Properties

Label 448.4.i.i
Level $448$
Weight $4$
Character orbit 448.i
Analytic conductor $26.433$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,4,Mod(65,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.65"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 448.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,2,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.4328556826\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 224)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} - \beta_{2} q^{5} + (5 \beta_{3} + 8 \beta_1) q^{7} - 20 \beta_{2} q^{9} - \beta_1 q^{11} + 60 q^{13} - \beta_{3} q^{15} + ( - 25 \beta_{2} - 25) q^{17} + ( - 37 \beta_{3} - 37 \beta_1) q^{19}+ \cdots + 20 \beta_{3} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{5} + 40 q^{9} + 240 q^{13} - 50 q^{17} - 182 q^{21} + 248 q^{25} - 208 q^{29} + 14 q^{33} + 190 q^{37} + 256 q^{41} - 40 q^{45} - 1316 q^{49} + 406 q^{53} + 1036 q^{57} + 302 q^{61} + 120 q^{65}+ \cdots - 256 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 7x^{2} + 49 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 7 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 7\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 7\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(\beta_{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
65.1
−1.32288 2.29129i
1.32288 + 2.29129i
−1.32288 + 2.29129i
1.32288 2.29129i
0 −1.32288 2.29129i 0 0.500000 0.866025i 0 2.64575 18.3303i 0 10.0000 17.3205i 0
65.2 0 1.32288 + 2.29129i 0 0.500000 0.866025i 0 −2.64575 + 18.3303i 0 10.0000 17.3205i 0
193.1 0 −1.32288 + 2.29129i 0 0.500000 + 0.866025i 0 2.64575 + 18.3303i 0 10.0000 + 17.3205i 0
193.2 0 1.32288 2.29129i 0 0.500000 + 0.866025i 0 −2.64575 18.3303i 0 10.0000 + 17.3205i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
7.c even 3 1 inner
28.g odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 448.4.i.i 4
4.b odd 2 1 inner 448.4.i.i 4
7.c even 3 1 inner 448.4.i.i 4
8.b even 2 1 224.4.i.a 4
8.d odd 2 1 224.4.i.a 4
28.g odd 6 1 inner 448.4.i.i 4
56.j odd 6 1 1568.4.a.q 2
56.k odd 6 1 224.4.i.a 4
56.k odd 6 1 1568.4.a.t 2
56.m even 6 1 1568.4.a.q 2
56.p even 6 1 224.4.i.a 4
56.p even 6 1 1568.4.a.t 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
224.4.i.a 4 8.b even 2 1
224.4.i.a 4 8.d odd 2 1
224.4.i.a 4 56.k odd 6 1
224.4.i.a 4 56.p even 6 1
448.4.i.i 4 1.a even 1 1 trivial
448.4.i.i 4 4.b odd 2 1 inner
448.4.i.i 4 7.c even 3 1 inner
448.4.i.i 4 28.g odd 6 1 inner
1568.4.a.q 2 56.j odd 6 1
1568.4.a.q 2 56.m even 6 1
1568.4.a.t 2 56.k odd 6 1
1568.4.a.t 2 56.p even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(448, [\chi])\):

\( T_{3}^{4} + 7T_{3}^{2} + 49 \) Copy content Toggle raw display
\( T_{11}^{4} + 7T_{11}^{2} + 49 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 7T^{2} + 49 \) Copy content Toggle raw display
$5$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} + 658 T^{2} + 117649 \) Copy content Toggle raw display
$11$ \( T^{4} + 7T^{2} + 49 \) Copy content Toggle raw display
$13$ \( (T - 60)^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + 25 T + 625)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 9583 T^{2} + 91833889 \) Copy content Toggle raw display
$23$ \( T^{4} + 24367 T^{2} + 593750689 \) Copy content Toggle raw display
$29$ \( (T + 52)^{4} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 2557830625 \) Copy content Toggle raw display
$37$ \( (T^{2} - 95 T + 9025)^{2} \) Copy content Toggle raw display
$41$ \( (T - 64)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} - 40432)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 36318830625 \) Copy content Toggle raw display
$53$ \( (T^{2} - 203 T + 41209)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 22743 T^{2} + 517244049 \) Copy content Toggle raw display
$61$ \( (T^{2} - 151 T + 22801)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 631997970289 \) Copy content Toggle raw display
$71$ \( (T^{2} - 790272)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 335 T + 112225)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + 63T^{2} + 3969 \) Copy content Toggle raw display
$83$ \( (T^{2} - 9072)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 1263 T + 1595169)^{2} \) Copy content Toggle raw display
$97$ \( (T + 64)^{4} \) Copy content Toggle raw display
show more
show less