Properties

Label 45.12.a
Level $45$
Weight $12$
Character orbit 45.a
Rep. character $\chi_{45}(1,\cdot)$
Character field $\Q$
Dimension $19$
Newform subspaces $8$
Sturm bound $72$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 45.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(72\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_0(45))\).

Total New Old
Modular forms 70 19 51
Cusp forms 62 19 43
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(5\)FrickeDim
\(+\)\(+\)\(+\)\(4\)
\(+\)\(-\)\(-\)\(4\)
\(-\)\(+\)\(-\)\(5\)
\(-\)\(-\)\(+\)\(6\)
Plus space\(+\)\(10\)
Minus space\(-\)\(9\)

Trace form

\( 19 q + 78 q^{2} + 22608 q^{4} + 3125 q^{5} - 73520 q^{7} + 310044 q^{8} - 368750 q^{10} + 724596 q^{11} - 3418614 q^{13} - 3793308 q^{14} + 33047172 q^{16} - 13284486 q^{17} + 45952116 q^{19} - 5387500 q^{20}+ \cdots + 142659039006 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_0(45))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 5
45.12.a.a 45.a 1.a $1$ $34.575$ \(\Q\) None 5.12.a.a \(-34\) \(0\) \(-3125\) \(-17556\) $-$ $+$ $\mathrm{SU}(2)$ \(q-34q^{2}-892q^{4}-5^{5}q^{5}-17556q^{7}+\cdots\)
45.12.a.b 45.a 1.a $1$ $34.575$ \(\Q\) None 15.12.a.a \(56\) \(0\) \(-3125\) \(27984\) $-$ $+$ $\mathrm{SU}(2)$ \(q+56q^{2}+1088q^{4}-5^{5}q^{5}+27984q^{7}+\cdots\)
45.12.a.c 45.a 1.a $2$ $34.575$ \(\Q(\sqrt{1801}) \) None 15.12.a.c \(13\) \(0\) \(6250\) \(7784\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(7-\beta )q^{2}+(-1549-13\beta )q^{4}+5^{5}q^{5}+\cdots\)
45.12.a.d 45.a 1.a $2$ $34.575$ \(\Q(\sqrt{151}) \) None 5.12.a.b \(20\) \(0\) \(6250\) \(57900\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(10+\beta )q^{2}+(3488+20\beta )q^{4}+5^{5}q^{5}+\cdots\)
45.12.a.e 45.a 1.a $2$ $34.575$ \(\Q(\sqrt{1609}) \) None 15.12.a.b \(22\) \(0\) \(6250\) \(-10864\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(11-\beta )q^{2}+(-318-22\beta )q^{4}+5^{5}q^{5}+\cdots\)
45.12.a.f 45.a 1.a $3$ $34.575$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 15.12.a.d \(1\) \(0\) \(-9375\) \(-14608\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1585+3\beta _{1}+\beta _{2})q^{4}-5^{5}q^{5}+\cdots\)
45.12.a.g 45.a 1.a $4$ $34.575$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 45.12.a.g \(-75\) \(0\) \(12500\) \(-62080\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-19+\beta _{1})q^{2}+(1807-15\beta _{1}-\beta _{3})q^{4}+\cdots\)
45.12.a.h 45.a 1.a $4$ $34.575$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 45.12.a.g \(75\) \(0\) \(-12500\) \(-62080\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(19-\beta _{1})q^{2}+(1807-15\beta _{1}-\beta _{3})q^{4}+\cdots\)

Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_0(45))\) into lower level spaces

\( S_{12}^{\mathrm{old}}(\Gamma_0(45)) \simeq \) \(S_{12}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 2}\)