Properties

Label 448.6.a.ba
Level $448$
Weight $6$
Character orbit 448.a
Self dual yes
Analytic conductor $71.852$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [448,6,Mod(1,448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(448, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("448.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 448.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.8519512762\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.367637.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 107x + 282 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 224)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 3) q^{3} + (\beta_{2} + 5) q^{5} - 49 q^{7} + (3 \beta_{2} - \beta_1 + 51) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_1 - 3) q^{3} + (\beta_{2} + 5) q^{5} - 49 q^{7} + (3 \beta_{2} - \beta_1 + 51) q^{9} + ( - \beta_{2} + 19 \beta_1 - 194) q^{11} + ( - 11 \beta_{2} - 6 \beta_1 + 319) q^{13} + ( - 9 \beta_{2} - 39 \beta_1 + 24) q^{15} + (10 \beta_{2} + 4 \beta_1 + 244) q^{17} + ( - 22 \beta_{2} + 55 \beta_1 + 363) q^{19} + (49 \beta_1 + 147) q^{21} + ( - 15 \beta_{2} - 65 \beta_1 - 1280) q^{23} + ( - 25 \beta_{2} + 55 \beta_1 - 39) q^{25} + ( - 24 \beta_{2} + 86 \beta_1 + 978) q^{27} + (22 \beta_{2} + 72 \beta_1 + 3076) q^{29} + ( - 94 \beta_{2} - 148 \beta_1 + 402) q^{31} + ( - 48 \beta_{2} + 304 \beta_1 - 4872) q^{33} + ( - 49 \beta_{2} - 245) q^{35} + (104 \beta_{2} + 502 \beta_1 + 1868) q^{37} + (117 \beta_{2} + 31 \beta_1 + 324) q^{39} + (44 \beta_{2} + 390 \beta_1 - 7584) q^{41} + (149 \beta_{2} + 25 \beta_1 - 9902) q^{43} + ( - 45 \beta_{2} + 126 \beta_1 + 9477) q^{45} + (116 \beta_{2} + 542 \beta_1 - 3394) q^{47} + 2401 q^{49} + ( - 102 \beta_{2} - 568 \beta_1 - 1482) q^{51} + ( - 294 \beta_{2} + 518 \beta_1 + 9410) q^{53} + ( - 50 \beta_{2} + 686 \beta_1 - 4772) q^{55} + (33 \beta_{2} + 605 \beta_1 - 17622) q^{57} + (592 \beta_{2} - 1311 \beta_1 + 5579) q^{59} + ( - 91 \beta_{2} - 820 \beta_1 + 30461) q^{61} + ( - 147 \beta_{2} + 49 \beta_1 - 2499) q^{63} + (613 \beta_{2} - 839 \beta_1 - 31842) q^{65} + ( - 879 \beta_{2} - \beta_1 - 18968) q^{67} + (330 \beta_{2} + 1530 \beta_1 + 21780) q^{69} + (362 \beta_{2} + 850 \beta_1 - 25284) q^{71} + ( - 556 \beta_{2} + 1296 \beta_1 - 15202) q^{73} + (60 \beta_{2} + 1109 \beta_1 - 16533) q^{75} + (49 \beta_{2} - 931 \beta_1 + 9506) q^{77} + ( - 52 \beta_{2} - 1000 \beta_1 + 1108) q^{79} + ( - 771 \beta_{2} + 425 \beta_1 - 40773) q^{81} + (874 \beta_{2} + 1239 \beta_1 - 35005) q^{83} + ( - 32 \beta_{2} + 706 \beta_1 + 31674) q^{85} + ( - 414 \beta_{2} - 3536 \beta_1 - 28890) q^{87} + (390 \beta_{2} + 666 \beta_1 + 10290) q^{89} + (539 \beta_{2} + 294 \beta_1 - 15631) q^{91} + (1290 \beta_{2} + 2202 \beta_1 + 37308) q^{93} + (1353 \beta_{2} + 935 \beta_1 - 67672) q^{95} + ( - 172 \beta_{2} - 5478 \beta_1 - 54044) q^{97} + ( - 237 \beta_{2} + 3103 \beta_1 - 26754) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 8 q^{3} + 14 q^{5} - 147 q^{7} + 151 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 8 q^{3} + 14 q^{5} - 147 q^{7} + 151 q^{9} - 600 q^{11} + 974 q^{13} + 120 q^{15} + 718 q^{17} + 1056 q^{19} + 392 q^{21} - 3760 q^{23} - 147 q^{25} + 2872 q^{27} + 9134 q^{29} + 1448 q^{31} - 14872 q^{33} - 686 q^{35} + 4998 q^{37} + 824 q^{39} - 23186 q^{41} - 29880 q^{43} + 28350 q^{45} - 10840 q^{47} + 7203 q^{49} - 3776 q^{51} + 28006 q^{53} - 14952 q^{55} - 53504 q^{57} + 17456 q^{59} + 92294 q^{61} - 7399 q^{63} - 95300 q^{65} - 56024 q^{67} + 63480 q^{69} - 77064 q^{71} - 46346 q^{73} - 50768 q^{75} + 29400 q^{77} + 4376 q^{79} - 121973 q^{81} - 107128 q^{83} + 94348 q^{85} - 82720 q^{87} + 29814 q^{89} - 47726 q^{91} + 108432 q^{93} - 205304 q^{95} - 156482 q^{97} - 83128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 107x + 282 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 4\nu^{2} + 10\nu - 291 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 3\beta_{2} - 5\beta _1 + 286 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
9.26413
2.76097
−11.0251
0 −20.5283 0 53.3126 0 −49.0000 0 178.410 0
1.2 0 −7.52194 0 −72.6328 0 −49.0000 0 −186.420 0
1.3 0 20.0502 0 33.3202 0 −49.0000 0 159.011 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 448.6.a.ba 3
4.b odd 2 1 448.6.a.bb 3
8.b even 2 1 224.6.a.f yes 3
8.d odd 2 1 224.6.a.e 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
224.6.a.e 3 8.d odd 2 1
224.6.a.f yes 3 8.b even 2 1
448.6.a.ba 3 1.a even 1 1 trivial
448.6.a.bb 3 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(448))\):

\( T_{3}^{3} + 8T_{3}^{2} - 408T_{3} - 3096 \) Copy content Toggle raw display
\( T_{5}^{3} - 14T_{5}^{2} - 4516T_{5} + 129024 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 8 T^{2} + \cdots - 3096 \) Copy content Toggle raw display
$5$ \( T^{3} - 14 T^{2} + \cdots + 129024 \) Copy content Toggle raw display
$7$ \( (T + 49)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + 600 T^{2} + \cdots - 1824064 \) Copy content Toggle raw display
$13$ \( T^{3} - 974 T^{2} + \cdots + 53052784 \) Copy content Toggle raw display
$17$ \( T^{3} - 718 T^{2} + \cdots + 178338584 \) Copy content Toggle raw display
$19$ \( T^{3} - 1056 T^{2} + \cdots + 936225400 \) Copy content Toggle raw display
$23$ \( T^{3} + 3760 T^{2} + \cdots + 265872000 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots - 18655265000 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots + 54502545600 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 417364199688 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 195051110440 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 302765738048 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 1468178593088 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 1608716275704 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 27263200844760 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 18497589110240 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 132723178706432 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 12186764730368 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 39799282328008 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots + 267561011200 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 109229539940808 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 4144636813752 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 698292640604904 \) Copy content Toggle raw display
show more
show less