Properties

Label 448.6.a.r
Level $448$
Weight $6$
Character orbit 448.a
Self dual yes
Analytic conductor $71.852$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,6,Mod(1,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 448.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-14,0,-42] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.8519512762\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{193}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 48 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 56)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{193}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 7) q^{3} + ( - 5 \beta - 21) q^{5} + 49 q^{7} + (14 \beta - 1) q^{9} + ( - 14 \beta - 358) q^{11} + (17 \beta + 357) q^{13} + (56 \beta + 1112) q^{15} + ( - 54 \beta - 672) q^{17} + (93 \beta - 973) q^{19}+ \cdots + ( - 4998 \beta - 37470) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 14 q^{3} - 42 q^{5} + 98 q^{7} - 2 q^{9} - 716 q^{11} + 714 q^{13} + 2224 q^{15} - 1344 q^{17} - 1946 q^{19} - 686 q^{21} + 1792 q^{23} + 4282 q^{25} - 1988 q^{27} + 1200 q^{29} + 6804 q^{31} + 10416 q^{33}+ \cdots - 74940 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
7.44622
−6.44622
0 −20.8924 0 −90.4622 0 49.0000 0 193.494 0
1.2 0 6.89244 0 48.4622 0 49.0000 0 −195.494 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 448.6.a.r 2
4.b odd 2 1 448.6.a.x 2
8.b even 2 1 112.6.a.j 2
8.d odd 2 1 56.6.a.d 2
24.f even 2 1 504.6.a.m 2
24.h odd 2 1 1008.6.a.bi 2
56.e even 2 1 392.6.a.e 2
56.h odd 2 1 784.6.a.q 2
56.k odd 6 2 392.6.i.k 4
56.m even 6 2 392.6.i.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
56.6.a.d 2 8.d odd 2 1
112.6.a.j 2 8.b even 2 1
392.6.a.e 2 56.e even 2 1
392.6.i.h 4 56.m even 6 2
392.6.i.k 4 56.k odd 6 2
448.6.a.r 2 1.a even 1 1 trivial
448.6.a.x 2 4.b odd 2 1
504.6.a.m 2 24.f even 2 1
784.6.a.q 2 56.h odd 2 1
1008.6.a.bi 2 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(448))\):

\( T_{3}^{2} + 14T_{3} - 144 \) Copy content Toggle raw display
\( T_{5}^{2} + 42T_{5} - 4384 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 14T - 144 \) Copy content Toggle raw display
$5$ \( T^{2} + 42T - 4384 \) Copy content Toggle raw display
$7$ \( (T - 49)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 716T + 90336 \) Copy content Toggle raw display
$13$ \( T^{2} - 714T + 71672 \) Copy content Toggle raw display
$17$ \( T^{2} + 1344 T - 111204 \) Copy content Toggle raw display
$19$ \( T^{2} + 1946 T - 722528 \) Copy content Toggle raw display
$23$ \( T^{2} - 1792 T - 1618176 \) Copy content Toggle raw display
$29$ \( T^{2} - 1200 T - 57176388 \) Copy content Toggle raw display
$31$ \( T^{2} - 6804 T - 26817184 \) Copy content Toggle raw display
$37$ \( T^{2} + 14640 T + 49005212 \) Copy content Toggle raw display
$41$ \( T^{2} - 7896 T - 22118548 \) Copy content Toggle raw display
$43$ \( T^{2} - 524 T - 51717888 \) Copy content Toggle raw display
$47$ \( T^{2} - 18396 T - 22804384 \) Copy content Toggle raw display
$53$ \( T^{2} + 45132 T + 313124004 \) Copy content Toggle raw display
$59$ \( T^{2} - 22582 T + 101774256 \) Copy content Toggle raw display
$61$ \( T^{2} - 52822 T + 456736944 \) Copy content Toggle raw display
$67$ \( T^{2} - 9848 T + 14561808 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 3181158400 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 3444396788 \) Copy content Toggle raw display
$79$ \( T^{2} + 31704 T - 112014208 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 3038476256 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 10645600644 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 14736460932 \) Copy content Toggle raw display
show more
show less