Properties

Label 45.12
Level 45
Weight 12
Dimension 561
Nonzero newspaces 6
Newform subspaces 17
Sturm bound 1728
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) = \( 12 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 17 \)
Sturm bound: \(1728\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_1(45))\).

Total New Old
Modular forms 824 587 237
Cusp forms 760 561 199
Eisenstein series 64 26 38

Trace form

\( 561 q + 136 q^{2} + 16 q^{3} + 14482 q^{4} + 8091 q^{5} - 41182 q^{6} - 153564 q^{7} + 376464 q^{8} - 203212 q^{9} - 1107882 q^{10} + 969724 q^{11} + 2089424 q^{12} - 2344738 q^{13} - 10312068 q^{14} + 5015092 q^{15}+ \cdots - 45434414156 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_1(45))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
45.12.a \(\chi_{45}(1, \cdot)\) 45.12.a.a 1 1
45.12.a.b 1
45.12.a.c 2
45.12.a.d 2
45.12.a.e 2
45.12.a.f 3
45.12.a.g 4
45.12.a.h 4
45.12.b \(\chi_{45}(19, \cdot)\) 45.12.b.a 2 1
45.12.b.b 4
45.12.b.c 8
45.12.b.d 12
45.12.e \(\chi_{45}(16, \cdot)\) 45.12.e.a 42 2
45.12.e.b 46
45.12.f \(\chi_{45}(8, \cdot)\) 45.12.f.a 44 2
45.12.j \(\chi_{45}(4, \cdot)\) 45.12.j.a 128 2
45.12.l \(\chi_{45}(2, \cdot)\) 45.12.l.a 256 4

Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_1(45))\) into lower level spaces

\( S_{12}^{\mathrm{old}}(\Gamma_1(45)) \cong \) \(S_{12}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 1}\)