400
\(765\) 0 0
\(766\) 8.08453e14 0.110763
\(767\) 5.21897e15 0.709922
\(768\) 0 0
\(769\) −7.49727e15 −1.00533 −0.502665 0.864481i \(-0.667647\pi\)
−0.502665 + 0.864481i \(0.667647\pi\)
\(770\) 2.96029e15 0.394126
\(771\) 0 0
\(772\) −5.07826e15 −0.666530
\(773\) −2.07867e15 −0.270894 −0.135447 0.990785i \(-0.543247\pi\)
−0.135447 + 0.990785i \(0.543247\pi\)
\(774\) 0 0
\(775\) 9.87564e14 0.126884
\(776\) −1.16743e15 −0.148934
\(777\) 0 0
\(778\) −3.42866e15 −0.431258
\(779\) −2.62664e15 −0.328053
\(780\) 0 0
\(781\) −2.22045e16 −2.73438
\(782\) −7.13988e14 −0.0873079
\(783\) 0 0
\(784\) 1.28432e16 1.54859
\(785\) −2.48019e15 −0.296963
\(786\) 0 0
\(787\) −1.58421e16 −1.87047 −0.935235 0.354026i \(-0.884812\pi\)
−0.935235 + 0.354026i \(0.884812\pi\)
\(788\) 7.07823e15 0.829909
\(789\) 0 0
\(790\) 1.11842e14 0.0129317
\(791\) 3.16844e15 0.363810
\(792\) 0 0
\(793\) 1.98086e15 0.224311
\(794\) 7.00826e14 0.0788129
\(795\) 0 0
\(796\) 1.86503e15 0.206854
\(797\) 4.58469e15 0.504997 0.252499 0.967597i \(-0.418748\pi\)
0.252499 + 0.967597i \(0.418748\pi\)
\(798\) 0 0
\(799\) 2.26061e15 0.245594
\(800\) −1.56032e15 −0.168352
\(801\) 0 0
\(802\) −4.40210e15 −0.468490
\(803\) −2.59528e16 −2.74315
\(804\) 0 0
\(805\) −4.60202e15 −0.479812
\(806\) 1.78272e15 0.184604
\(807\) 0 0
\(808\) 8.90465e15 0.909608
\(809\) 1.72813e15 0.175331 0.0876656 0.996150i \(-0.472059\pi\)
0.0876656 + 0.996150i \(0.472059\pi\)
\(810\) 0 0
\(811\) 4.24638e14 0.0425015 0.0212507 0.999774i \(-0.493235\pi\)
0.0212507 + 0.999774i \(0.493235\pi\)
\(812\) −2.78932e16 −2.77294
\(813\) 0 0
\(814\) 9.55899e14 0.0937514
\(815\) −1.46062e15 −0.142289
\(816\) 0 0
\(817\) 1.93994e16 1.86452
\(818\) 3.76631e15 0.359561
\(819\) 0 0
\(820\) 1.29520e15 0.122000
\(821\) 1.96517e16 1.83871 0.919354 0.393431i \(-0.128712\pi\)
0.919354 + 0.393431i \(0.128712\pi\)
\(822\) 0 0
\(823\) 5.95701e14 0.0549957 0.0274979 0.999622i \(-0.491246\pi\)
0.0274979 + 0.999622i \(0.491246\pi\)
\(824\) −2.91398e15 −0.267231
\(825\) 0 0
\(826\) 5.12743e15 0.463991
\(827\) 1.40975e16 1.26725 0.633626 0.773639i \(-0.281566\pi\)
0.633626 + 0.773639i \(0.281566\pi\)
\(828\) 0 0
\(829\) −7.87187e15 −0.698277 −0.349139 0.937071i \(-0.613526\pi\)
−0.349139 + 0.937071i \(0.613526\pi\)
\(830\) 5.55320e14 0.0489343
\(831\) 0 0
\(832\) 4.32142e15 0.375793
\(833\) −1.16210e16 −1.00391
\(834\) 0 0
\(835\) −8.98381e15 −0.765923
\(836\) 1.71115e16 1.44929
\(837\) 0 0
\(838\) 3.26507e15 0.272929
\(839\) −6.12117e15 −0.508327 −0.254164 0.967161i \(-0.581800\pi\)
−0.254164 + 0.967161i \(0.581800\pi\)
\(840\) 0 0
\(841\) 2.41000e16 1.97533
\(842\) −1.44092e15 −0.117334
\(843\) 0 0
\(844\) −3.76650e15 −0.302729
\(845\) −1.11795e15 −0.0892713
\(846\) 0 0
\(847\) 2.90043e16 2.28615
\(848\) 1.02655e16 0.803902
\(849\) 0 0
\(850\) 3.78497e14 0.0292590
\(851\) −1.48603e15 −0.114134
\(852\) 0 0
\(853\) 2.83032e15 0.214594 0.107297 0.994227i \(-0.465781\pi\)
0.107297 + 0.994227i \(0.465781\pi\)
\(854\) 1.94611e15 0.146605
\(855\) 0 0
\(856\) −6.09060e14 −0.0452954
\(857\) 4.83193e14 0.0357048 0.0178524 0.999841i \(-0.494317\pi\)
0.0178524 + 0.999841i \(0.494317\pi\)
\(858\) 0 0
\(859\) 1.23886e16 0.903775 0.451888 0.892075i \(-0.350751\pi\)
0.451888 + 0.892075i \(0.350751\pi\)
\(860\) −9.56587e15 −0.693399
\(861\) 0 0
\(862\) 1.63992e15 0.117364
\(863\) 2.26458e16 1.61038 0.805191 0.593016i \(-0.202063\pi\)
0.805191 + 0.593016i \(0.202063\pi\)
\(864\) 0 0
\(865\) −4.78391e15 −0.335888
\(866\) 5.03459e15 0.351249
\(867\) 0 0
\(868\) −1.48050e16 −1.01988
\(869\) 1.95751e15 0.133997
\(870\) 0 0
\(871\) −9.08565e15 −0.614124
\(872\) −1.78446e15 −0.119858
\(873\) 0 0
\(874\) 3.14698e15 0.208728
\(875\) 2.43961e15 0.160797
\(876\) 0 0
\(877\) −8.89622e15 −0.579039 −0.289519 0.957172i \(-0.593495\pi\)
−0.289519 + 0.957172i \(0.593495\pi\)
\(878\) −1.78023e15 −0.115148
\(879\) 0 0
\(880\) −7.32141e15 −0.467671
\(881\) 1.82720e16 1.15989 0.579946 0.814655i \(-0.303073\pi\)
0.579946 + 0.814655i \(0.303073\pi\)
\(882\) 0 0
\(883\) 8.75758e15 0.549035 0.274518 0.961582i \(-0.411482\pi\)
0.274518 + 0.961582i \(0.411482\pi\)
\(884\) −5.77551e15 −0.359834
\(885\) 0 0
\(886\) −1.87398e15 −0.115314
\(887\) −8.52159e15 −0.521124 −0.260562 0.965457i \(-0.583908\pi\)
−0.260562 + 0.965457i \(0.583908\pi\)
\(888\) 0 0
\(889\) 2.10613e15 0.127212
\(890\) 2.04261e14 0.0122614
\(891\) 0 0
\(892\) −1.83132e16 −1.08582
\(893\) −9.96390e15 −0.587146
\(894\) 0 0
\(895\) 5.97928e15 0.348034
\(896\) 3.04042e16 1.75889
\(897\) 0 0
\(898\) −2.38209e15 −0.136125
\(899\) 1.92673e16 1.09432
\(900\) 0 0
\(901\) −9.28858e15 −0.521150
\(902\) −2.68181e15 −0.149552
\(903\) 0 0
\(904\) 2.26316e15 0.124677
\(905\) −5.33809e15 −0.292293
\(906\) 0 0
\(907\) 2.10550e16 1.13898 0.569490 0.821998i \(-0.307141\pi\)
0.569490 + 0.821998i \(0.307141\pi\)
\(908\) −1.24005e16 −0.666756
\(909\) 0 0
\(910\) 4.40392e15 0.233944
\(911\) −3.04479e16 −1.60771 −0.803854 0.594827i \(-0.797220\pi\)
−0.803854 + 0.594827i \(0.797220\pi\)
\(912\) 0 0
\(913\) 9.71950e15 0.507055
\(914\) 5.13939e15 0.266506
\(915\) 0 0
\(916\) −1.86674e16 −0.956443
\(917\) 1.75805e16 0.895363
\(918\) 0 0
\(919\) −4.47695e15 −0.225293 −0.112646 0.993635i \(-0.535933\pi\)
−0.112646 + 0.993635i \(0.535933\pi\)
\(920\) −3.28714e15 −0.164431
\(921\) 0 0
\(922\) −6.61799e15 −0.327119
\(923\) −3.30328e16 −1.62307
\(924\) 0 0
\(925\) 7.87769e14 0.0382489
\(926\) −6.19818e14 −0.0299160
\(927\) 0 0
\(928\) −3.04417e16 −1.45196
\(929\) −2.63310e16 −1.24848 −0.624238 0.781234i \(-0.714591\pi\)
−0.624238 + 0.781234i \(0.714591\pi\)
\(930\) 0 0
\(931\) 5.12208e16 2.40007
\(932\) 1.23515e16 0.575348
\(933\) 0 0
\(934\) −1.16481e15 −0.0536224
\(935\) 6.62466e15 0.303179
\(936\) 0 0
\(937\) 1.18259e16 0.534894 0.267447 0.963573i \(-0.413820\pi\)
0.267447 + 0.963573i \(0.413820\pi\)
\(938\) −8.92628e15 −0.401379
\(939\) 0 0
\(940\) 4.91320e15 0.218354
\(941\) −6.96003e15 −0.307517 −0.153758 0.988108i \(-0.549138\pi\)
−0.153758 + 0.988108i \(0.549138\pi\)
\(942\) 0 0
\(943\) 4.16911e15 0.182066
\(944\) −1.26812e16 −0.550573
\(945\) 0 0
\(946\) 1.98069e16 0.849993
\(947\) 3.38501e16 1.44423 0.722113 0.691775i \(-0.243171\pi\)
0.722113 + 0.691775i \(0.243171\pi\)
\(948\) 0 0
\(949\) −3.86091e16 −1.62827
\(950\) −1.66827e15 −0.0699499
\(951\) 0 0
\(952\) −1.20197e16 −0.498183
\(953\) −4.50062e16 −1.85465 −0.927323 0.374262i \(-0.877896\pi\)
−0.927323 + 0.374262i \(0.877896\pi\)
\(954\) 0 0
\(955\) −9.87563e15 −0.402297
\(956\) −3.23235e16 −1.30918
\(957\) 0 0
\(958\) −1.41644e16 −0.567139
\(959\) 4.42907e16 1.76323
\(960\) 0 0
\(961\) −1.51819e16 −0.597513
\(962\) 1.42206e15 0.0556486
\(963\) 0 0
\(964\) 2.52107e16 0.975353
\(965\) 8.66551e15 0.333345
\(966\) 0 0
\(967\) −1.48359e16 −0.564246 −0.282123 0.959378i \(-0.591039\pi\)
−0.282123 + 0.959378i \(0.591039\pi\)
\(968\) 2.07172e16 0.783461
\(969\) 0 0
\(970\) 9.40424e14 0.0351624
\(971\) −1.14414e16 −0.425378 −0.212689 0.977120i \(-0.568222\pi\)
−0.212689 + 0.977120i \(0.568222\pi\)
\(972\) 0 0
\(973\) −4.93669e16 −1.81474
\(974\) −6.72835e15 −0.245943
\(975\) 0 0
\(976\) −4.81314e15 −0.173962
\(977\) 2.64437e16 0.950390 0.475195 0.879881i \(-0.342378\pi\)
0.475195 + 0.879881i \(0.342378\pi\)
\(978\) 0 0
\(979\) 3.57508e15 0.127052
\(980\) −2.52570e16 −0.892562
\(981\) 0 0
\(982\) 6.47820e15 0.226382
\(983\) −3.63656e16 −1.26371 −0.631854 0.775088i \(-0.717706\pi\)
−0.631854 + 0.775088i \(0.717706\pi\)
\(984\) 0 0
\(985\) −1.20782e16 −0.415054
\(986\) 7.38447e15 0.252346
\(987\) 0 0
\(988\) 2.54562e16 0.860262
\(989\) −3.07915e16 −1.03479
\(990\) 0 0
\(991\) 5.09067e16 1.69188 0.845941 0.533276i \(-0.179039\pi\)
0.845941 + 0.533276i \(0.179039\pi\)
\(992\) −1.61576e16 −0.534027
\(993\) 0 0
\(994\) −3.24534e16 −1.06080
\(995\) −3.18247e15 −0.103452
\(996\) 0 0
\(997\) −4.28291e16 −1.37694 −0.688471 0.725264i \(-0.741718\pi\)
−0.688471 + 0.725264i \(0.741718\pi\)
\(998\) −9.36259e15 −0.299349
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 45.12.a.c.1.1 2
3.2 odd 2 15.12.a.c.1.2 2
5.2 odd 4 225.12.b.i.199.2 4
5.3 odd 4 225.12.b.i.199.3 4
5.4 even 2 225.12.a.i.1.2 2
12.11 even 2 240.12.a.m.1.1 2
15.2 even 4 75.12.b.d.49.3 4
15.8 even 4 75.12.b.d.49.2 4
15.14 odd 2 75.12.a.c.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.12.a.c.1.2 2 3.2 odd 2
45.12.a.c.1.1 2 1.1 even 1 trivial
75.12.a.c.1.1 2 15.14 odd 2
75.12.b.d.49.2 4 15.8 even 4
75.12.b.d.49.3 4 15.2 even 4
225.12.a.i.1.2 2 5.4 even 2
225.12.b.i.199.2 4 5.2 odd 4
225.12.b.i.199.3 4 5.3 odd 4
240.12.a.m.1.1 2 12.11 even 2