Properties

Label 448.2.z.a.271.3
Level $448$
Weight $2$
Character 448.271
Analytic conductor $3.577$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,2,Mod(47,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.47"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 448.z (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.57729801055\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 271.3
Character \(\chi\) \(=\) 448.271
Dual form 448.2.z.a.367.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.95777 - 0.524583i) q^{3} +(0.666898 + 2.48890i) q^{5} +(2.38027 + 1.15512i) q^{7} +(0.959602 + 0.554026i) q^{9} +(-5.05213 - 1.35371i) q^{11} +(-0.848888 - 0.848888i) q^{13} -5.22253i q^{15} +(-2.23951 + 1.29298i) q^{17} +(1.26597 + 4.72466i) q^{19} +(-4.05408 - 3.51010i) q^{21} +(-3.15967 + 5.47271i) q^{23} +(-1.41973 + 0.819681i) q^{25} +(2.71152 + 2.71152i) q^{27} +(-3.92758 + 3.92758i) q^{29} +(0.585390 + 1.01392i) q^{31} +(9.18077 + 5.30052i) q^{33} +(-1.28757 + 6.69460i) q^{35} +(-6.04104 + 1.61869i) q^{37} +(1.21662 + 2.10724i) q^{39} -4.77063 q^{41} +(-4.80121 + 4.80121i) q^{43} +(-0.738958 + 2.75783i) q^{45} +(3.39263 - 5.87622i) q^{47} +(4.33141 + 5.49899i) q^{49} +(5.06272 - 1.35655i) q^{51} +(1.97180 - 7.35887i) q^{53} -13.4770i q^{55} -9.91391i q^{57} +(0.216856 - 0.809319i) q^{59} +(4.37595 - 1.17253i) q^{61} +(1.64415 + 2.42719i) q^{63} +(1.54667 - 2.67892i) q^{65} +(0.100994 - 0.376913i) q^{67} +(9.05679 - 9.05679i) q^{69} -3.83330 q^{71} +(4.84591 + 8.39335i) q^{73} +(3.20949 - 0.859981i) q^{75} +(-10.4618 - 9.05801i) q^{77} +(0.954167 + 0.550889i) q^{79} +(-5.54819 - 9.60974i) q^{81} +(9.73434 - 9.73434i) q^{83} +(-4.71162 - 4.71162i) q^{85} +(9.74964 - 5.62896i) q^{87} +(-7.91117 + 13.7025i) q^{89} +(-1.04002 - 3.00115i) q^{91} +(-0.614171 - 2.29212i) q^{93} +(-10.9149 + 6.30174i) q^{95} -1.12228i q^{97} +(-4.09804 - 4.09804i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 6 q^{3} - 6 q^{5} + 8 q^{7} - 2 q^{11} - 12 q^{17} + 6 q^{19} - 10 q^{21} + 12 q^{23} - 24 q^{29} - 12 q^{33} + 2 q^{35} + 6 q^{37} + 4 q^{39} + 12 q^{45} - 8 q^{49} + 34 q^{51} + 6 q^{53} - 42 q^{59}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.95777 0.524583i −1.13032 0.302868i −0.355267 0.934765i \(-0.615610\pi\)
−0.775053 + 0.631897i \(0.782277\pi\)
\(4\) 0 0
\(5\) 0.666898 + 2.48890i 0.298246 + 1.11307i 0.938605 + 0.344993i \(0.112119\pi\)
−0.640359 + 0.768075i \(0.721215\pi\)
\(6\) 0 0
\(7\) 2.38027 + 1.15512i 0.899659 + 0.436593i
\(8\) 0 0
\(9\) 0.959602 + 0.554026i 0.319867 + 0.184675i
\(10\) 0 0
\(11\) −5.05213 1.35371i −1.52327 0.408160i −0.602456 0.798152i \(-0.705811\pi\)
−0.920818 + 0.389992i \(0.872478\pi\)
\(12\) 0 0
\(13\) −0.848888 0.848888i −0.235439 0.235439i 0.579519 0.814958i \(-0.303240\pi\)
−0.814958 + 0.579519i \(0.803240\pi\)
\(14\) 0 0
\(15\) 5.22253i 1.34845i
\(16\) 0 0
\(17\) −2.23951 + 1.29298i −0.543161 + 0.313594i −0.746359 0.665544i \(-0.768200\pi\)
0.203198 + 0.979138i \(0.434866\pi\)
\(18\) 0 0
\(19\) 1.26597 + 4.72466i 0.290433 + 1.08391i 0.944777 + 0.327714i \(0.106278\pi\)
−0.654343 + 0.756197i \(0.727055\pi\)
\(20\) 0 0
\(21\) −4.05408 3.51010i −0.884672 0.765968i
\(22\) 0 0
\(23\) −3.15967 + 5.47271i −0.658836 + 1.14114i 0.322081 + 0.946712i \(0.395618\pi\)
−0.980917 + 0.194426i \(0.937716\pi\)
\(24\) 0 0
\(25\) −1.41973 + 0.819681i −0.283946 + 0.163936i
\(26\) 0 0
\(27\) 2.71152 + 2.71152i 0.521831 + 0.521831i
\(28\) 0 0
\(29\) −3.92758 + 3.92758i −0.729333 + 0.729333i −0.970487 0.241154i \(-0.922474\pi\)
0.241154 + 0.970487i \(0.422474\pi\)
\(30\) 0 0
\(31\) 0.585390 + 1.01392i 0.105139 + 0.182106i 0.913795 0.406176i \(-0.133138\pi\)
−0.808656 + 0.588282i \(0.799805\pi\)
\(32\) 0 0
\(33\) 9.18077 + 5.30052i 1.59817 + 0.922703i
\(34\) 0 0
\(35\) −1.28757 + 6.69460i −0.217638 + 1.13159i
\(36\) 0 0
\(37\) −6.04104 + 1.61869i −0.993141 + 0.266111i −0.718569 0.695455i \(-0.755203\pi\)
−0.274571 + 0.961567i \(0.588536\pi\)
\(38\) 0 0
\(39\) 1.21662 + 2.10724i 0.194814 + 0.337428i
\(40\) 0 0
\(41\) −4.77063 −0.745047 −0.372523 0.928023i \(-0.621507\pi\)
−0.372523 + 0.928023i \(0.621507\pi\)
\(42\) 0 0
\(43\) −4.80121 + 4.80121i −0.732177 + 0.732177i −0.971051 0.238873i \(-0.923222\pi\)
0.238873 + 0.971051i \(0.423222\pi\)
\(44\) 0 0
\(45\) −0.738958 + 2.75783i −0.110157 + 0.411113i
\(46\) 0 0
\(47\) 3.39263 5.87622i 0.494867 0.857134i −0.505116 0.863052i \(-0.668550\pi\)
0.999982 + 0.00591740i \(0.00188358\pi\)
\(48\) 0 0
\(49\) 4.33141 + 5.49899i 0.618773 + 0.785570i
\(50\) 0 0
\(51\) 5.06272 1.35655i 0.708923 0.189955i
\(52\) 0 0
\(53\) 1.97180 7.35887i 0.270848 1.01082i −0.687725 0.725971i \(-0.741390\pi\)
0.958573 0.284847i \(-0.0919429\pi\)
\(54\) 0 0
\(55\) 13.4770i 1.81724i
\(56\) 0 0
\(57\) 9.91391i 1.31313i
\(58\) 0 0
\(59\) 0.216856 0.809319i 0.0282323 0.105364i −0.950372 0.311116i \(-0.899297\pi\)
0.978604 + 0.205752i \(0.0659639\pi\)
\(60\) 0 0
\(61\) 4.37595 1.17253i 0.560283 0.150127i 0.0324466 0.999473i \(-0.489670\pi\)
0.527836 + 0.849346i \(0.323003\pi\)
\(62\) 0 0
\(63\) 1.64415 + 2.42719i 0.207143 + 0.305797i
\(64\) 0 0
\(65\) 1.54667 2.67892i 0.191841 0.332279i
\(66\) 0 0
\(67\) 0.100994 0.376913i 0.0123383 0.0460473i −0.959482 0.281769i \(-0.909079\pi\)
0.971821 + 0.235722i \(0.0757454\pi\)
\(68\) 0 0
\(69\) 9.05679 9.05679i 1.09031 1.09031i
\(70\) 0 0
\(71\) −3.83330 −0.454929 −0.227465 0.973786i \(-0.573044\pi\)
−0.227465 + 0.973786i \(0.573044\pi\)
\(72\) 0 0
\(73\) 4.84591 + 8.39335i 0.567170 + 0.982368i 0.996844 + 0.0793836i \(0.0252952\pi\)
−0.429674 + 0.902984i \(0.641371\pi\)
\(74\) 0 0
\(75\) 3.20949 0.859981i 0.370600 0.0993021i
\(76\) 0 0
\(77\) −10.4618 9.05801i −1.19223 1.03226i
\(78\) 0 0
\(79\) 0.954167 + 0.550889i 0.107352 + 0.0619798i 0.552715 0.833370i \(-0.313592\pi\)
−0.445363 + 0.895350i \(0.646925\pi\)
\(80\) 0 0
\(81\) −5.54819 9.60974i −0.616465 1.06775i
\(82\) 0 0
\(83\) 9.73434 9.73434i 1.06848 1.06848i 0.0710068 0.997476i \(-0.477379\pi\)
0.997476 0.0710068i \(-0.0226212\pi\)
\(84\) 0 0
\(85\) −4.71162 4.71162i −0.511047 0.511047i
\(86\) 0 0
\(87\) 9.74964 5.62896i 1.04527 0.603488i
\(88\) 0 0
\(89\) −7.91117 + 13.7025i −0.838582 + 1.45247i 0.0524979 + 0.998621i \(0.483282\pi\)
−0.891080 + 0.453846i \(0.850052\pi\)
\(90\) 0 0
\(91\) −1.04002 3.00115i −0.109024 0.314606i
\(92\) 0 0
\(93\) −0.614171 2.29212i −0.0636866 0.237682i
\(94\) 0 0
\(95\) −10.9149 + 6.30174i −1.11985 + 0.646544i
\(96\) 0 0
\(97\) 1.12228i 0.113950i −0.998376 0.0569750i \(-0.981854\pi\)
0.998376 0.0569750i \(-0.0181455\pi\)
\(98\) 0 0
\(99\) −4.09804 4.09804i −0.411868 0.411868i
\(100\) 0 0
\(101\) 14.0172 + 3.75591i 1.39477 + 0.373727i 0.876463 0.481470i \(-0.159897\pi\)
0.518304 + 0.855196i \(0.326564\pi\)
\(102\) 0 0
\(103\) −0.741916 0.428345i −0.0731031 0.0422061i 0.463003 0.886357i \(-0.346772\pi\)
−0.536106 + 0.844151i \(0.680105\pi\)
\(104\) 0 0
\(105\) 6.03263 12.4311i 0.588725 1.21315i
\(106\) 0 0
\(107\) −1.36544 5.09589i −0.132002 0.492639i 0.867990 0.496581i \(-0.165412\pi\)
−0.999992 + 0.00394288i \(0.998745\pi\)
\(108\) 0 0
\(109\) 13.3788 + 3.58485i 1.28146 + 0.343367i 0.834411 0.551142i \(-0.185808\pi\)
0.447050 + 0.894509i \(0.352475\pi\)
\(110\) 0 0
\(111\) 12.6761 1.20316
\(112\) 0 0
\(113\) −8.67774 −0.816333 −0.408167 0.912907i \(-0.633832\pi\)
−0.408167 + 0.912907i \(0.633832\pi\)
\(114\) 0 0
\(115\) −15.7282 4.21435i −1.46666 0.392990i
\(116\) 0 0
\(117\) −0.344288 1.28490i −0.0318294 0.118789i
\(118\) 0 0
\(119\) −6.82419 + 0.490756i −0.625572 + 0.0449875i
\(120\) 0 0
\(121\) 14.1652 + 8.17828i 1.28774 + 0.743480i
\(122\) 0 0
\(123\) 9.33979 + 2.50259i 0.842141 + 0.225651i
\(124\) 0 0
\(125\) 6.12308 + 6.12308i 0.547665 + 0.547665i
\(126\) 0 0
\(127\) 14.0559i 1.24726i −0.781721 0.623628i \(-0.785658\pi\)
0.781721 0.623628i \(-0.214342\pi\)
\(128\) 0 0
\(129\) 11.9183 6.88103i 1.04935 0.605841i
\(130\) 0 0
\(131\) 3.90994 + 14.5921i 0.341613 + 1.27492i 0.896520 + 0.443004i \(0.146087\pi\)
−0.554907 + 0.831913i \(0.687246\pi\)
\(132\) 0 0
\(133\) −2.44418 + 12.7083i −0.211937 + 1.10195i
\(134\) 0 0
\(135\) −4.94038 + 8.55699i −0.425200 + 0.736468i
\(136\) 0 0
\(137\) 4.37058 2.52336i 0.373404 0.215585i −0.301541 0.953453i \(-0.597501\pi\)
0.674945 + 0.737868i \(0.264168\pi\)
\(138\) 0 0
\(139\) −3.77959 3.77959i −0.320581 0.320581i 0.528409 0.848990i \(-0.322789\pi\)
−0.848990 + 0.528409i \(0.822789\pi\)
\(140\) 0 0
\(141\) −9.72456 + 9.72456i −0.818956 + 0.818956i
\(142\) 0 0
\(143\) 3.13954 + 5.43784i 0.262541 + 0.454735i
\(144\) 0 0
\(145\) −12.3946 7.15605i −1.02932 0.594277i
\(146\) 0 0
\(147\) −5.59523 13.0379i −0.461487 1.07535i
\(148\) 0 0
\(149\) −0.263393 + 0.0705758i −0.0215780 + 0.00578180i −0.269592 0.962975i \(-0.586889\pi\)
0.248014 + 0.968756i \(0.420222\pi\)
\(150\) 0 0
\(151\) 4.58028 + 7.93328i 0.372738 + 0.645601i 0.989986 0.141168i \(-0.0450857\pi\)
−0.617248 + 0.786769i \(0.711752\pi\)
\(152\) 0 0
\(153\) −2.86538 −0.231652
\(154\) 0 0
\(155\) −2.13316 + 2.13316i −0.171340 + 0.171340i
\(156\) 0 0
\(157\) 3.85638 14.3922i 0.307772 1.14862i −0.622760 0.782413i \(-0.713989\pi\)
0.930533 0.366209i \(-0.119345\pi\)
\(158\) 0 0
\(159\) −7.72068 + 13.3726i −0.612290 + 1.06052i
\(160\) 0 0
\(161\) −13.8425 + 9.37676i −1.09094 + 0.738992i
\(162\) 0 0
\(163\) 18.6585 4.99953i 1.46145 0.391593i 0.561457 0.827506i \(-0.310241\pi\)
0.899989 + 0.435912i \(0.143574\pi\)
\(164\) 0 0
\(165\) −7.06982 + 26.3849i −0.550384 + 2.05406i
\(166\) 0 0
\(167\) 3.48341i 0.269554i 0.990876 + 0.134777i \(0.0430318\pi\)
−0.990876 + 0.134777i \(0.956968\pi\)
\(168\) 0 0
\(169\) 11.5588i 0.889137i
\(170\) 0 0
\(171\) −1.40276 + 5.23517i −0.107272 + 0.400344i
\(172\) 0 0
\(173\) 0.0707438 0.0189557i 0.00537855 0.00144118i −0.256129 0.966643i \(-0.582447\pi\)
0.261507 + 0.965201i \(0.415780\pi\)
\(174\) 0 0
\(175\) −4.32617 + 0.311113i −0.327028 + 0.0235179i
\(176\) 0 0
\(177\) −0.849110 + 1.47070i −0.0638230 + 0.110545i
\(178\) 0 0
\(179\) −0.805515 + 3.00622i −0.0602070 + 0.224696i −0.989473 0.144715i \(-0.953774\pi\)
0.929266 + 0.369410i \(0.120440\pi\)
\(180\) 0 0
\(181\) −3.34414 + 3.34414i −0.248568 + 0.248568i −0.820383 0.571815i \(-0.806240\pi\)
0.571815 + 0.820383i \(0.306240\pi\)
\(182\) 0 0
\(183\) −9.18219 −0.678767
\(184\) 0 0
\(185\) −8.05751 13.9560i −0.592400 1.02607i
\(186\) 0 0
\(187\) 13.0646 3.50065i 0.955379 0.255993i
\(188\) 0 0
\(189\) 3.32203 + 9.58627i 0.241642 + 0.697298i
\(190\) 0 0
\(191\) 0.271101 + 0.156520i 0.0196162 + 0.0113254i 0.509776 0.860307i \(-0.329728\pi\)
−0.490160 + 0.871633i \(0.663062\pi\)
\(192\) 0 0
\(193\) 5.17806 + 8.96866i 0.372725 + 0.645578i 0.989984 0.141182i \(-0.0450902\pi\)
−0.617259 + 0.786760i \(0.711757\pi\)
\(194\) 0 0
\(195\) −4.43334 + 4.43334i −0.317478 + 0.317478i
\(196\) 0 0
\(197\) 0.112804 + 0.112804i 0.00803695 + 0.00803695i 0.711114 0.703077i \(-0.248191\pi\)
−0.703077 + 0.711114i \(0.748191\pi\)
\(198\) 0 0
\(199\) 18.4737 10.6658i 1.30957 0.756078i 0.327542 0.944837i \(-0.393780\pi\)
0.982023 + 0.188759i \(0.0604464\pi\)
\(200\) 0 0
\(201\) −0.395444 + 0.684930i −0.0278925 + 0.0483112i
\(202\) 0 0
\(203\) −13.8855 + 4.81190i −0.974573 + 0.337730i
\(204\) 0 0
\(205\) −3.18152 11.8736i −0.222207 0.829288i
\(206\) 0 0
\(207\) −6.06405 + 3.50108i −0.421480 + 0.243342i
\(208\) 0 0
\(209\) 25.5834i 1.76964i
\(210\) 0 0
\(211\) −7.71946 7.71946i −0.531430 0.531430i 0.389568 0.920998i \(-0.372624\pi\)
−0.920998 + 0.389568i \(0.872624\pi\)
\(212\) 0 0
\(213\) 7.50472 + 2.01088i 0.514215 + 0.137784i
\(214\) 0 0
\(215\) −15.1516 8.74780i −1.03333 0.596595i
\(216\) 0 0
\(217\) 0.222187 + 3.08961i 0.0150830 + 0.209737i
\(218\) 0 0
\(219\) −5.08416 18.9743i −0.343556 1.28217i
\(220\) 0 0
\(221\) 2.99869 + 0.803496i 0.201714 + 0.0540490i
\(222\) 0 0
\(223\) −9.74121 −0.652319 −0.326160 0.945315i \(-0.605755\pi\)
−0.326160 + 0.945315i \(0.605755\pi\)
\(224\) 0 0
\(225\) −1.81650 −0.121100
\(226\) 0 0
\(227\) −1.00710 0.269850i −0.0668433 0.0179106i 0.225242 0.974303i \(-0.427683\pi\)
−0.292086 + 0.956392i \(0.594349\pi\)
\(228\) 0 0
\(229\) −1.39165 5.19372i −0.0919630 0.343210i 0.904579 0.426307i \(-0.140186\pi\)
−0.996541 + 0.0830966i \(0.973519\pi\)
\(230\) 0 0
\(231\) 15.7300 + 23.2216i 1.03496 + 1.52787i
\(232\) 0 0
\(233\) −11.0720 6.39244i −0.725352 0.418782i 0.0913671 0.995817i \(-0.470876\pi\)
−0.816720 + 0.577035i \(0.804210\pi\)
\(234\) 0 0
\(235\) 16.8878 + 4.52508i 1.10164 + 0.295184i
\(236\) 0 0
\(237\) −1.57905 1.57905i −0.102571 0.102571i
\(238\) 0 0
\(239\) 26.2285i 1.69658i 0.529530 + 0.848291i \(0.322368\pi\)
−0.529530 + 0.848291i \(0.677632\pi\)
\(240\) 0 0
\(241\) −19.0929 + 11.0233i −1.22988 + 0.710072i −0.967005 0.254758i \(-0.918004\pi\)
−0.262875 + 0.964830i \(0.584671\pi\)
\(242\) 0 0
\(243\) 2.84352 + 10.6122i 0.182412 + 0.680771i
\(244\) 0 0
\(245\) −10.7978 + 14.4477i −0.689846 + 0.923030i
\(246\) 0 0
\(247\) 2.93604 5.08537i 0.186816 0.323575i
\(248\) 0 0
\(249\) −24.1641 + 13.9511i −1.53134 + 0.884117i
\(250\) 0 0
\(251\) 15.4991 + 15.4991i 0.978295 + 0.978295i 0.999769 0.0214744i \(-0.00683604\pi\)
−0.0214744 + 0.999769i \(0.506836\pi\)
\(252\) 0 0
\(253\) 23.3715 23.3715i 1.46936 1.46936i
\(254\) 0 0
\(255\) 6.75264 + 11.6959i 0.422866 + 0.732426i
\(256\) 0 0
\(257\) 1.64001 + 0.946858i 0.102301 + 0.0590633i 0.550277 0.834982i \(-0.314522\pi\)
−0.447977 + 0.894045i \(0.647855\pi\)
\(258\) 0 0
\(259\) −16.2491 3.12517i −1.00967 0.194189i
\(260\) 0 0
\(261\) −5.94489 + 1.59293i −0.367980 + 0.0985998i
\(262\) 0 0
\(263\) −4.67609 8.09923i −0.288340 0.499420i 0.685073 0.728474i \(-0.259770\pi\)
−0.973414 + 0.229054i \(0.926437\pi\)
\(264\) 0 0
\(265\) 19.6305 1.20589
\(266\) 0 0
\(267\) 22.6764 22.6764i 1.38777 1.38777i
\(268\) 0 0
\(269\) −6.90325 + 25.7633i −0.420899 + 1.57082i 0.351820 + 0.936067i \(0.385563\pi\)
−0.772719 + 0.634748i \(0.781104\pi\)
\(270\) 0 0
\(271\) −4.30075 + 7.44912i −0.261252 + 0.452502i −0.966575 0.256384i \(-0.917469\pi\)
0.705323 + 0.708886i \(0.250802\pi\)
\(272\) 0 0
\(273\) 0.461771 + 6.42114i 0.0279477 + 0.388625i
\(274\) 0 0
\(275\) 8.28227 2.21923i 0.499440 0.133824i
\(276\) 0 0
\(277\) 6.63310 24.7551i 0.398544 1.48739i −0.417114 0.908854i \(-0.636959\pi\)
0.815659 0.578533i \(-0.196375\pi\)
\(278\) 0 0
\(279\) 1.29729i 0.0776664i
\(280\) 0 0
\(281\) 23.2859i 1.38912i 0.719434 + 0.694561i \(0.244401\pi\)
−0.719434 + 0.694561i \(0.755599\pi\)
\(282\) 0 0
\(283\) −2.62772 + 9.80680i −0.156202 + 0.582954i 0.842797 + 0.538231i \(0.180907\pi\)
−0.998999 + 0.0447228i \(0.985760\pi\)
\(284\) 0 0
\(285\) 24.6747 6.61157i 1.46160 0.391635i
\(286\) 0 0
\(287\) −11.3554 5.51063i −0.670288 0.325282i
\(288\) 0 0
\(289\) −5.15640 + 8.93115i −0.303318 + 0.525362i
\(290\) 0 0
\(291\) −0.588728 + 2.19716i −0.0345118 + 0.128800i
\(292\) 0 0
\(293\) −0.0961358 + 0.0961358i −0.00561631 + 0.00561631i −0.709909 0.704293i \(-0.751264\pi\)
0.704293 + 0.709909i \(0.251264\pi\)
\(294\) 0 0
\(295\) 2.15893 0.125698
\(296\) 0 0
\(297\) −10.0283 17.3695i −0.581902 1.00788i
\(298\) 0 0
\(299\) 7.32792 1.96351i 0.423784 0.113553i
\(300\) 0 0
\(301\) −16.9741 + 5.88224i −0.978374 + 0.339047i
\(302\) 0 0
\(303\) −25.4722 14.7064i −1.46334 0.844861i
\(304\) 0 0
\(305\) 5.83662 + 10.1093i 0.334204 + 0.578858i
\(306\) 0 0
\(307\) −16.2451 + 16.2451i −0.927157 + 0.927157i −0.997521 0.0703642i \(-0.977584\pi\)
0.0703642 + 0.997521i \(0.477584\pi\)
\(308\) 0 0
\(309\) 1.22780 + 1.22780i 0.0698470 + 0.0698470i
\(310\) 0 0
\(311\) −12.3134 + 7.10914i −0.698228 + 0.403122i −0.806687 0.590979i \(-0.798742\pi\)
0.108459 + 0.994101i \(0.465408\pi\)
\(312\) 0 0
\(313\) −13.4403 + 23.2792i −0.759689 + 1.31582i 0.183321 + 0.983053i \(0.441315\pi\)
−0.943009 + 0.332766i \(0.892018\pi\)
\(314\) 0 0
\(315\) −4.94454 + 5.71081i −0.278593 + 0.321767i
\(316\) 0 0
\(317\) −4.15263 15.4978i −0.233235 0.870445i −0.978936 0.204165i \(-0.934552\pi\)
0.745701 0.666280i \(-0.232115\pi\)
\(318\) 0 0
\(319\) 25.1595 14.5258i 1.40866 0.813290i
\(320\) 0 0
\(321\) 10.6929i 0.596818i
\(322\) 0 0
\(323\) −8.94405 8.94405i −0.497660 0.497660i
\(324\) 0 0
\(325\) 1.90101 + 0.509373i 0.105449 + 0.0282549i
\(326\) 0 0
\(327\) −24.3122 14.0366i −1.34447 0.776228i
\(328\) 0 0
\(329\) 14.8631 10.0681i 0.819430 0.555073i
\(330\) 0 0
\(331\) 4.91579 + 18.3460i 0.270196 + 1.00839i 0.958993 + 0.283431i \(0.0914727\pi\)
−0.688796 + 0.724955i \(0.741861\pi\)
\(332\) 0 0
\(333\) −6.69379 1.79360i −0.366817 0.0982884i
\(334\) 0 0
\(335\) 1.00545 0.0549336
\(336\) 0 0
\(337\) 15.6500 0.852513 0.426256 0.904602i \(-0.359832\pi\)
0.426256 + 0.904602i \(0.359832\pi\)
\(338\) 0 0
\(339\) 16.9890 + 4.55220i 0.922717 + 0.247241i
\(340\) 0 0
\(341\) −1.58490 5.91493i −0.0858272 0.320311i
\(342\) 0 0
\(343\) 3.95798 + 18.0924i 0.213711 + 0.976897i
\(344\) 0 0
\(345\) 28.5814 + 16.5015i 1.53877 + 0.888409i
\(346\) 0 0
\(347\) −18.9357 5.07381i −1.01652 0.272376i −0.288170 0.957579i \(-0.593047\pi\)
−0.728352 + 0.685203i \(0.759714\pi\)
\(348\) 0 0
\(349\) 7.34147 + 7.34147i 0.392980 + 0.392980i 0.875748 0.482768i \(-0.160369\pi\)
−0.482768 + 0.875748i \(0.660369\pi\)
\(350\) 0 0
\(351\) 4.60354i 0.245719i
\(352\) 0 0
\(353\) 10.4533 6.03519i 0.556371 0.321221i −0.195317 0.980740i \(-0.562574\pi\)
0.751687 + 0.659519i \(0.229240\pi\)
\(354\) 0 0
\(355\) −2.55642 9.54069i −0.135681 0.506367i
\(356\) 0 0
\(357\) 13.6176 + 2.61907i 0.720722 + 0.138616i
\(358\) 0 0
\(359\) −0.868374 + 1.50407i −0.0458310 + 0.0793816i −0.888031 0.459784i \(-0.847927\pi\)
0.842200 + 0.539165i \(0.181260\pi\)
\(360\) 0 0
\(361\) −4.26528 + 2.46256i −0.224488 + 0.129608i
\(362\) 0 0
\(363\) −23.4420 23.4420i −1.23039 1.23039i
\(364\) 0 0
\(365\) −17.6585 + 17.6585i −0.924287 + 0.924287i
\(366\) 0 0
\(367\) −5.21754 9.03704i −0.272353 0.471730i 0.697111 0.716963i \(-0.254469\pi\)
−0.969464 + 0.245234i \(0.921135\pi\)
\(368\) 0 0
\(369\) −4.57790 2.64305i −0.238316 0.137592i
\(370\) 0 0
\(371\) 13.1938 15.2385i 0.684987 0.791142i
\(372\) 0 0
\(373\) 10.6059 2.84184i 0.549153 0.147145i 0.0264347 0.999651i \(-0.491585\pi\)
0.522718 + 0.852505i \(0.324918\pi\)
\(374\) 0 0
\(375\) −8.77552 15.1996i −0.453166 0.784907i
\(376\) 0 0
\(377\) 6.66815 0.343427
\(378\) 0 0
\(379\) −19.3486 + 19.3486i −0.993870 + 0.993870i −0.999981 0.00611151i \(-0.998055\pi\)
0.00611151 + 0.999981i \(0.498055\pi\)
\(380\) 0 0
\(381\) −7.37347 + 27.5182i −0.377754 + 1.40980i
\(382\) 0 0
\(383\) 8.91313 15.4380i 0.455440 0.788844i −0.543274 0.839556i \(-0.682815\pi\)
0.998713 + 0.0507112i \(0.0161488\pi\)
\(384\) 0 0
\(385\) 15.5675 32.0790i 0.793395 1.63490i
\(386\) 0 0
\(387\) −7.26724 + 1.94725i −0.369415 + 0.0989844i
\(388\) 0 0
\(389\) −1.61525 + 6.02818i −0.0818963 + 0.305641i −0.994708 0.102739i \(-0.967239\pi\)
0.912812 + 0.408380i \(0.133906\pi\)
\(390\) 0 0
\(391\) 16.3416i 0.826429i
\(392\) 0 0
\(393\) 30.6190i 1.54453i
\(394\) 0 0
\(395\) −0.734773 + 2.74221i −0.0369705 + 0.137976i
\(396\) 0 0
\(397\) −6.82155 + 1.82783i −0.342364 + 0.0917361i −0.425904 0.904768i \(-0.640044\pi\)
0.0835403 + 0.996504i \(0.473377\pi\)
\(398\) 0 0
\(399\) 11.4517 23.5978i 0.573303 1.18137i
\(400\) 0 0
\(401\) 10.4950 18.1779i 0.524096 0.907761i −0.475510 0.879710i \(-0.657737\pi\)
0.999606 0.0280512i \(-0.00893014\pi\)
\(402\) 0 0
\(403\) 0.363778 1.35764i 0.0181211 0.0676288i
\(404\) 0 0
\(405\) 20.2176 20.2176i 1.00462 1.00462i
\(406\) 0 0
\(407\) 32.7114 1.62144
\(408\) 0 0
\(409\) −18.0958 31.3428i −0.894780 1.54980i −0.834077 0.551648i \(-0.813999\pi\)
−0.0607027 0.998156i \(-0.519334\pi\)
\(410\) 0 0
\(411\) −9.88031 + 2.64742i −0.487360 + 0.130588i
\(412\) 0 0
\(413\) 1.45103 1.67591i 0.0714008 0.0824660i
\(414\) 0 0
\(415\) 30.7196 + 17.7360i 1.50797 + 0.870624i
\(416\) 0 0
\(417\) 5.41686 + 9.38228i 0.265265 + 0.459452i
\(418\) 0 0
\(419\) 5.15413 5.15413i 0.251796 0.251796i −0.569911 0.821707i \(-0.693022\pi\)
0.821707 + 0.569911i \(0.193022\pi\)
\(420\) 0 0
\(421\) −7.75876 7.75876i −0.378139 0.378139i 0.492292 0.870430i \(-0.336159\pi\)
−0.870430 + 0.492292i \(0.836159\pi\)
\(422\) 0 0
\(423\) 6.51116 3.75922i 0.316583 0.182779i
\(424\) 0 0
\(425\) 2.11966 3.67137i 0.102819 0.178087i
\(426\) 0 0
\(427\) 11.7704 + 2.26378i 0.569608 + 0.109552i
\(428\) 0 0
\(429\) −3.29390 12.2930i −0.159031 0.593511i
\(430\) 0 0
\(431\) 21.4746 12.3984i 1.03440 0.597209i 0.116156 0.993231i \(-0.462943\pi\)
0.918241 + 0.396022i \(0.129609\pi\)
\(432\) 0 0
\(433\) 4.84981i 0.233067i 0.993187 + 0.116534i \(0.0371782\pi\)
−0.993187 + 0.116534i \(0.962822\pi\)
\(434\) 0 0
\(435\) 20.5119 + 20.5119i 0.983471 + 0.983471i
\(436\) 0 0
\(437\) −29.8567 8.00009i −1.42824 0.382696i
\(438\) 0 0
\(439\) 32.2458 + 18.6171i 1.53901 + 0.888546i 0.998897 + 0.0469506i \(0.0149503\pi\)
0.540109 + 0.841595i \(0.318383\pi\)
\(440\) 0 0
\(441\) 1.10985 + 7.67655i 0.0528498 + 0.365550i
\(442\) 0 0
\(443\) −6.51323 24.3077i −0.309453 1.15489i −0.929044 0.369969i \(-0.879368\pi\)
0.619591 0.784925i \(-0.287298\pi\)
\(444\) 0 0
\(445\) −39.3802 10.5519i −1.86680 0.500207i
\(446\) 0 0
\(447\) 0.552685 0.0261411
\(448\) 0 0
\(449\) 0.885883 0.0418074 0.0209037 0.999781i \(-0.493346\pi\)
0.0209037 + 0.999781i \(0.493346\pi\)
\(450\) 0 0
\(451\) 24.1018 + 6.45806i 1.13491 + 0.304098i
\(452\) 0 0
\(453\) −4.80548 17.9343i −0.225781 0.842626i
\(454\) 0 0
\(455\) 6.77596 4.58997i 0.317662 0.215181i
\(456\) 0 0
\(457\) 30.0308 + 17.3383i 1.40478 + 0.811052i 0.994879 0.101077i \(-0.0322289\pi\)
0.409904 + 0.912129i \(0.365562\pi\)
\(458\) 0 0
\(459\) −9.57840 2.56653i −0.447082 0.119795i
\(460\) 0 0
\(461\) −4.11212 4.11212i −0.191520 0.191520i 0.604832 0.796353i \(-0.293240\pi\)
−0.796353 + 0.604832i \(0.793240\pi\)
\(462\) 0 0
\(463\) 11.6892i 0.543245i 0.962404 + 0.271623i \(0.0875603\pi\)
−0.962404 + 0.271623i \(0.912440\pi\)
\(464\) 0 0
\(465\) 5.29526 3.05722i 0.245562 0.141775i
\(466\) 0 0
\(467\) 6.51878 + 24.3284i 0.301653 + 1.12579i 0.935788 + 0.352563i \(0.114690\pi\)
−0.634135 + 0.773222i \(0.718644\pi\)
\(468\) 0 0
\(469\) 0.675771 0.780497i 0.0312042 0.0360400i
\(470\) 0 0
\(471\) −15.0998 + 26.1536i −0.695762 + 1.20509i
\(472\) 0 0
\(473\) 30.7558 17.7569i 1.41415 0.816461i
\(474\) 0 0
\(475\) −5.67005 5.67005i −0.260160 0.260160i
\(476\) 0 0
\(477\) 5.96915 5.96915i 0.273309 0.273309i
\(478\) 0 0
\(479\) −12.1539 21.0512i −0.555328 0.961856i −0.997878 0.0651122i \(-0.979259\pi\)
0.442550 0.896744i \(-0.354074\pi\)
\(480\) 0 0
\(481\) 6.50225 + 3.75408i 0.296477 + 0.171171i
\(482\) 0 0
\(483\) 32.0193 11.0960i 1.45693 0.504886i
\(484\) 0 0
\(485\) 2.79323 0.748444i 0.126834 0.0339851i
\(486\) 0 0
\(487\) −15.5000 26.8468i −0.702373 1.21655i −0.967631 0.252369i \(-0.918790\pi\)
0.265258 0.964177i \(-0.414543\pi\)
\(488\) 0 0
\(489\) −39.1517 −1.77050
\(490\) 0 0
\(491\) −8.29080 + 8.29080i −0.374159 + 0.374159i −0.868989 0.494831i \(-0.835230\pi\)
0.494831 + 0.868989i \(0.335230\pi\)
\(492\) 0 0
\(493\) 3.71756 13.8741i 0.167431 0.624860i
\(494\) 0 0
\(495\) 7.46662 12.9326i 0.335600 0.581276i
\(496\) 0 0
\(497\) −9.12431 4.42791i −0.409281 0.198619i
\(498\) 0 0
\(499\) −22.9663 + 6.15379i −1.02811 + 0.275482i −0.733178 0.680036i \(-0.761964\pi\)
−0.294933 + 0.955518i \(0.595297\pi\)
\(500\) 0 0
\(501\) 1.82734 6.81971i 0.0816394 0.304682i
\(502\) 0 0
\(503\) 3.42708i 0.152806i 0.997077 + 0.0764029i \(0.0243435\pi\)
−0.997077 + 0.0764029i \(0.975656\pi\)
\(504\) 0 0
\(505\) 37.3923i 1.66393i
\(506\) 0 0
\(507\) −6.06354 + 22.6294i −0.269291 + 1.00501i
\(508\) 0 0
\(509\) 35.5302 9.52030i 1.57485 0.421980i 0.637523 0.770431i \(-0.279959\pi\)
0.937327 + 0.348451i \(0.113292\pi\)
\(510\) 0 0
\(511\) 1.83928 + 25.5761i 0.0813651 + 1.13142i
\(512\) 0 0
\(513\) −9.37830 + 16.2437i −0.414062 + 0.717177i
\(514\) 0 0
\(515\) 0.571325 2.13221i 0.0251756 0.0939566i
\(516\) 0 0
\(517\) −25.0947 + 25.0947i −1.10367 + 1.10367i
\(518\) 0 0
\(519\) −0.148444 −0.00651597
\(520\) 0 0
\(521\) 6.82432 + 11.8201i 0.298979 + 0.517846i 0.975903 0.218207i \(-0.0700207\pi\)
−0.676924 + 0.736053i \(0.736687\pi\)
\(522\) 0 0
\(523\) −18.4158 + 4.93451i −0.805269 + 0.215771i −0.637896 0.770123i \(-0.720195\pi\)
−0.167373 + 0.985894i \(0.553528\pi\)
\(524\) 0 0
\(525\) 8.63285 + 1.66035i 0.376769 + 0.0724635i
\(526\) 0 0
\(527\) −2.62197 1.51380i −0.114215 0.0659420i
\(528\) 0 0
\(529\) −8.46701 14.6653i −0.368131 0.637621i
\(530\) 0 0
\(531\) 0.656479 0.656479i 0.0284888 0.0284888i
\(532\) 0 0
\(533\) 4.04973 + 4.04973i 0.175413 + 0.175413i
\(534\) 0 0
\(535\) 11.7725 6.79688i 0.508971 0.293855i
\(536\) 0 0
\(537\) 3.15403 5.46293i 0.136106 0.235743i
\(538\) 0 0
\(539\) −14.4388 33.6451i −0.621923 1.44920i
\(540\) 0 0
\(541\) −0.122143 0.455845i −0.00525135 0.0195983i 0.963250 0.268605i \(-0.0865626\pi\)
−0.968502 + 0.249007i \(0.919896\pi\)
\(542\) 0 0
\(543\) 8.30133 4.79278i 0.356244 0.205678i
\(544\) 0 0
\(545\) 35.6893i 1.52876i
\(546\) 0 0
\(547\) −9.02908 9.02908i −0.386056 0.386056i 0.487222 0.873278i \(-0.338010\pi\)
−0.873278 + 0.487222i \(0.838010\pi\)
\(548\) 0 0
\(549\) 4.84878 + 1.29923i 0.206941 + 0.0554497i
\(550\) 0 0
\(551\) −23.5287 13.5843i −1.00236 0.578710i
\(552\) 0 0
\(553\) 1.63484 + 2.41344i 0.0695204 + 0.102630i
\(554\) 0 0
\(555\) 8.45367 + 31.5495i 0.358838 + 1.33920i
\(556\) 0 0
\(557\) −6.71669 1.79973i −0.284595 0.0762570i 0.113698 0.993515i \(-0.463731\pi\)
−0.398293 + 0.917258i \(0.630397\pi\)
\(558\) 0 0
\(559\) 8.15137 0.344766
\(560\) 0 0
\(561\) −27.4139 −1.15742
\(562\) 0 0
\(563\) −29.7061 7.95972i −1.25196 0.335462i −0.428868 0.903367i \(-0.641087\pi\)
−0.823094 + 0.567905i \(0.807754\pi\)
\(564\) 0 0
\(565\) −5.78717 21.5980i −0.243468 0.908635i
\(566\) 0 0
\(567\) −2.10584 29.2826i −0.0884369 1.22975i
\(568\) 0 0
\(569\) −33.8726 19.5564i −1.42002 0.819846i −0.423716 0.905795i \(-0.639274\pi\)
−0.996300 + 0.0859489i \(0.972608\pi\)
\(570\) 0 0
\(571\) 5.29899 + 1.41986i 0.221756 + 0.0594193i 0.367986 0.929831i \(-0.380047\pi\)
−0.146230 + 0.989251i \(0.546714\pi\)
\(572\) 0 0
\(573\) −0.448646 0.448646i −0.0187425 0.0187425i
\(574\) 0 0
\(575\) 10.3597i 0.432028i
\(576\) 0 0
\(577\) 30.0825 17.3681i 1.25235 0.723044i 0.280774 0.959774i \(-0.409409\pi\)
0.971576 + 0.236729i \(0.0760755\pi\)
\(578\) 0 0
\(579\) −5.43264 20.2749i −0.225773 0.842596i
\(580\) 0 0
\(581\) 34.4147 11.9261i 1.42776 0.494778i
\(582\) 0 0
\(583\) −19.9236 + 34.5087i −0.825152 + 1.42920i
\(584\) 0 0
\(585\) 2.96838 1.71379i 0.122727 0.0708567i
\(586\) 0 0
\(587\) 25.6897 + 25.6897i 1.06033 + 1.06033i 0.998059 + 0.0622695i \(0.0198338\pi\)
0.0622695 + 0.998059i \(0.480166\pi\)
\(588\) 0 0
\(589\) −4.04937 + 4.04937i −0.166851 + 0.166851i
\(590\) 0 0
\(591\) −0.161669 0.280019i −0.00665018 0.0115185i
\(592\) 0 0
\(593\) 21.1335 + 12.2015i 0.867850 + 0.501054i 0.866633 0.498946i \(-0.166279\pi\)
0.00121701 + 0.999999i \(0.499613\pi\)
\(594\) 0 0
\(595\) −5.77248 16.6574i −0.236649 0.682888i
\(596\) 0 0
\(597\) −41.7623 + 11.1902i −1.70922 + 0.457984i
\(598\) 0 0
\(599\) 13.3779 + 23.1712i 0.546606 + 0.946750i 0.998504 + 0.0546799i \(0.0174138\pi\)
−0.451898 + 0.892070i \(0.649253\pi\)
\(600\) 0 0
\(601\) −16.1853 −0.660212 −0.330106 0.943944i \(-0.607085\pi\)
−0.330106 + 0.943944i \(0.607085\pi\)
\(602\) 0 0
\(603\) 0.305733 0.305733i 0.0124504 0.0124504i
\(604\) 0 0
\(605\) −10.9082 + 40.7098i −0.443479 + 1.65509i
\(606\) 0 0
\(607\) 2.51647 4.35866i 0.102141 0.176913i −0.810426 0.585841i \(-0.800764\pi\)
0.912566 + 0.408929i \(0.134098\pi\)
\(608\) 0 0
\(609\) 29.7089 2.13649i 1.20387 0.0865751i
\(610\) 0 0
\(611\) −7.86821 + 2.10828i −0.318314 + 0.0852919i
\(612\) 0 0
\(613\) −0.117633 + 0.439011i −0.00475113 + 0.0177315i −0.968261 0.249942i \(-0.919588\pi\)
0.963510 + 0.267674i \(0.0862550\pi\)
\(614\) 0 0
\(615\) 24.9147i 1.00466i
\(616\) 0 0
\(617\) 4.35363i 0.175271i −0.996153 0.0876353i \(-0.972069\pi\)
0.996153 0.0876353i \(-0.0279310\pi\)
\(618\) 0 0
\(619\) 1.27148 4.74521i 0.0511049 0.190726i −0.935654 0.352918i \(-0.885190\pi\)
0.986759 + 0.162191i \(0.0518562\pi\)
\(620\) 0 0
\(621\) −23.4068 + 6.27184i −0.939283 + 0.251680i
\(622\) 0 0
\(623\) −34.6588 + 23.4775i −1.38858 + 0.940606i
\(624\) 0 0
\(625\) −15.2547 + 26.4218i −0.610186 + 1.05687i
\(626\) 0 0
\(627\) −13.4206 + 50.0864i −0.535967 + 2.00026i
\(628\) 0 0
\(629\) 11.4360 11.4360i 0.455984 0.455984i
\(630\) 0 0
\(631\) 22.0158 0.876434 0.438217 0.898869i \(-0.355610\pi\)
0.438217 + 0.898869i \(0.355610\pi\)
\(632\) 0 0
\(633\) 11.0634 + 19.1624i 0.439732 + 0.761638i
\(634\) 0 0
\(635\) 34.9836 9.37383i 1.38828 0.371989i
\(636\) 0 0
\(637\) 0.991141 8.34491i 0.0392704 0.330637i
\(638\) 0 0
\(639\) −3.67844 2.12375i −0.145517 0.0840142i
\(640\) 0 0
\(641\) 11.9837 + 20.7564i 0.473328 + 0.819828i 0.999534 0.0305295i \(-0.00971934\pi\)
−0.526206 + 0.850357i \(0.676386\pi\)
\(642\) 0 0
\(643\) −30.4232 + 30.4232i −1.19977 + 1.19977i −0.225537 + 0.974235i \(0.572414\pi\)
−0.974235 + 0.225537i \(0.927586\pi\)
\(644\) 0 0
\(645\) 25.0745 + 25.0745i 0.987306 + 0.987306i
\(646\) 0 0
\(647\) −5.45353 + 3.14859i −0.214400 + 0.123784i −0.603355 0.797473i \(-0.706170\pi\)
0.388954 + 0.921257i \(0.372836\pi\)
\(648\) 0 0
\(649\) −2.19117 + 3.79522i −0.0860110 + 0.148975i
\(650\) 0 0
\(651\) 1.18577 6.16531i 0.0464739 0.241638i
\(652\) 0 0
\(653\) 8.24649 + 30.7763i 0.322710 + 1.20437i 0.916594 + 0.399819i \(0.130927\pi\)
−0.593884 + 0.804551i \(0.702406\pi\)
\(654\) 0 0
\(655\) −33.7107 + 19.4629i −1.31719 + 0.760477i
\(656\) 0 0
\(657\) 10.7390i 0.418970i
\(658\) 0 0
\(659\) 3.27251 + 3.27251i 0.127479 + 0.127479i 0.767968 0.640489i \(-0.221268\pi\)
−0.640489 + 0.767968i \(0.721268\pi\)
\(660\) 0 0
\(661\) −14.3283 3.83925i −0.557305 0.149329i −0.0308372 0.999524i \(-0.509817\pi\)
−0.526468 + 0.850195i \(0.676484\pi\)
\(662\) 0 0
\(663\) −5.44924 3.14612i −0.211631 0.122185i
\(664\) 0 0
\(665\) −33.2598 + 2.39185i −1.28976 + 0.0927519i
\(666\) 0 0
\(667\) −9.08464 33.9043i −0.351759 1.31278i
\(668\) 0 0
\(669\) 19.0710 + 5.11007i 0.737329 + 0.197567i
\(670\) 0 0
\(671\) −23.6951 −0.914740
\(672\) 0 0
\(673\) 1.09724 0.0422955 0.0211478 0.999776i \(-0.493268\pi\)
0.0211478 + 0.999776i \(0.493268\pi\)
\(674\) 0 0
\(675\) −6.07219 1.62704i −0.233719 0.0626248i
\(676\) 0 0
\(677\) 4.30288 + 16.0585i 0.165373 + 0.617180i 0.997992 + 0.0633346i \(0.0201735\pi\)
−0.832619 + 0.553846i \(0.813160\pi\)
\(678\) 0 0
\(679\) 1.29636 2.67133i 0.0497498 0.102516i
\(680\) 0 0
\(681\) 1.83010 + 1.05661i 0.0701297 + 0.0404894i
\(682\) 0 0
\(683\) 18.7919 + 5.03528i 0.719053 + 0.192670i 0.599749 0.800188i \(-0.295267\pi\)
0.119304 + 0.992858i \(0.461934\pi\)
\(684\) 0 0
\(685\) 9.19511 + 9.19511i 0.351327 + 0.351327i
\(686\) 0 0
\(687\) 10.8981i 0.415790i
\(688\) 0 0
\(689\) −7.92069 + 4.57301i −0.301754 + 0.174218i
\(690\) 0 0
\(691\) 0.334331 + 1.24774i 0.0127186 + 0.0474663i 0.971993 0.235008i \(-0.0755116\pi\)
−0.959275 + 0.282474i \(0.908845\pi\)
\(692\) 0 0
\(693\) −5.02074 14.4882i −0.190722 0.550360i
\(694\) 0 0
\(695\) 6.88641 11.9276i 0.261216 0.452440i
\(696\) 0 0
\(697\) 10.6839 6.16833i 0.404680 0.233642i
\(698\) 0 0
\(699\) 18.3231 + 18.3231i 0.693044 + 0.693044i
\(700\) 0 0
\(701\) 4.42004 4.42004i 0.166942 0.166942i −0.618692 0.785634i \(-0.712337\pi\)
0.785634 + 0.618692i \(0.212337\pi\)
\(702\) 0 0
\(703\) −15.2955 26.4927i −0.576882 0.999189i
\(704\) 0 0
\(705\) −30.6887 17.7181i −1.15580 0.667304i
\(706\) 0 0
\(707\) 29.0263 + 25.1316i 1.09165 + 0.945172i
\(708\) 0 0
\(709\) −22.1786 + 5.94273i −0.832934 + 0.223184i −0.649993 0.759940i \(-0.725228\pi\)
−0.182941 + 0.983124i \(0.558562\pi\)
\(710\) 0 0
\(711\) 0.610414 + 1.05727i 0.0228923 + 0.0396506i
\(712\) 0 0
\(713\) −7.39855 −0.277078
\(714\) 0 0
\(715\) −11.4405 + 11.4405i −0.427849 + 0.427849i
\(716\) 0 0
\(717\) 13.7590 51.3494i 0.513841 1.91768i
\(718\) 0 0
\(719\) 3.53562 6.12387i 0.131856 0.228382i −0.792536 0.609825i \(-0.791240\pi\)
0.924392 + 0.381444i \(0.124573\pi\)
\(720\) 0 0
\(721\) −1.27117 1.87658i −0.0473410 0.0698874i
\(722\) 0 0
\(723\) 43.1621 11.5652i 1.60522 0.430116i
\(724\) 0 0
\(725\) 2.35674 8.79546i 0.0875270 0.326655i
\(726\) 0 0
\(727\) 21.2964i 0.789838i −0.918716 0.394919i \(-0.870773\pi\)
0.918716 0.394919i \(-0.129227\pi\)
\(728\) 0 0
\(729\) 11.0213i 0.408196i
\(730\) 0 0
\(731\) 4.54448 16.9602i 0.168084 0.627296i
\(732\) 0 0
\(733\) −26.8991 + 7.20760i −0.993543 + 0.266219i −0.718738 0.695281i \(-0.755280\pi\)
−0.274805 + 0.961500i \(0.588613\pi\)
\(734\) 0 0
\(735\) 28.7186 22.6209i 1.05930 0.834386i
\(736\) 0 0
\(737\) −1.02047 + 1.76750i −0.0375893 + 0.0651066i
\(738\) 0 0
\(739\) 7.18877 26.8289i 0.264443 0.986916i −0.698147 0.715954i \(-0.745992\pi\)
0.962590 0.270961i \(-0.0873415\pi\)
\(740\) 0 0
\(741\) −8.41580 + 8.41580i −0.309162 + 0.309162i
\(742\) 0 0
\(743\) 4.98267 0.182796 0.0913982 0.995814i \(-0.470866\pi\)
0.0913982 + 0.995814i \(0.470866\pi\)
\(744\) 0 0
\(745\) −0.351312 0.608490i −0.0128711 0.0222934i
\(746\) 0 0
\(747\) 14.7342 3.94801i 0.539095 0.144450i
\(748\) 0 0
\(749\) 2.63623 13.7069i 0.0963256 0.500838i
\(750\) 0 0
\(751\) −14.1452 8.16676i −0.516167 0.298009i 0.219198 0.975680i \(-0.429656\pi\)
−0.735365 + 0.677671i \(0.762989\pi\)
\(752\) 0 0
\(753\) −22.2131 38.4743i −0.809491 1.40208i
\(754\) 0 0
\(755\) −16.6905 + 16.6905i −0.607431 + 0.607431i
\(756\) 0 0
\(757\) 38.1458 + 38.1458i 1.38643 + 1.38643i 0.832685 + 0.553747i \(0.186802\pi\)
0.553747 + 0.832685i \(0.313198\pi\)
\(758\) 0 0
\(759\) −58.0164 + 33.4958i −2.10586 + 1.21582i
\(760\) 0 0
\(761\) 16.5068 28.5906i 0.598371 1.03641i −0.394690 0.918814i \(-0.629148\pi\)
0.993062 0.117595i \(-0.0375186\pi\)
\(762\) 0 0
\(763\) 27.7044 + 23.9871i 1.00297 + 0.868390i
\(764\) 0 0
\(765\) −1.91092 7.13164i −0.0690894 0.257845i
\(766\) 0 0
\(767\) −0.871107 + 0.502934i −0.0314539 + 0.0181599i
\(768\) 0 0
\(769\) 18.6850i 0.673800i −0.941540 0.336900i \(-0.890622\pi\)
0.941540 0.336900i \(-0.109378\pi\)
\(770\) 0 0
\(771\) −2.71405 2.71405i −0.0977441 0.0977441i
\(772\) 0 0
\(773\) 33.7362 + 9.03958i 1.21341 + 0.325131i 0.808097 0.589049i \(-0.200497\pi\)
0.405309 + 0.914180i \(0.367164\pi\)
\(774\) 0 0
\(775\) −1.66219 0.959666i −0.0597076 0.0344722i
\(776\) 0 0
\(777\) 30.1726 + 14.6424i 1.08244 + 0.525292i
\(778\) 0 0
\(779\) −6.03947 22.5396i −0.216386 0.807565i
\(780\) 0 0
\(781\) 19.3663 + 5.18919i 0.692982 + 0.185684i
\(782\) 0 0
\(783\) −21.2994 −0.761178
\(784\) 0 0
\(785\) 38.3925 1.37029
\(786\) 0 0
\(787\) −23.5420 6.30807i −0.839183 0.224858i −0.186467 0.982461i \(-0.559704\pi\)
−0.652716 + 0.757603i \(0.726370\pi\)
\(788\) 0 0
\(789\) 4.90600 + 18.3094i 0.174658 + 0.651833i
\(790\) 0 0
\(791\) −20.6554 10.0238i −0.734422 0.356405i
\(792\) 0 0
\(793\) −4.71004 2.71934i −0.167258 0.0965666i
\(794\) 0 0
\(795\) −38.4319 10.2978i −1.36304 0.365226i
\(796\) 0 0
\(797\) −25.8769 25.8769i −0.916608 0.916608i 0.0801732 0.996781i \(-0.474453\pi\)
−0.996781 + 0.0801732i \(0.974453\pi\)
\(798\) 0 0
\(799\) 17.5465i 0.620749i
\(800\) 0 0
\(801\) −15.1831 + 8.76599i −0.536470 + 0.309731i
\(802\) 0 0
\(803\) −13.1199 48.9643i −0.462993 1.72791i
\(804\) 0 0
\(805\) −32.5693 28.1992i −1.14792 0.993891i
\(806\) 0 0
\(807\) 27.0300 46.8173i 0.951500 1.64805i
\(808\) 0 0
\(809\) −19.9357 + 11.5099i −0.700901 + 0.404665i −0.807683 0.589617i \(-0.799279\pi\)
0.106782 + 0.994282i \(0.465945\pi\)
\(810\) 0 0
\(811\) −8.31612 8.31612i −0.292019 0.292019i 0.545859 0.837877i \(-0.316204\pi\)
−0.837877 + 0.545859i \(0.816204\pi\)
\(812\) 0 0
\(813\) 12.3276 12.3276i 0.432347 0.432347i
\(814\) 0 0
\(815\) 24.8866 + 43.1049i 0.871741 + 1.50990i
\(816\) 0 0
\(817\) −28.7623 16.6059i −1.00626 0.580967i
\(818\) 0 0
\(819\) 0.664709 3.45611i 0.0232268 0.120766i
\(820\) 0 0
\(821\) 2.17857 0.583745i 0.0760325 0.0203728i −0.220602 0.975364i \(-0.570802\pi\)
0.296635 + 0.954991i \(0.404136\pi\)
\(822\) 0 0
\(823\) 4.37272 + 7.57377i 0.152423 + 0.264005i 0.932118 0.362155i \(-0.117959\pi\)
−0.779694 + 0.626160i \(0.784626\pi\)
\(824\) 0 0
\(825\) −17.3789 −0.605057
\(826\) 0 0
\(827\) 2.25129 2.25129i 0.0782850 0.0782850i −0.666880 0.745165i \(-0.732371\pi\)
0.745165 + 0.666880i \(0.232371\pi\)
\(828\) 0 0
\(829\) −1.67875 + 6.26518i −0.0583054 + 0.217599i −0.988932 0.148373i \(-0.952597\pi\)
0.930626 + 0.365971i \(0.119263\pi\)
\(830\) 0 0
\(831\) −25.9722 + 44.9851i −0.900965 + 1.56052i
\(832\) 0 0
\(833\) −16.8103 6.71460i −0.582443 0.232647i
\(834\) 0 0
\(835\) −8.66985 + 2.32308i −0.300032 + 0.0803934i
\(836\) 0 0
\(837\) −1.16198 + 4.33657i −0.0401639 + 0.149894i
\(838\) 0 0
\(839\) 15.8804i 0.548253i 0.961694 + 0.274126i \(0.0883886\pi\)
−0.961694 + 0.274126i \(0.911611\pi\)
\(840\) 0 0
\(841\) 1.85175i 0.0638536i
\(842\) 0 0
\(843\) 12.2154 45.5885i 0.420721 1.57015i
\(844\) 0 0
\(845\) 28.7686 7.70853i 0.989670 0.265181i
\(846\) 0 0
\(847\) 24.2702 + 35.8290i 0.833933 + 1.23110i
\(848\) 0 0
\(849\) 10.2890 17.8210i 0.353116 0.611615i
\(850\) 0 0
\(851\) 10.2291 38.1754i 0.350648 1.30863i
\(852\) 0 0
\(853\) −31.2018 + 31.2018i −1.06833 + 1.06833i −0.0708400 + 0.997488i \(0.522568\pi\)
−0.997488 + 0.0708400i \(0.977432\pi\)
\(854\) 0 0
\(855\) −13.9653 −0.477603
\(856\) 0 0
\(857\) −0.256772 0.444743i −0.00877118 0.0151921i 0.861607 0.507577i \(-0.169459\pi\)
−0.870378 + 0.492385i \(0.836125\pi\)
\(858\) 0 0
\(859\) −20.4685 + 5.48453i −0.698377 + 0.187130i −0.590504 0.807035i \(-0.701071\pi\)
−0.107874 + 0.994165i \(0.534404\pi\)
\(860\) 0 0
\(861\) 19.3405 + 16.7454i 0.659122 + 0.570682i
\(862\) 0 0
\(863\) 41.4589 + 23.9363i 1.41128 + 0.814801i 0.995509 0.0946697i \(-0.0301795\pi\)
0.415768 + 0.909471i \(0.363513\pi\)
\(864\) 0 0
\(865\) 0.0943578 + 0.163433i 0.00320826 + 0.00555687i
\(866\) 0 0
\(867\) 14.7802 14.7802i 0.501961 0.501961i
\(868\) 0 0
\(869\) −4.07483 4.07483i −0.138229 0.138229i
\(870\) 0 0
\(871\) −0.405689 + 0.234225i −0.0137463 + 0.00793640i
\(872\) 0 0
\(873\) 0.621771 1.07694i 0.0210438 0.0364489i
\(874\) 0 0
\(875\) 7.50174 + 21.6475i 0.253605 + 0.731818i
\(876\) 0 0
\(877\) 5.85755 + 21.8607i 0.197795 + 0.738182i 0.991525 + 0.129912i \(0.0414696\pi\)
−0.793730 + 0.608270i \(0.791864\pi\)
\(878\) 0 0
\(879\) 0.238643 0.137781i 0.00804923 0.00464722i
\(880\) 0 0
\(881\) 17.7026i 0.596417i 0.954501 + 0.298209i \(0.0963891\pi\)
−0.954501 + 0.298209i \(0.903611\pi\)
\(882\) 0 0
\(883\) 13.2141 + 13.2141i 0.444691 + 0.444691i 0.893585 0.448894i \(-0.148182\pi\)
−0.448894 + 0.893585i \(0.648182\pi\)
\(884\) 0 0
\(885\) −4.22669 1.13254i −0.142079 0.0380699i
\(886\) 0 0
\(887\) 44.3615 + 25.6121i 1.48951 + 0.859970i 0.999928 0.0119857i \(-0.00381526\pi\)
0.489584 + 0.871956i \(0.337149\pi\)
\(888\) 0 0
\(889\) 16.2362 33.4568i 0.544543 1.12211i
\(890\) 0 0
\(891\) 15.0213 + 56.0603i 0.503233 + 1.87809i
\(892\) 0 0
\(893\) 32.0581 + 8.58994i 1.07278 + 0.287452i
\(894\) 0 0
\(895\) −8.01938 −0.268058
\(896\) 0 0
\(897\) −15.3764 −0.513403
\(898\) 0 0
\(899\) −6.28144 1.68311i −0.209498 0.0561347i
\(900\) 0 0
\(901\) 5.09901 + 19.0298i 0.169873 + 0.633973i
\(902\) 0 0
\(903\) 36.3172 2.61172i 1.20856 0.0869127i
\(904\) 0 0
\(905\) −10.5534 6.09302i −0.350807 0.202539i
\(906\) 0 0
\(907\) −8.20711 2.19909i −0.272512 0.0730195i 0.119975 0.992777i \(-0.461719\pi\)
−0.392487 + 0.919757i \(0.628385\pi\)
\(908\) 0 0
\(909\) 11.3701 + 11.3701i 0.377122 + 0.377122i
\(910\) 0 0
\(911\) 19.6850i 0.652192i −0.945337 0.326096i \(-0.894267\pi\)
0.945337 0.326096i \(-0.105733\pi\)
\(912\) 0 0
\(913\) −62.3567 + 36.0016i −2.06370 + 1.19148i
\(914\) 0 0
\(915\) −6.12359 22.8535i −0.202440 0.755515i
\(916\) 0 0
\(917\) −7.54884 + 39.2496i −0.249285 + 1.29614i
\(918\) 0 0
\(919\) 17.7313 30.7116i 0.584903 1.01308i −0.409985 0.912092i \(-0.634466\pi\)
0.994888 0.100989i \(-0.0322006\pi\)
\(920\) 0 0
\(921\) 40.3261 23.2823i 1.32879 0.767177i
\(922\) 0 0
\(923\) 3.25404 + 3.25404i 0.107108 + 0.107108i
\(924\) 0 0
\(925\) 7.24983 7.24983i 0.238373 0.238373i
\(926\) 0 0
\(927\) −0.474629 0.822082i −0.0155889 0.0270007i
\(928\) 0 0
\(929\) −38.0765 21.9835i −1.24925 0.721255i −0.278290 0.960497i \(-0.589768\pi\)
−0.970960 + 0.239242i \(0.923101\pi\)
\(930\) 0 0
\(931\) −20.4974 + 27.4260i −0.671776 + 0.898851i
\(932\) 0 0
\(933\) 27.8361 7.45867i 0.911314 0.244186i
\(934\) 0 0
\(935\) 17.4255 + 30.1819i 0.569876 + 0.987054i
\(936\) 0 0
\(937\) 32.7634 1.07033 0.535167 0.844746i \(-0.320249\pi\)
0.535167 + 0.844746i \(0.320249\pi\)
\(938\) 0 0
\(939\) 38.5248 38.5248i 1.25721 1.25721i
\(940\) 0 0
\(941\) 7.93265 29.6051i 0.258597 0.965098i −0.707457 0.706757i \(-0.750158\pi\)
0.966054 0.258341i \(-0.0831758\pi\)
\(942\) 0 0
\(943\) 15.0736 26.1082i 0.490864 0.850201i
\(944\) 0 0
\(945\) −21.6438 + 14.6613i −0.704072 + 0.476931i
\(946\) 0 0
\(947\) −11.1135 + 2.97785i −0.361140 + 0.0967672i −0.434826 0.900514i \(-0.643190\pi\)
0.0736863 + 0.997281i \(0.476524\pi\)
\(948\) 0 0
\(949\) 3.01139 11.2386i 0.0977537 0.364822i
\(950\) 0 0
\(951\) 32.5196i 1.05452i
\(952\) 0 0
\(953\) 31.6828i 1.02631i −0.858297 0.513153i \(-0.828477\pi\)
0.858297 0.513153i \(-0.171523\pi\)
\(954\) 0 0
\(955\) −0.208766 + 0.779126i −0.00675552 + 0.0252119i
\(956\) 0 0
\(957\) −56.8764 + 15.2400i −1.83855 + 0.492639i
\(958\) 0 0
\(959\) 13.3180 0.957750i 0.430059 0.0309274i
\(960\) 0 0
\(961\) 14.8146 25.6597i 0.477892 0.827732i
\(962\) 0 0
\(963\) 1.51298 5.64652i 0.0487551 0.181956i
\(964\) 0 0
\(965\) −18.8688 + 18.8688i −0.607409 + 0.607409i
\(966\) 0 0
\(967\) −15.2574 −0.490645 −0.245322 0.969442i \(-0.578894\pi\)
−0.245322 + 0.969442i \(0.578894\pi\)
\(968\) 0 0
\(969\) 12.8185 + 22.2023i 0.411790 + 0.713240i
\(970\) 0 0
\(971\) −29.2698 + 7.84283i −0.939314 + 0.251688i −0.695822 0.718215i \(-0.744960\pi\)
−0.243492 + 0.969903i \(0.578293\pi\)
\(972\) 0 0
\(973\) −4.63059 13.3623i −0.148450 0.428377i
\(974\) 0 0
\(975\) −3.45453 1.99447i −0.110633 0.0638742i
\(976\) 0 0
\(977\) −25.1720 43.5992i −0.805325 1.39486i −0.916072 0.401015i \(-0.868658\pi\)
0.110747 0.993849i \(-0.464676\pi\)
\(978\) 0 0
\(979\) 58.5176 58.5176i 1.87023 1.87023i
\(980\) 0 0
\(981\) 10.8523 + 10.8523i 0.346486 + 0.346486i
\(982\) 0 0
\(983\) −8.64540 + 4.99143i −0.275746 + 0.159202i −0.631496 0.775379i \(-0.717559\pi\)
0.355750 + 0.934581i \(0.384225\pi\)
\(984\) 0 0
\(985\) −0.205529 + 0.355986i −0.00654869 + 0.0113427i
\(986\) 0 0
\(987\) −34.3801 + 11.9141i −1.09433 + 0.379231i
\(988\) 0 0
\(989\) −11.1054 41.4458i −0.353130 1.31790i
\(990\) 0 0
\(991\) −40.8868 + 23.6060i −1.29881 + 0.749869i −0.980199 0.198016i \(-0.936550\pi\)
−0.318612 + 0.947885i \(0.603217\pi\)
\(992\) 0 0
\(993\) 38.4959i 1.22163i
\(994\) 0 0
\(995\) 38.8661 + 38.8661i 1.23214 + 1.23214i
\(996\) 0 0
\(997\) 33.5965 + 9.00216i 1.06401 + 0.285101i 0.748031 0.663664i \(-0.230999\pi\)
0.315982 + 0.948765i \(0.397666\pi\)
\(998\) 0 0
\(999\) −20.7695 11.9913i −0.657117 0.379387i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.2.z.a.271.3 56
4.3 odd 2 112.2.v.a.75.1 yes 56
7.3 odd 6 inner 448.2.z.a.143.3 56
8.3 odd 2 896.2.z.b.159.3 56
8.5 even 2 896.2.z.a.159.12 56
16.3 odd 4 inner 448.2.z.a.47.3 56
16.5 even 4 896.2.z.b.607.3 56
16.11 odd 4 896.2.z.a.607.12 56
16.13 even 4 112.2.v.a.19.10 yes 56
28.3 even 6 112.2.v.a.59.10 yes 56
28.11 odd 6 784.2.w.f.619.10 56
28.19 even 6 784.2.j.a.587.18 56
28.23 odd 6 784.2.j.a.587.17 56
28.27 even 2 784.2.w.f.411.1 56
56.3 even 6 896.2.z.b.31.3 56
56.45 odd 6 896.2.z.a.31.12 56
112.3 even 12 inner 448.2.z.a.367.3 56
112.13 odd 4 784.2.w.f.19.10 56
112.45 odd 12 112.2.v.a.3.1 56
112.59 even 12 896.2.z.a.479.12 56
112.61 odd 12 784.2.j.a.195.17 56
112.93 even 12 784.2.j.a.195.18 56
112.101 odd 12 896.2.z.b.479.3 56
112.109 even 12 784.2.w.f.227.1 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.v.a.3.1 56 112.45 odd 12
112.2.v.a.19.10 yes 56 16.13 even 4
112.2.v.a.59.10 yes 56 28.3 even 6
112.2.v.a.75.1 yes 56 4.3 odd 2
448.2.z.a.47.3 56 16.3 odd 4 inner
448.2.z.a.143.3 56 7.3 odd 6 inner
448.2.z.a.271.3 56 1.1 even 1 trivial
448.2.z.a.367.3 56 112.3 even 12 inner
784.2.j.a.195.17 56 112.61 odd 12
784.2.j.a.195.18 56 112.93 even 12
784.2.j.a.587.17 56 28.23 odd 6
784.2.j.a.587.18 56 28.19 even 6
784.2.w.f.19.10 56 112.13 odd 4
784.2.w.f.227.1 56 112.109 even 12
784.2.w.f.411.1 56 28.27 even 2
784.2.w.f.619.10 56 28.11 odd 6
896.2.z.a.31.12 56 56.45 odd 6
896.2.z.a.159.12 56 8.5 even 2
896.2.z.a.479.12 56 112.59 even 12
896.2.z.a.607.12 56 16.11 odd 4
896.2.z.b.31.3 56 56.3 even 6
896.2.z.b.159.3 56 8.3 odd 2
896.2.z.b.479.3 56 112.101 odd 12
896.2.z.b.607.3 56 16.5 even 4