Properties

Label 448.6.a.u
Level $448$
Weight $6$
Character orbit 448.a
Self dual yes
Analytic conductor $71.852$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 448.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(71.8519512762\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{57}) \)
Defining polynomial: \( x^{2} - x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 7)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{57}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 3 \beta - 3) q^{3} + ( - 5 \beta + 9) q^{5} - 49 q^{7} + (18 \beta + 279) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - 3 \beta - 3) q^{3} + ( - 5 \beta + 9) q^{5} - 49 q^{7} + (18 \beta + 279) q^{9} + ( - 62 \beta + 198) q^{11} + ( - 63 \beta + 175) q^{13} + ( - 12 \beta + 828) q^{15} + ( - 38 \beta + 900) q^{17} + ( - 9 \beta - 1633) q^{19} + (147 \beta + 147) q^{21} + ( - 284 \beta - 1044) q^{23} + ( - 90 \beta - 1619) q^{25} + ( - 162 \beta - 3186) q^{27} + ( - 126 \beta - 3348) q^{29} + ( - 270 \beta + 10) q^{31} + ( - 408 \beta + 10008) q^{33} + (245 \beta - 441) q^{35} + ( - 270 \beta - 3116) q^{37} + ( - 336 \beta + 10248) q^{39} + ( - 546 \beta - 3024) q^{41} + ( - 2394 \beta - 1510) q^{43} + ( - 1233 \beta - 2619) q^{45} + ( - 1874 \beta - 5850) q^{47} + 2401 q^{49} + ( - 2586 \beta + 3798) q^{51} + (104 \beta - 4734) q^{53} + ( - 1548 \beta + 19452) q^{55} + (4926 \beta + 6438) q^{57} + ( - 1025 \beta - 21969) q^{59} + (2403 \beta + 32377) q^{61} + ( - 882 \beta - 13671) q^{63} + ( - 1442 \beta + 19530) q^{65} + ( - 972 \beta + 12392) q^{67} + (3984 \beta + 51696) q^{69} + (2100 \beta - 48708) q^{71} + ( - 2628 \beta + 8726) q^{73} + (5127 \beta + 20247) q^{75} + (3038 \beta - 9702) q^{77} + ( - 7452 \beta - 25628) q^{79} + (5670 \beta - 30537) q^{81} + (7875 \beta + 58779) q^{83} + ( - 4842 \beta + 18930) q^{85} + (10422 \beta + 31590) q^{87} + ( - 11104 \beta + 42138) q^{89} + (3087 \beta - 8575) q^{91} + (780 \beta + 46140) q^{93} + (8084 \beta - 12132) q^{95} + (4410 \beta + 10388) q^{97} + ( - 13734 \beta - 8370) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} + 18 q^{5} - 98 q^{7} + 558 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 6 q^{3} + 18 q^{5} - 98 q^{7} + 558 q^{9} + 396 q^{11} + 350 q^{13} + 1656 q^{15} + 1800 q^{17} - 3266 q^{19} + 294 q^{21} - 2088 q^{23} - 3238 q^{25} - 6372 q^{27} - 6696 q^{29} + 20 q^{31} + 20016 q^{33} - 882 q^{35} - 6232 q^{37} + 20496 q^{39} - 6048 q^{41} - 3020 q^{43} - 5238 q^{45} - 11700 q^{47} + 4802 q^{49} + 7596 q^{51} - 9468 q^{53} + 38904 q^{55} + 12876 q^{57} - 43938 q^{59} + 64754 q^{61} - 27342 q^{63} + 39060 q^{65} + 24784 q^{67} + 103392 q^{69} - 97416 q^{71} + 17452 q^{73} + 40494 q^{75} - 19404 q^{77} - 51256 q^{79} - 61074 q^{81} + 117558 q^{83} + 37860 q^{85} + 63180 q^{87} + 84276 q^{89} - 17150 q^{91} + 92280 q^{93} - 24264 q^{95} + 20776 q^{97} - 16740 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.27492
−3.27492
0 −25.6495 0 −28.7492 0 −49.0000 0 414.897 0
1.2 0 19.6495 0 46.7492 0 −49.0000 0 143.103 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(7\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 448.6.a.u 2
4.b odd 2 1 448.6.a.w 2
8.b even 2 1 112.6.a.h 2
8.d odd 2 1 7.6.a.b 2
24.f even 2 1 63.6.a.f 2
24.h odd 2 1 1008.6.a.bq 2
40.e odd 2 1 175.6.a.c 2
40.k even 4 2 175.6.b.c 4
56.e even 2 1 49.6.a.f 2
56.h odd 2 1 784.6.a.v 2
56.k odd 6 2 49.6.c.e 4
56.m even 6 2 49.6.c.d 4
88.g even 2 1 847.6.a.c 2
168.e odd 2 1 441.6.a.l 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7.6.a.b 2 8.d odd 2 1
49.6.a.f 2 56.e even 2 1
49.6.c.d 4 56.m even 6 2
49.6.c.e 4 56.k odd 6 2
63.6.a.f 2 24.f even 2 1
112.6.a.h 2 8.b even 2 1
175.6.a.c 2 40.e odd 2 1
175.6.b.c 4 40.k even 4 2
441.6.a.l 2 168.e odd 2 1
448.6.a.u 2 1.a even 1 1 trivial
448.6.a.w 2 4.b odd 2 1
784.6.a.v 2 56.h odd 2 1
847.6.a.c 2 88.g even 2 1
1008.6.a.bq 2 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(448))\):

\( T_{3}^{2} + 6T_{3} - 504 \) Copy content Toggle raw display
\( T_{5}^{2} - 18T_{5} - 1344 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 6T - 504 \) Copy content Toggle raw display
$5$ \( T^{2} - 18T - 1344 \) Copy content Toggle raw display
$7$ \( (T + 49)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 396T - 179904 \) Copy content Toggle raw display
$13$ \( T^{2} - 350T - 195608 \) Copy content Toggle raw display
$17$ \( T^{2} - 1800 T + 727692 \) Copy content Toggle raw display
$19$ \( T^{2} + 3266 T + 2662072 \) Copy content Toggle raw display
$23$ \( T^{2} + 2088 T - 3507456 \) Copy content Toggle raw display
$29$ \( T^{2} + 6696 T + 10304172 \) Copy content Toggle raw display
$31$ \( T^{2} - 20T - 4155200 \) Copy content Toggle raw display
$37$ \( T^{2} + 6232 T + 5554156 \) Copy content Toggle raw display
$41$ \( T^{2} + 6048 T - 7848036 \) Copy content Toggle raw display
$43$ \( T^{2} + 3020 T - 324400352 \) Copy content Toggle raw display
$47$ \( T^{2} + 11700 T - 165954432 \) Copy content Toggle raw display
$53$ \( T^{2} + 9468 T + 21794244 \) Copy content Toggle raw display
$59$ \( T^{2} + 43938 T + 422751336 \) Copy content Toggle raw display
$61$ \( T^{2} - 64754 T + 719128816 \) Copy content Toggle raw display
$67$ \( T^{2} - 24784 T + 99708976 \) Copy content Toggle raw display
$71$ \( T^{2} + 97416 T + 2121099264 \) Copy content Toggle raw display
$73$ \( T^{2} - 17452 T - 317520812 \) Copy content Toggle raw display
$79$ \( T^{2} + 51256 T - 2508546944 \) Copy content Toggle raw display
$83$ \( T^{2} - 117558 T - 79919784 \) Copy content Toggle raw display
$89$ \( T^{2} - 84276 T - 5252421468 \) Copy content Toggle raw display
$97$ \( T^{2} - 20776 T - 1000631156 \) Copy content Toggle raw display
show more
show less