Properties

Label 448.4.a.r.1.2
Level $448$
Weight $4$
Character 448.1
Self dual yes
Analytic conductor $26.433$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,4,Mod(1,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 448.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2,0,-22,0,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.4328556826\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{57}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 56)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-3.27492\) of defining polynomial
Character \(\chi\) \(=\) 448.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+6.54983 q^{3} -3.45017 q^{5} -7.00000 q^{7} +15.9003 q^{9} -27.2990 q^{11} -58.7492 q^{13} -22.5980 q^{15} +49.2990 q^{17} -157.148 q^{19} -45.8488 q^{21} +82.1993 q^{23} -113.096 q^{25} -72.7010 q^{27} +194.096 q^{29} -115.698 q^{31} -178.804 q^{33} +24.1512 q^{35} -327.498 q^{37} -384.797 q^{39} -136.103 q^{41} +311.698 q^{43} -54.8588 q^{45} +355.698 q^{47} +49.0000 q^{49} +322.900 q^{51} -677.588 q^{53} +94.1861 q^{55} -1029.29 q^{57} -197.148 q^{59} -61.0449 q^{61} -111.302 q^{63} +202.694 q^{65} +1017.39 q^{67} +538.392 q^{69} +279.807 q^{71} +629.794 q^{73} -740.762 q^{75} +191.093 q^{77} -20.2060 q^{79} -905.488 q^{81} -260.158 q^{83} -170.090 q^{85} +1271.30 q^{87} -909.974 q^{89} +411.244 q^{91} -757.801 q^{93} +542.186 q^{95} +100.488 q^{97} -434.063 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 22 q^{5} - 14 q^{7} + 62 q^{9} + 36 q^{11} - 42 q^{13} + 136 q^{15} + 8 q^{17} - 118 q^{19} + 14 q^{21} + 104 q^{23} + 106 q^{25} - 236 q^{27} + 56 q^{29} - 20 q^{31} - 720 q^{33} + 154 q^{35}+ \cdots + 2484 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 6.54983 1.26052 0.630258 0.776386i \(-0.282949\pi\)
0.630258 + 0.776386i \(0.282949\pi\)
\(4\) 0 0
\(5\) −3.45017 −0.308592 −0.154296 0.988025i \(-0.549311\pi\)
−0.154296 + 0.988025i \(0.549311\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 15.9003 0.588901
\(10\) 0 0
\(11\) −27.2990 −0.748269 −0.374135 0.927374i \(-0.622060\pi\)
−0.374135 + 0.927374i \(0.622060\pi\)
\(12\) 0 0
\(13\) −58.7492 −1.25339 −0.626696 0.779264i \(-0.715593\pi\)
−0.626696 + 0.779264i \(0.715593\pi\)
\(14\) 0 0
\(15\) −22.5980 −0.388985
\(16\) 0 0
\(17\) 49.2990 0.703339 0.351670 0.936124i \(-0.385614\pi\)
0.351670 + 0.936124i \(0.385614\pi\)
\(18\) 0 0
\(19\) −157.148 −1.89748 −0.948742 0.316052i \(-0.897643\pi\)
−0.948742 + 0.316052i \(0.897643\pi\)
\(20\) 0 0
\(21\) −45.8488 −0.476430
\(22\) 0 0
\(23\) 82.1993 0.745206 0.372603 0.927991i \(-0.378465\pi\)
0.372603 + 0.927991i \(0.378465\pi\)
\(24\) 0 0
\(25\) −113.096 −0.904771
\(26\) 0 0
\(27\) −72.7010 −0.518197
\(28\) 0 0
\(29\) 194.096 1.24285 0.621427 0.783472i \(-0.286553\pi\)
0.621427 + 0.783472i \(0.286553\pi\)
\(30\) 0 0
\(31\) −115.698 −0.670320 −0.335160 0.942161i \(-0.608790\pi\)
−0.335160 + 0.942161i \(0.608790\pi\)
\(32\) 0 0
\(33\) −178.804 −0.943205
\(34\) 0 0
\(35\) 24.1512 0.116637
\(36\) 0 0
\(37\) −327.498 −1.45515 −0.727573 0.686030i \(-0.759352\pi\)
−0.727573 + 0.686030i \(0.759352\pi\)
\(38\) 0 0
\(39\) −384.797 −1.57992
\(40\) 0 0
\(41\) −136.103 −0.518432 −0.259216 0.965819i \(-0.583464\pi\)
−0.259216 + 0.965819i \(0.583464\pi\)
\(42\) 0 0
\(43\) 311.698 1.10543 0.552715 0.833371i \(-0.313592\pi\)
0.552715 + 0.833371i \(0.313592\pi\)
\(44\) 0 0
\(45\) −54.8588 −0.181730
\(46\) 0 0
\(47\) 355.698 1.10391 0.551956 0.833873i \(-0.313882\pi\)
0.551956 + 0.833873i \(0.313882\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 322.900 0.886570
\(52\) 0 0
\(53\) −677.588 −1.75611 −0.878055 0.478559i \(-0.841159\pi\)
−0.878055 + 0.478559i \(0.841159\pi\)
\(54\) 0 0
\(55\) 94.1861 0.230910
\(56\) 0 0
\(57\) −1029.29 −2.39181
\(58\) 0 0
\(59\) −197.148 −0.435025 −0.217512 0.976058i \(-0.569794\pi\)
−0.217512 + 0.976058i \(0.569794\pi\)
\(60\) 0 0
\(61\) −61.0449 −0.128131 −0.0640655 0.997946i \(-0.520407\pi\)
−0.0640655 + 0.997946i \(0.520407\pi\)
\(62\) 0 0
\(63\) −111.302 −0.222584
\(64\) 0 0
\(65\) 202.694 0.386787
\(66\) 0 0
\(67\) 1017.39 1.85513 0.927566 0.373660i \(-0.121897\pi\)
0.927566 + 0.373660i \(0.121897\pi\)
\(68\) 0 0
\(69\) 538.392 0.939345
\(70\) 0 0
\(71\) 279.807 0.467704 0.233852 0.972272i \(-0.424867\pi\)
0.233852 + 0.972272i \(0.424867\pi\)
\(72\) 0 0
\(73\) 629.794 1.00975 0.504875 0.863192i \(-0.331538\pi\)
0.504875 + 0.863192i \(0.331538\pi\)
\(74\) 0 0
\(75\) −740.762 −1.14048
\(76\) 0 0
\(77\) 191.093 0.282819
\(78\) 0 0
\(79\) −20.2060 −0.0287766 −0.0143883 0.999896i \(-0.504580\pi\)
−0.0143883 + 0.999896i \(0.504580\pi\)
\(80\) 0 0
\(81\) −905.488 −1.24210
\(82\) 0 0
\(83\) −260.158 −0.344049 −0.172024 0.985093i \(-0.555031\pi\)
−0.172024 + 0.985093i \(0.555031\pi\)
\(84\) 0 0
\(85\) −170.090 −0.217045
\(86\) 0 0
\(87\) 1271.30 1.56664
\(88\) 0 0
\(89\) −909.974 −1.08379 −0.541893 0.840447i \(-0.682292\pi\)
−0.541893 + 0.840447i \(0.682292\pi\)
\(90\) 0 0
\(91\) 411.244 0.473737
\(92\) 0 0
\(93\) −757.801 −0.844949
\(94\) 0 0
\(95\) 542.186 0.585549
\(96\) 0 0
\(97\) 100.488 0.105186 0.0525931 0.998616i \(-0.483251\pi\)
0.0525931 + 0.998616i \(0.483251\pi\)
\(98\) 0 0
\(99\) −434.063 −0.440657
\(100\) 0 0
\(101\) −1868.25 −1.84057 −0.920285 0.391249i \(-0.872043\pi\)
−0.920285 + 0.391249i \(0.872043\pi\)
\(102\) 0 0
\(103\) −7.10629 −0.00679809 −0.00339905 0.999994i \(-0.501082\pi\)
−0.00339905 + 0.999994i \(0.501082\pi\)
\(104\) 0 0
\(105\) 158.186 0.147023
\(106\) 0 0
\(107\) −1078.01 −0.973970 −0.486985 0.873410i \(-0.661903\pi\)
−0.486985 + 0.873410i \(0.661903\pi\)
\(108\) 0 0
\(109\) −457.698 −0.402197 −0.201099 0.979571i \(-0.564451\pi\)
−0.201099 + 0.979571i \(0.564451\pi\)
\(110\) 0 0
\(111\) −2145.06 −1.83423
\(112\) 0 0
\(113\) 1931.25 1.60776 0.803880 0.594791i \(-0.202765\pi\)
0.803880 + 0.594791i \(0.202765\pi\)
\(114\) 0 0
\(115\) −283.601 −0.229965
\(116\) 0 0
\(117\) −934.131 −0.738124
\(118\) 0 0
\(119\) −345.093 −0.265837
\(120\) 0 0
\(121\) −585.764 −0.440093
\(122\) 0 0
\(123\) −891.452 −0.653492
\(124\) 0 0
\(125\) 821.472 0.587797
\(126\) 0 0
\(127\) −1616.00 −1.12911 −0.564554 0.825396i \(-0.690952\pi\)
−0.564554 + 0.825396i \(0.690952\pi\)
\(128\) 0 0
\(129\) 2041.57 1.39341
\(130\) 0 0
\(131\) 507.650 0.338577 0.169288 0.985567i \(-0.445853\pi\)
0.169288 + 0.985567i \(0.445853\pi\)
\(132\) 0 0
\(133\) 1100.03 0.717181
\(134\) 0 0
\(135\) 250.830 0.159911
\(136\) 0 0
\(137\) −2763.36 −1.72328 −0.861642 0.507516i \(-0.830564\pi\)
−0.861642 + 0.507516i \(0.830564\pi\)
\(138\) 0 0
\(139\) 1227.55 0.749063 0.374531 0.927214i \(-0.377804\pi\)
0.374531 + 0.927214i \(0.377804\pi\)
\(140\) 0 0
\(141\) 2329.76 1.39150
\(142\) 0 0
\(143\) 1603.79 0.937874
\(144\) 0 0
\(145\) −669.665 −0.383535
\(146\) 0 0
\(147\) 320.942 0.180074
\(148\) 0 0
\(149\) 4.61126 0.00253536 0.00126768 0.999999i \(-0.499596\pi\)
0.00126768 + 0.999999i \(0.499596\pi\)
\(150\) 0 0
\(151\) −74.3656 −0.0400780 −0.0200390 0.999799i \(-0.506379\pi\)
−0.0200390 + 0.999799i \(0.506379\pi\)
\(152\) 0 0
\(153\) 783.871 0.414197
\(154\) 0 0
\(155\) 399.176 0.206855
\(156\) 0 0
\(157\) 3241.65 1.64785 0.823923 0.566702i \(-0.191781\pi\)
0.823923 + 0.566702i \(0.191781\pi\)
\(158\) 0 0
\(159\) −4438.09 −2.21361
\(160\) 0 0
\(161\) −575.395 −0.281662
\(162\) 0 0
\(163\) −943.093 −0.453183 −0.226591 0.973990i \(-0.572758\pi\)
−0.226591 + 0.973990i \(0.572758\pi\)
\(164\) 0 0
\(165\) 616.903 0.291066
\(166\) 0 0
\(167\) 2325.46 1.07754 0.538771 0.842452i \(-0.318889\pi\)
0.538771 + 0.842452i \(0.318889\pi\)
\(168\) 0 0
\(169\) 1254.47 0.570990
\(170\) 0 0
\(171\) −2498.70 −1.11743
\(172\) 0 0
\(173\) −2920.14 −1.28332 −0.641659 0.766990i \(-0.721753\pi\)
−0.641659 + 0.766990i \(0.721753\pi\)
\(174\) 0 0
\(175\) 791.675 0.341971
\(176\) 0 0
\(177\) −1291.29 −0.548356
\(178\) 0 0
\(179\) 3049.14 1.27320 0.636602 0.771192i \(-0.280339\pi\)
0.636602 + 0.771192i \(0.280339\pi\)
\(180\) 0 0
\(181\) 3046.00 1.25087 0.625434 0.780277i \(-0.284922\pi\)
0.625434 + 0.780277i \(0.284922\pi\)
\(182\) 0 0
\(183\) −399.834 −0.161511
\(184\) 0 0
\(185\) 1129.92 0.449047
\(186\) 0 0
\(187\) −1345.81 −0.526287
\(188\) 0 0
\(189\) 508.907 0.195860
\(190\) 0 0
\(191\) 2056.55 0.779093 0.389547 0.921007i \(-0.372632\pi\)
0.389547 + 0.921007i \(0.372632\pi\)
\(192\) 0 0
\(193\) −718.455 −0.267956 −0.133978 0.990984i \(-0.542775\pi\)
−0.133978 + 0.990984i \(0.542775\pi\)
\(194\) 0 0
\(195\) 1327.61 0.487551
\(196\) 0 0
\(197\) 1200.16 0.434050 0.217025 0.976166i \(-0.430365\pi\)
0.217025 + 0.976166i \(0.430365\pi\)
\(198\) 0 0
\(199\) 950.335 0.338530 0.169265 0.985571i \(-0.445861\pi\)
0.169265 + 0.985571i \(0.445861\pi\)
\(200\) 0 0
\(201\) 6663.73 2.33842
\(202\) 0 0
\(203\) −1358.67 −0.469755
\(204\) 0 0
\(205\) 469.578 0.159984
\(206\) 0 0
\(207\) 1307.00 0.438853
\(208\) 0 0
\(209\) 4289.98 1.41983
\(210\) 0 0
\(211\) 2558.56 0.834779 0.417390 0.908728i \(-0.362945\pi\)
0.417390 + 0.908728i \(0.362945\pi\)
\(212\) 0 0
\(213\) 1832.69 0.589549
\(214\) 0 0
\(215\) −1075.41 −0.341127
\(216\) 0 0
\(217\) 809.884 0.253357
\(218\) 0 0
\(219\) 4125.05 1.27281
\(220\) 0 0
\(221\) −2896.28 −0.881559
\(222\) 0 0
\(223\) −419.821 −0.126068 −0.0630342 0.998011i \(-0.520078\pi\)
−0.0630342 + 0.998011i \(0.520078\pi\)
\(224\) 0 0
\(225\) −1798.27 −0.532821
\(226\) 0 0
\(227\) 4425.95 1.29410 0.647050 0.762448i \(-0.276003\pi\)
0.647050 + 0.762448i \(0.276003\pi\)
\(228\) 0 0
\(229\) 682.254 0.196876 0.0984380 0.995143i \(-0.468615\pi\)
0.0984380 + 0.995143i \(0.468615\pi\)
\(230\) 0 0
\(231\) 1251.63 0.356498
\(232\) 0 0
\(233\) 4280.74 1.20361 0.601804 0.798644i \(-0.294449\pi\)
0.601804 + 0.798644i \(0.294449\pi\)
\(234\) 0 0
\(235\) −1227.22 −0.340658
\(236\) 0 0
\(237\) −132.346 −0.0362733
\(238\) 0 0
\(239\) −4828.95 −1.30694 −0.653470 0.756952i \(-0.726688\pi\)
−0.653470 + 0.756952i \(0.726688\pi\)
\(240\) 0 0
\(241\) −959.139 −0.256363 −0.128182 0.991751i \(-0.540914\pi\)
−0.128182 + 0.991751i \(0.540914\pi\)
\(242\) 0 0
\(243\) −3967.87 −1.04749
\(244\) 0 0
\(245\) −169.058 −0.0440846
\(246\) 0 0
\(247\) 9232.31 2.37829
\(248\) 0 0
\(249\) −1703.99 −0.433679
\(250\) 0 0
\(251\) −5226.44 −1.31430 −0.657151 0.753759i \(-0.728239\pi\)
−0.657151 + 0.753759i \(0.728239\pi\)
\(252\) 0 0
\(253\) −2243.96 −0.557615
\(254\) 0 0
\(255\) −1114.06 −0.273589
\(256\) 0 0
\(257\) −3288.78 −0.798242 −0.399121 0.916898i \(-0.630685\pi\)
−0.399121 + 0.916898i \(0.630685\pi\)
\(258\) 0 0
\(259\) 2292.49 0.549993
\(260\) 0 0
\(261\) 3086.20 0.731919
\(262\) 0 0
\(263\) 6681.35 1.56650 0.783250 0.621707i \(-0.213560\pi\)
0.783250 + 0.621707i \(0.213560\pi\)
\(264\) 0 0
\(265\) 2337.79 0.541922
\(266\) 0 0
\(267\) −5960.18 −1.36613
\(268\) 0 0
\(269\) 299.875 0.0679692 0.0339846 0.999422i \(-0.489180\pi\)
0.0339846 + 0.999422i \(0.489180\pi\)
\(270\) 0 0
\(271\) −126.405 −0.0283342 −0.0141671 0.999900i \(-0.504510\pi\)
−0.0141671 + 0.999900i \(0.504510\pi\)
\(272\) 0 0
\(273\) 2693.58 0.597154
\(274\) 0 0
\(275\) 3087.42 0.677012
\(276\) 0 0
\(277\) 1439.53 0.312249 0.156124 0.987737i \(-0.450100\pi\)
0.156124 + 0.987737i \(0.450100\pi\)
\(278\) 0 0
\(279\) −1839.63 −0.394752
\(280\) 0 0
\(281\) −1024.45 −0.217485 −0.108742 0.994070i \(-0.534682\pi\)
−0.108742 + 0.994070i \(0.534682\pi\)
\(282\) 0 0
\(283\) −147.168 −0.0309124 −0.0154562 0.999881i \(-0.504920\pi\)
−0.0154562 + 0.999881i \(0.504920\pi\)
\(284\) 0 0
\(285\) 3551.23 0.738094
\(286\) 0 0
\(287\) 952.721 0.195949
\(288\) 0 0
\(289\) −2482.61 −0.505314
\(290\) 0 0
\(291\) 658.182 0.132589
\(292\) 0 0
\(293\) −4611.20 −0.919418 −0.459709 0.888070i \(-0.652046\pi\)
−0.459709 + 0.888070i \(0.652046\pi\)
\(294\) 0 0
\(295\) 680.193 0.134245
\(296\) 0 0
\(297\) 1984.66 0.387751
\(298\) 0 0
\(299\) −4829.14 −0.934035
\(300\) 0 0
\(301\) −2181.88 −0.417813
\(302\) 0 0
\(303\) −12236.7 −2.32007
\(304\) 0 0
\(305\) 210.615 0.0395402
\(306\) 0 0
\(307\) −1136.28 −0.211242 −0.105621 0.994406i \(-0.533683\pi\)
−0.105621 + 0.994406i \(0.533683\pi\)
\(308\) 0 0
\(309\) −46.5450 −0.00856911
\(310\) 0 0
\(311\) −8798.71 −1.60427 −0.802137 0.597140i \(-0.796304\pi\)
−0.802137 + 0.597140i \(0.796304\pi\)
\(312\) 0 0
\(313\) −8738.34 −1.57802 −0.789010 0.614381i \(-0.789406\pi\)
−0.789010 + 0.614381i \(0.789406\pi\)
\(314\) 0 0
\(315\) 384.011 0.0686876
\(316\) 0 0
\(317\) −613.475 −0.108695 −0.0543473 0.998522i \(-0.517308\pi\)
−0.0543473 + 0.998522i \(0.517308\pi\)
\(318\) 0 0
\(319\) −5298.64 −0.929990
\(320\) 0 0
\(321\) −7060.76 −1.22771
\(322\) 0 0
\(323\) −7747.23 −1.33457
\(324\) 0 0
\(325\) 6644.32 1.13403
\(326\) 0 0
\(327\) −2997.84 −0.506976
\(328\) 0 0
\(329\) −2489.88 −0.417239
\(330\) 0 0
\(331\) 2920.52 0.484974 0.242487 0.970155i \(-0.422037\pi\)
0.242487 + 0.970155i \(0.422037\pi\)
\(332\) 0 0
\(333\) −5207.33 −0.856937
\(334\) 0 0
\(335\) −3510.16 −0.572479
\(336\) 0 0
\(337\) 5181.86 0.837609 0.418804 0.908077i \(-0.362449\pi\)
0.418804 + 0.908077i \(0.362449\pi\)
\(338\) 0 0
\(339\) 12649.4 2.02661
\(340\) 0 0
\(341\) 3158.43 0.501580
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) −1857.54 −0.289874
\(346\) 0 0
\(347\) 6366.41 0.984919 0.492459 0.870335i \(-0.336098\pi\)
0.492459 + 0.870335i \(0.336098\pi\)
\(348\) 0 0
\(349\) −2114.58 −0.324330 −0.162165 0.986764i \(-0.551848\pi\)
−0.162165 + 0.986764i \(0.551848\pi\)
\(350\) 0 0
\(351\) 4271.12 0.649503
\(352\) 0 0
\(353\) −8424.62 −1.27025 −0.635124 0.772411i \(-0.719051\pi\)
−0.635124 + 0.772411i \(0.719051\pi\)
\(354\) 0 0
\(355\) −965.381 −0.144330
\(356\) 0 0
\(357\) −2260.30 −0.335092
\(358\) 0 0
\(359\) 597.090 0.0877805 0.0438903 0.999036i \(-0.486025\pi\)
0.0438903 + 0.999036i \(0.486025\pi\)
\(360\) 0 0
\(361\) 17836.4 2.60044
\(362\) 0 0
\(363\) −3836.66 −0.554745
\(364\) 0 0
\(365\) −2172.89 −0.311601
\(366\) 0 0
\(367\) 7563.58 1.07579 0.537896 0.843011i \(-0.319219\pi\)
0.537896 + 0.843011i \(0.319219\pi\)
\(368\) 0 0
\(369\) −2164.08 −0.305305
\(370\) 0 0
\(371\) 4743.12 0.663748
\(372\) 0 0
\(373\) −9760.01 −1.35484 −0.677419 0.735598i \(-0.736901\pi\)
−0.677419 + 0.735598i \(0.736901\pi\)
\(374\) 0 0
\(375\) 5380.50 0.740928
\(376\) 0 0
\(377\) −11403.0 −1.55778
\(378\) 0 0
\(379\) −9275.91 −1.25718 −0.628590 0.777737i \(-0.716368\pi\)
−0.628590 + 0.777737i \(0.716368\pi\)
\(380\) 0 0
\(381\) −10584.5 −1.42326
\(382\) 0 0
\(383\) −8008.24 −1.06841 −0.534206 0.845354i \(-0.679389\pi\)
−0.534206 + 0.845354i \(0.679389\pi\)
\(384\) 0 0
\(385\) −659.303 −0.0872758
\(386\) 0 0
\(387\) 4956.10 0.650988
\(388\) 0 0
\(389\) 208.861 0.0272228 0.0136114 0.999907i \(-0.495667\pi\)
0.0136114 + 0.999907i \(0.495667\pi\)
\(390\) 0 0
\(391\) 4052.35 0.524133
\(392\) 0 0
\(393\) 3325.02 0.426781
\(394\) 0 0
\(395\) 69.7139 0.00888022
\(396\) 0 0
\(397\) 4004.51 0.506249 0.253124 0.967434i \(-0.418542\pi\)
0.253124 + 0.967434i \(0.418542\pi\)
\(398\) 0 0
\(399\) 7205.05 0.904019
\(400\) 0 0
\(401\) −5085.30 −0.633286 −0.316643 0.948545i \(-0.602556\pi\)
−0.316643 + 0.948545i \(0.602556\pi\)
\(402\) 0 0
\(403\) 6797.14 0.840173
\(404\) 0 0
\(405\) 3124.08 0.383301
\(406\) 0 0
\(407\) 8940.38 1.08884
\(408\) 0 0
\(409\) −15143.3 −1.83078 −0.915390 0.402569i \(-0.868117\pi\)
−0.915390 + 0.402569i \(0.868117\pi\)
\(410\) 0 0
\(411\) −18099.6 −2.17223
\(412\) 0 0
\(413\) 1380.03 0.164424
\(414\) 0 0
\(415\) 897.587 0.106171
\(416\) 0 0
\(417\) 8040.27 0.944206
\(418\) 0 0
\(419\) −8407.07 −0.980220 −0.490110 0.871661i \(-0.663043\pi\)
−0.490110 + 0.871661i \(0.663043\pi\)
\(420\) 0 0
\(421\) −10020.9 −1.16006 −0.580032 0.814593i \(-0.696960\pi\)
−0.580032 + 0.814593i \(0.696960\pi\)
\(422\) 0 0
\(423\) 5655.71 0.650095
\(424\) 0 0
\(425\) −5575.54 −0.636361
\(426\) 0 0
\(427\) 427.314 0.0484290
\(428\) 0 0
\(429\) 10504.6 1.18221
\(430\) 0 0
\(431\) 15424.5 1.72384 0.861918 0.507048i \(-0.169263\pi\)
0.861918 + 0.507048i \(0.169263\pi\)
\(432\) 0 0
\(433\) 10209.8 1.13314 0.566571 0.824013i \(-0.308270\pi\)
0.566571 + 0.824013i \(0.308270\pi\)
\(434\) 0 0
\(435\) −4386.19 −0.483452
\(436\) 0 0
\(437\) −12917.4 −1.41402
\(438\) 0 0
\(439\) −13469.1 −1.46434 −0.732168 0.681124i \(-0.761491\pi\)
−0.732168 + 0.681124i \(0.761491\pi\)
\(440\) 0 0
\(441\) 779.116 0.0841287
\(442\) 0 0
\(443\) 17987.5 1.92915 0.964573 0.263817i \(-0.0849816\pi\)
0.964573 + 0.263817i \(0.0849816\pi\)
\(444\) 0 0
\(445\) 3139.56 0.334448
\(446\) 0 0
\(447\) 30.2030 0.00319587
\(448\) 0 0
\(449\) −16413.6 −1.72518 −0.862591 0.505903i \(-0.831160\pi\)
−0.862591 + 0.505903i \(0.831160\pi\)
\(450\) 0 0
\(451\) 3715.48 0.387927
\(452\) 0 0
\(453\) −487.082 −0.0505190
\(454\) 0 0
\(455\) −1418.86 −0.146192
\(456\) 0 0
\(457\) 283.139 0.0289818 0.0144909 0.999895i \(-0.495387\pi\)
0.0144909 + 0.999895i \(0.495387\pi\)
\(458\) 0 0
\(459\) −3584.09 −0.364468
\(460\) 0 0
\(461\) −13769.3 −1.39111 −0.695555 0.718473i \(-0.744841\pi\)
−0.695555 + 0.718473i \(0.744841\pi\)
\(462\) 0 0
\(463\) −12715.4 −1.27632 −0.638161 0.769903i \(-0.720304\pi\)
−0.638161 + 0.769903i \(0.720304\pi\)
\(464\) 0 0
\(465\) 2614.54 0.260745
\(466\) 0 0
\(467\) 8052.37 0.797900 0.398950 0.916973i \(-0.369375\pi\)
0.398950 + 0.916973i \(0.369375\pi\)
\(468\) 0 0
\(469\) −7121.72 −0.701174
\(470\) 0 0
\(471\) 21232.3 2.07714
\(472\) 0 0
\(473\) −8509.04 −0.827158
\(474\) 0 0
\(475\) 17772.8 1.71679
\(476\) 0 0
\(477\) −10773.9 −1.03418
\(478\) 0 0
\(479\) −5407.58 −0.515822 −0.257911 0.966169i \(-0.583034\pi\)
−0.257911 + 0.966169i \(0.583034\pi\)
\(480\) 0 0
\(481\) 19240.3 1.82387
\(482\) 0 0
\(483\) −3768.74 −0.355039
\(484\) 0 0
\(485\) −346.702 −0.0324596
\(486\) 0 0
\(487\) −2672.17 −0.248639 −0.124320 0.992242i \(-0.539675\pi\)
−0.124320 + 0.992242i \(0.539675\pi\)
\(488\) 0 0
\(489\) −6177.10 −0.571244
\(490\) 0 0
\(491\) 6537.75 0.600905 0.300453 0.953797i \(-0.402862\pi\)
0.300453 + 0.953797i \(0.402862\pi\)
\(492\) 0 0
\(493\) 9568.76 0.874148
\(494\) 0 0
\(495\) 1497.59 0.135983
\(496\) 0 0
\(497\) −1958.65 −0.176776
\(498\) 0 0
\(499\) −14621.8 −1.31175 −0.655875 0.754870i \(-0.727700\pi\)
−0.655875 + 0.754870i \(0.727700\pi\)
\(500\) 0 0
\(501\) 15231.4 1.35826
\(502\) 0 0
\(503\) 2928.33 0.259578 0.129789 0.991542i \(-0.458570\pi\)
0.129789 + 0.991542i \(0.458570\pi\)
\(504\) 0 0
\(505\) 6445.76 0.567986
\(506\) 0 0
\(507\) 8216.54 0.719742
\(508\) 0 0
\(509\) 2262.06 0.196982 0.0984910 0.995138i \(-0.468598\pi\)
0.0984910 + 0.995138i \(0.468598\pi\)
\(510\) 0 0
\(511\) −4408.56 −0.381650
\(512\) 0 0
\(513\) 11424.8 0.983270
\(514\) 0 0
\(515\) 24.5179 0.00209784
\(516\) 0 0
\(517\) −9710.19 −0.826023
\(518\) 0 0
\(519\) −19126.4 −1.61764
\(520\) 0 0
\(521\) −6284.94 −0.528499 −0.264250 0.964454i \(-0.585124\pi\)
−0.264250 + 0.964454i \(0.585124\pi\)
\(522\) 0 0
\(523\) −23595.8 −1.97279 −0.986397 0.164378i \(-0.947438\pi\)
−0.986397 + 0.164378i \(0.947438\pi\)
\(524\) 0 0
\(525\) 5185.34 0.431060
\(526\) 0 0
\(527\) −5703.78 −0.471462
\(528\) 0 0
\(529\) −5410.27 −0.444667
\(530\) 0 0
\(531\) −3134.72 −0.256187
\(532\) 0 0
\(533\) 7995.94 0.649798
\(534\) 0 0
\(535\) 3719.30 0.300560
\(536\) 0 0
\(537\) 19971.4 1.60490
\(538\) 0 0
\(539\) −1337.65 −0.106896
\(540\) 0 0
\(541\) 11156.9 0.886642 0.443321 0.896363i \(-0.353800\pi\)
0.443321 + 0.896363i \(0.353800\pi\)
\(542\) 0 0
\(543\) 19950.8 1.57674
\(544\) 0 0
\(545\) 1579.13 0.124115
\(546\) 0 0
\(547\) 4578.08 0.357851 0.178926 0.983863i \(-0.442738\pi\)
0.178926 + 0.983863i \(0.442738\pi\)
\(548\) 0 0
\(549\) −970.634 −0.0754565
\(550\) 0 0
\(551\) −30501.8 −2.35830
\(552\) 0 0
\(553\) 141.442 0.0108765
\(554\) 0 0
\(555\) 7400.81 0.566031
\(556\) 0 0
\(557\) 19499.5 1.48334 0.741669 0.670766i \(-0.234035\pi\)
0.741669 + 0.670766i \(0.234035\pi\)
\(558\) 0 0
\(559\) −18312.0 −1.38554
\(560\) 0 0
\(561\) −8814.86 −0.663393
\(562\) 0 0
\(563\) −4797.53 −0.359133 −0.179566 0.983746i \(-0.557469\pi\)
−0.179566 + 0.983746i \(0.557469\pi\)
\(564\) 0 0
\(565\) −6663.14 −0.496142
\(566\) 0 0
\(567\) 6338.42 0.469468
\(568\) 0 0
\(569\) −9461.07 −0.697063 −0.348531 0.937297i \(-0.613320\pi\)
−0.348531 + 0.937297i \(0.613320\pi\)
\(570\) 0 0
\(571\) 8146.88 0.597086 0.298543 0.954396i \(-0.403499\pi\)
0.298543 + 0.954396i \(0.403499\pi\)
\(572\) 0 0
\(573\) 13470.1 0.982060
\(574\) 0 0
\(575\) −9296.45 −0.674241
\(576\) 0 0
\(577\) 231.608 0.0167105 0.00835526 0.999965i \(-0.497340\pi\)
0.00835526 + 0.999965i \(0.497340\pi\)
\(578\) 0 0
\(579\) −4705.76 −0.337763
\(580\) 0 0
\(581\) 1821.10 0.130038
\(582\) 0 0
\(583\) 18497.5 1.31404
\(584\) 0 0
\(585\) 3222.91 0.227779
\(586\) 0 0
\(587\) −12579.0 −0.884481 −0.442241 0.896896i \(-0.645816\pi\)
−0.442241 + 0.896896i \(0.645816\pi\)
\(588\) 0 0
\(589\) 18181.6 1.27192
\(590\) 0 0
\(591\) 7860.85 0.547127
\(592\) 0 0
\(593\) −447.349 −0.0309788 −0.0154894 0.999880i \(-0.504931\pi\)
−0.0154894 + 0.999880i \(0.504931\pi\)
\(594\) 0 0
\(595\) 1190.63 0.0820353
\(596\) 0 0
\(597\) 6224.54 0.426723
\(598\) 0 0
\(599\) −10640.9 −0.725833 −0.362916 0.931822i \(-0.618219\pi\)
−0.362916 + 0.931822i \(0.618219\pi\)
\(600\) 0 0
\(601\) −9179.29 −0.623013 −0.311507 0.950244i \(-0.600834\pi\)
−0.311507 + 0.950244i \(0.600834\pi\)
\(602\) 0 0
\(603\) 16176.8 1.09249
\(604\) 0 0
\(605\) 2020.98 0.135809
\(606\) 0 0
\(607\) −5404.92 −0.361415 −0.180707 0.983537i \(-0.557839\pi\)
−0.180707 + 0.983537i \(0.557839\pi\)
\(608\) 0 0
\(609\) −8899.09 −0.592134
\(610\) 0 0
\(611\) −20896.9 −1.38363
\(612\) 0 0
\(613\) 10971.0 0.722864 0.361432 0.932398i \(-0.382288\pi\)
0.361432 + 0.932398i \(0.382288\pi\)
\(614\) 0 0
\(615\) 3075.66 0.201663
\(616\) 0 0
\(617\) −5008.36 −0.326789 −0.163395 0.986561i \(-0.552244\pi\)
−0.163395 + 0.986561i \(0.552244\pi\)
\(618\) 0 0
\(619\) −26422.1 −1.71566 −0.857830 0.513934i \(-0.828188\pi\)
−0.857830 + 0.513934i \(0.828188\pi\)
\(620\) 0 0
\(621\) −5975.97 −0.386164
\(622\) 0 0
\(623\) 6369.81 0.409633
\(624\) 0 0
\(625\) 11302.8 0.723381
\(626\) 0 0
\(627\) 28098.7 1.78972
\(628\) 0 0
\(629\) −16145.3 −1.02346
\(630\) 0 0
\(631\) −119.528 −0.00754093 −0.00377047 0.999993i \(-0.501200\pi\)
−0.00377047 + 0.999993i \(0.501200\pi\)
\(632\) 0 0
\(633\) 16758.1 1.05225
\(634\) 0 0
\(635\) 5575.47 0.348434
\(636\) 0 0
\(637\) −2878.71 −0.179056
\(638\) 0 0
\(639\) 4449.03 0.275432
\(640\) 0 0
\(641\) 23746.6 1.46324 0.731618 0.681714i \(-0.238765\pi\)
0.731618 + 0.681714i \(0.238765\pi\)
\(642\) 0 0
\(643\) −18138.5 −1.11246 −0.556231 0.831028i \(-0.687753\pi\)
−0.556231 + 0.831028i \(0.687753\pi\)
\(644\) 0 0
\(645\) −7043.75 −0.429996
\(646\) 0 0
\(647\) 8176.52 0.496835 0.248417 0.968653i \(-0.420090\pi\)
0.248417 + 0.968653i \(0.420090\pi\)
\(648\) 0 0
\(649\) 5381.94 0.325516
\(650\) 0 0
\(651\) 5304.60 0.319361
\(652\) 0 0
\(653\) −24315.5 −1.45718 −0.728589 0.684951i \(-0.759824\pi\)
−0.728589 + 0.684951i \(0.759824\pi\)
\(654\) 0 0
\(655\) −1751.47 −0.104482
\(656\) 0 0
\(657\) 10013.9 0.594643
\(658\) 0 0
\(659\) −13443.8 −0.794680 −0.397340 0.917671i \(-0.630067\pi\)
−0.397340 + 0.917671i \(0.630067\pi\)
\(660\) 0 0
\(661\) 20267.3 1.19260 0.596299 0.802762i \(-0.296637\pi\)
0.596299 + 0.802762i \(0.296637\pi\)
\(662\) 0 0
\(663\) −18970.1 −1.11122
\(664\) 0 0
\(665\) −3795.30 −0.221317
\(666\) 0 0
\(667\) 15954.6 0.926183
\(668\) 0 0
\(669\) −2749.75 −0.158911
\(670\) 0 0
\(671\) 1666.46 0.0958765
\(672\) 0 0
\(673\) 20471.1 1.17252 0.586258 0.810125i \(-0.300601\pi\)
0.586258 + 0.810125i \(0.300601\pi\)
\(674\) 0 0
\(675\) 8222.22 0.468849
\(676\) 0 0
\(677\) −17693.5 −1.00446 −0.502229 0.864735i \(-0.667486\pi\)
−0.502229 + 0.864735i \(0.667486\pi\)
\(678\) 0 0
\(679\) −703.419 −0.0397566
\(680\) 0 0
\(681\) 28989.2 1.63123
\(682\) 0 0
\(683\) −16613.3 −0.930734 −0.465367 0.885118i \(-0.654078\pi\)
−0.465367 + 0.885118i \(0.654078\pi\)
\(684\) 0 0
\(685\) 9534.06 0.531792
\(686\) 0 0
\(687\) 4468.65 0.248165
\(688\) 0 0
\(689\) 39807.7 2.20109
\(690\) 0 0
\(691\) −8207.34 −0.451841 −0.225920 0.974146i \(-0.572539\pi\)
−0.225920 + 0.974146i \(0.572539\pi\)
\(692\) 0 0
\(693\) 3038.44 0.166553
\(694\) 0 0
\(695\) −4235.26 −0.231155
\(696\) 0 0
\(697\) −6709.74 −0.364634
\(698\) 0 0
\(699\) 28038.1 1.51717
\(700\) 0 0
\(701\) 21752.7 1.17202 0.586011 0.810303i \(-0.300698\pi\)
0.586011 + 0.810303i \(0.300698\pi\)
\(702\) 0 0
\(703\) 51465.7 2.76112
\(704\) 0 0
\(705\) −8038.06 −0.429406
\(706\) 0 0
\(707\) 13077.7 0.695670
\(708\) 0 0
\(709\) 14636.1 0.775277 0.387638 0.921811i \(-0.373291\pi\)
0.387638 + 0.921811i \(0.373291\pi\)
\(710\) 0 0
\(711\) −321.281 −0.0169465
\(712\) 0 0
\(713\) −9510.27 −0.499527
\(714\) 0 0
\(715\) −5533.35 −0.289421
\(716\) 0 0
\(717\) −31628.8 −1.64742
\(718\) 0 0
\(719\) 33477.7 1.73645 0.868224 0.496173i \(-0.165262\pi\)
0.868224 + 0.496173i \(0.165262\pi\)
\(720\) 0 0
\(721\) 49.7440 0.00256944
\(722\) 0 0
\(723\) −6282.20 −0.323150
\(724\) 0 0
\(725\) −21951.6 −1.12450
\(726\) 0 0
\(727\) −20073.4 −1.02404 −0.512022 0.858972i \(-0.671103\pi\)
−0.512022 + 0.858972i \(0.671103\pi\)
\(728\) 0 0
\(729\) −1540.72 −0.0782767
\(730\) 0 0
\(731\) 15366.4 0.777492
\(732\) 0 0
\(733\) 19982.3 1.00691 0.503455 0.864022i \(-0.332062\pi\)
0.503455 + 0.864022i \(0.332062\pi\)
\(734\) 0 0
\(735\) −1107.30 −0.0555694
\(736\) 0 0
\(737\) −27773.7 −1.38814
\(738\) 0 0
\(739\) 11224.8 0.558744 0.279372 0.960183i \(-0.409874\pi\)
0.279372 + 0.960183i \(0.409874\pi\)
\(740\) 0 0
\(741\) 60470.1 2.99787
\(742\) 0 0
\(743\) −7894.51 −0.389800 −0.194900 0.980823i \(-0.562438\pi\)
−0.194900 + 0.980823i \(0.562438\pi\)
\(744\) 0 0
\(745\) −15.9096 −0.000782393 0
\(746\) 0 0
\(747\) −4136.59 −0.202611
\(748\) 0 0
\(749\) 7546.05 0.368126
\(750\) 0 0
\(751\) 2613.52 0.126989 0.0634945 0.997982i \(-0.479775\pi\)
0.0634945 + 0.997982i \(0.479775\pi\)
\(752\) 0 0
\(753\) −34232.3 −1.65670
\(754\) 0 0
\(755\) 256.574 0.0123678
\(756\) 0 0
\(757\) −12055.8 −0.578831 −0.289415 0.957204i \(-0.593461\pi\)
−0.289415 + 0.957204i \(0.593461\pi\)
\(758\) 0 0
\(759\) −14697.6 −0.702883
\(760\) 0 0
\(761\) 1196.38 0.0569893 0.0284946 0.999594i \(-0.490929\pi\)
0.0284946 + 0.999594i \(0.490929\pi\)
\(762\) 0 0
\(763\) 3203.88 0.152016
\(764\) 0 0
\(765\) −2704.48 −0.127818
\(766\) 0 0
\(767\) 11582.3 0.545256
\(768\) 0 0
\(769\) 5216.18 0.244604 0.122302 0.992493i \(-0.460972\pi\)
0.122302 + 0.992493i \(0.460972\pi\)
\(770\) 0 0
\(771\) −21540.9 −1.00620
\(772\) 0 0
\(773\) −17623.0 −0.819994 −0.409997 0.912087i \(-0.634470\pi\)
−0.409997 + 0.912087i \(0.634470\pi\)
\(774\) 0 0
\(775\) 13085.0 0.606486
\(776\) 0 0
\(777\) 15015.4 0.693276
\(778\) 0 0
\(779\) 21388.3 0.983716
\(780\) 0 0
\(781\) −7638.46 −0.349969
\(782\) 0 0
\(783\) −14111.0 −0.644043
\(784\) 0 0
\(785\) −11184.2 −0.508512
\(786\) 0 0
\(787\) −4779.24 −0.216470 −0.108235 0.994125i \(-0.534520\pi\)
−0.108235 + 0.994125i \(0.534520\pi\)
\(788\) 0 0
\(789\) 43761.7 1.97460
\(790\) 0 0
\(791\) −13518.8 −0.607676
\(792\) 0 0
\(793\) 3586.34 0.160598
\(794\) 0 0
\(795\) 15312.1 0.683102
\(796\) 0 0
\(797\) −37903.6 −1.68459 −0.842293 0.539020i \(-0.818795\pi\)
−0.842293 + 0.539020i \(0.818795\pi\)
\(798\) 0 0
\(799\) 17535.5 0.776424
\(800\) 0 0
\(801\) −14468.9 −0.638243
\(802\) 0 0
\(803\) −17192.8 −0.755565
\(804\) 0 0
\(805\) 1985.21 0.0869186
\(806\) 0 0
\(807\) 1964.13 0.0856763
\(808\) 0 0
\(809\) −19848.0 −0.862570 −0.431285 0.902216i \(-0.641940\pi\)
−0.431285 + 0.902216i \(0.641940\pi\)
\(810\) 0 0
\(811\) 7098.27 0.307342 0.153671 0.988122i \(-0.450890\pi\)
0.153671 + 0.988122i \(0.450890\pi\)
\(812\) 0 0
\(813\) −827.934 −0.0357158
\(814\) 0 0
\(815\) 3253.83 0.139849
\(816\) 0 0
\(817\) −48982.6 −2.09753
\(818\) 0 0
\(819\) 6538.92 0.278985
\(820\) 0 0
\(821\) −17294.5 −0.735179 −0.367589 0.929988i \(-0.619817\pi\)
−0.367589 + 0.929988i \(0.619817\pi\)
\(822\) 0 0
\(823\) −17003.5 −0.720176 −0.360088 0.932918i \(-0.617253\pi\)
−0.360088 + 0.932918i \(0.617253\pi\)
\(824\) 0 0
\(825\) 20222.1 0.853385
\(826\) 0 0
\(827\) 24445.1 1.02786 0.513929 0.857833i \(-0.328189\pi\)
0.513929 + 0.857833i \(0.328189\pi\)
\(828\) 0 0
\(829\) −19644.3 −0.823011 −0.411506 0.911407i \(-0.634997\pi\)
−0.411506 + 0.911407i \(0.634997\pi\)
\(830\) 0 0
\(831\) 9428.67 0.393595
\(832\) 0 0
\(833\) 2415.65 0.100477
\(834\) 0 0
\(835\) −8023.22 −0.332521
\(836\) 0 0
\(837\) 8411.34 0.347358
\(838\) 0 0
\(839\) 23132.6 0.951879 0.475939 0.879478i \(-0.342108\pi\)
0.475939 + 0.879478i \(0.342108\pi\)
\(840\) 0 0
\(841\) 13284.4 0.544688
\(842\) 0 0
\(843\) −6709.95 −0.274143
\(844\) 0 0
\(845\) −4328.11 −0.176203
\(846\) 0 0
\(847\) 4100.35 0.166340
\(848\) 0 0
\(849\) −963.924 −0.0389656
\(850\) 0 0
\(851\) −26920.1 −1.08438
\(852\) 0 0
\(853\) 45519.8 1.82716 0.913581 0.406658i \(-0.133306\pi\)
0.913581 + 0.406658i \(0.133306\pi\)
\(854\) 0 0
\(855\) 8620.94 0.344830
\(856\) 0 0
\(857\) 15295.3 0.609659 0.304829 0.952407i \(-0.401401\pi\)
0.304829 + 0.952407i \(0.401401\pi\)
\(858\) 0 0
\(859\) 6495.13 0.257987 0.128994 0.991645i \(-0.458825\pi\)
0.128994 + 0.991645i \(0.458825\pi\)
\(860\) 0 0
\(861\) 6240.16 0.246997
\(862\) 0 0
\(863\) −34002.5 −1.34120 −0.670601 0.741818i \(-0.733964\pi\)
−0.670601 + 0.741818i \(0.733964\pi\)
\(864\) 0 0
\(865\) 10075.0 0.396022
\(866\) 0 0
\(867\) −16260.7 −0.636957
\(868\) 0 0
\(869\) 551.603 0.0215326
\(870\) 0 0
\(871\) −59770.7 −2.32521
\(872\) 0 0
\(873\) 1597.80 0.0619442
\(874\) 0 0
\(875\) −5750.30 −0.222167
\(876\) 0 0
\(877\) −2063.66 −0.0794581 −0.0397291 0.999210i \(-0.512649\pi\)
−0.0397291 + 0.999210i \(0.512649\pi\)
\(878\) 0 0
\(879\) −30202.6 −1.15894
\(880\) 0 0
\(881\) −1681.78 −0.0643141 −0.0321570 0.999483i \(-0.510238\pi\)
−0.0321570 + 0.999483i \(0.510238\pi\)
\(882\) 0 0
\(883\) 11207.2 0.427125 0.213563 0.976929i \(-0.431493\pi\)
0.213563 + 0.976929i \(0.431493\pi\)
\(884\) 0 0
\(885\) 4455.15 0.169218
\(886\) 0 0
\(887\) −8759.49 −0.331584 −0.165792 0.986161i \(-0.553018\pi\)
−0.165792 + 0.986161i \(0.553018\pi\)
\(888\) 0 0
\(889\) 11312.0 0.426763
\(890\) 0 0
\(891\) 24718.9 0.929423
\(892\) 0 0
\(893\) −55897.1 −2.09465
\(894\) 0 0
\(895\) −10520.0 −0.392901
\(896\) 0 0
\(897\) −31630.1 −1.17737
\(898\) 0 0
\(899\) −22456.5 −0.833110
\(900\) 0 0
\(901\) −33404.4 −1.23514
\(902\) 0 0
\(903\) −14291.0 −0.526660
\(904\) 0 0
\(905\) −10509.2 −0.386008
\(906\) 0 0
\(907\) 27925.3 1.02232 0.511161 0.859485i \(-0.329216\pi\)
0.511161 + 0.859485i \(0.329216\pi\)
\(908\) 0 0
\(909\) −29705.8 −1.08391
\(910\) 0 0
\(911\) −23965.3 −0.871577 −0.435789 0.900049i \(-0.643530\pi\)
−0.435789 + 0.900049i \(0.643530\pi\)
\(912\) 0 0
\(913\) 7102.05 0.257441
\(914\) 0 0
\(915\) 1379.49 0.0498411
\(916\) 0 0
\(917\) −3553.55 −0.127970
\(918\) 0 0
\(919\) 19192.2 0.688893 0.344446 0.938806i \(-0.388067\pi\)
0.344446 + 0.938806i \(0.388067\pi\)
\(920\) 0 0
\(921\) −7442.47 −0.266273
\(922\) 0 0
\(923\) −16438.4 −0.586217
\(924\) 0 0
\(925\) 37038.9 1.31657
\(926\) 0 0
\(927\) −112.992 −0.00400341
\(928\) 0 0
\(929\) −28616.5 −1.01063 −0.505317 0.862934i \(-0.668624\pi\)
−0.505317 + 0.862934i \(0.668624\pi\)
\(930\) 0 0
\(931\) −7700.24 −0.271069
\(932\) 0 0
\(933\) −57630.1 −2.02221
\(934\) 0 0
\(935\) 4643.28 0.162408
\(936\) 0 0
\(937\) −27352.7 −0.953656 −0.476828 0.878997i \(-0.658213\pi\)
−0.476828 + 0.878997i \(0.658213\pi\)
\(938\) 0 0
\(939\) −57234.7 −1.98912
\(940\) 0 0
\(941\) 34254.4 1.18668 0.593338 0.804953i \(-0.297810\pi\)
0.593338 + 0.804953i \(0.297810\pi\)
\(942\) 0 0
\(943\) −11187.6 −0.386339
\(944\) 0 0
\(945\) −1755.81 −0.0604409
\(946\) 0 0
\(947\) −1099.15 −0.0377166 −0.0188583 0.999822i \(-0.506003\pi\)
−0.0188583 + 0.999822i \(0.506003\pi\)
\(948\) 0 0
\(949\) −36999.9 −1.26561
\(950\) 0 0
\(951\) −4018.16 −0.137011
\(952\) 0 0
\(953\) 11037.5 0.375174 0.187587 0.982248i \(-0.439933\pi\)
0.187587 + 0.982248i \(0.439933\pi\)
\(954\) 0 0
\(955\) −7095.44 −0.240422
\(956\) 0 0
\(957\) −34705.2 −1.17227
\(958\) 0 0
\(959\) 19343.5 0.651340
\(960\) 0 0
\(961\) −16405.0 −0.550671
\(962\) 0 0
\(963\) −17140.7 −0.573572
\(964\) 0 0
\(965\) 2478.79 0.0826892
\(966\) 0 0
\(967\) −11405.9 −0.379307 −0.189653 0.981851i \(-0.560736\pi\)
−0.189653 + 0.981851i \(0.560736\pi\)
\(968\) 0 0
\(969\) −50743.1 −1.68225
\(970\) 0 0
\(971\) −27331.4 −0.903302 −0.451651 0.892195i \(-0.649165\pi\)
−0.451651 + 0.892195i \(0.649165\pi\)
\(972\) 0 0
\(973\) −8592.87 −0.283119
\(974\) 0 0
\(975\) 43519.2 1.42947
\(976\) 0 0
\(977\) −4661.46 −0.152644 −0.0763221 0.997083i \(-0.524318\pi\)
−0.0763221 + 0.997083i \(0.524318\pi\)
\(978\) 0 0
\(979\) 24841.4 0.810964
\(980\) 0 0
\(981\) −7277.54 −0.236854
\(982\) 0 0
\(983\) 7066.31 0.229278 0.114639 0.993407i \(-0.463429\pi\)
0.114639 + 0.993407i \(0.463429\pi\)
\(984\) 0 0
\(985\) −4140.75 −0.133944
\(986\) 0 0
\(987\) −16308.3 −0.525937
\(988\) 0 0
\(989\) 25621.3 0.823773
\(990\) 0 0
\(991\) 22127.8 0.709296 0.354648 0.935000i \(-0.384601\pi\)
0.354648 + 0.935000i \(0.384601\pi\)
\(992\) 0 0
\(993\) 19128.9 0.611318
\(994\) 0 0
\(995\) −3278.81 −0.104468
\(996\) 0 0
\(997\) 45937.0 1.45922 0.729609 0.683865i \(-0.239702\pi\)
0.729609 + 0.683865i \(0.239702\pi\)
\(998\) 0 0
\(999\) 23809.5 0.754052
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.4.a.r.1.2 2
4.3 odd 2 448.4.a.s.1.1 2
8.3 odd 2 56.4.a.c.1.2 2
8.5 even 2 112.4.a.h.1.1 2
24.5 odd 2 1008.4.a.x.1.2 2
24.11 even 2 504.4.a.i.1.2 2
40.3 even 4 1400.4.g.h.449.3 4
40.19 odd 2 1400.4.a.i.1.1 2
40.27 even 4 1400.4.g.h.449.2 4
56.3 even 6 392.4.i.i.177.2 4
56.11 odd 6 392.4.i.l.177.1 4
56.13 odd 2 784.4.a.t.1.2 2
56.19 even 6 392.4.i.i.361.2 4
56.27 even 2 392.4.a.h.1.1 2
56.51 odd 6 392.4.i.l.361.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.4.a.c.1.2 2 8.3 odd 2
112.4.a.h.1.1 2 8.5 even 2
392.4.a.h.1.1 2 56.27 even 2
392.4.i.i.177.2 4 56.3 even 6
392.4.i.i.361.2 4 56.19 even 6
392.4.i.l.177.1 4 56.11 odd 6
392.4.i.l.361.1 4 56.51 odd 6
448.4.a.r.1.2 2 1.1 even 1 trivial
448.4.a.s.1.1 2 4.3 odd 2
504.4.a.i.1.2 2 24.11 even 2
784.4.a.t.1.2 2 56.13 odd 2
1008.4.a.x.1.2 2 24.5 odd 2
1400.4.a.i.1.1 2 40.19 odd 2
1400.4.g.h.449.2 4 40.27 even 4
1400.4.g.h.449.3 4 40.3 even 4