Newspace parameters
Level: | \( N \) | \(=\) | \( 448 = 2^{6} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 448.m (of order \(4\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.57729801055\) |
Analytic rank: | \(0\) |
Dimension: | \(12\) |
Relative dimension: | \(6\) over \(\Q(i)\) |
Coefficient field: | 12.0.20138089353117696.1 |
Defining polynomial: |
\( x^{12} - 3x^{10} - 2x^{9} + 2x^{8} + 4x^{7} + 2x^{6} + 8x^{5} + 8x^{4} - 16x^{3} - 48x^{2} + 64 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2^{9} \) |
Twist minimal: | no (minimal twist has level 112) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{12} - 3x^{10} - 2x^{9} + 2x^{8} + 4x^{7} + 2x^{6} + 8x^{5} + 8x^{4} - 16x^{3} - 48x^{2} + 64 \)
:
\(\beta_{1}\) | \(=\) |
\( ( \nu^{11} + 14 \nu^{10} + \nu^{9} - 20 \nu^{8} - 54 \nu^{7} + 16 \nu^{6} + 34 \nu^{5} + 36 \nu^{4} + 192 \nu^{3} + 240 \nu^{2} - 144 \nu - 608 ) / 128 \)
|
\(\beta_{2}\) | \(=\) |
\( ( 3 \nu^{11} + 10 \nu^{10} + 3 \nu^{9} - 28 \nu^{8} - 34 \nu^{7} - 16 \nu^{6} - 26 \nu^{5} + 44 \nu^{4} + 192 \nu^{3} + 208 \nu^{2} - 176 \nu - 416 ) / 128 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 5 \nu^{11} + 6 \nu^{10} + 5 \nu^{9} - 4 \nu^{8} - 14 \nu^{7} - 16 \nu^{6} - 22 \nu^{5} - 12 \nu^{4} + 64 \nu^{3} + 112 \nu^{2} + 48 \nu + 32 ) / 128 \)
|
\(\beta_{4}\) | \(=\) |
\( ( - 11 \nu^{11} - 10 \nu^{10} + 21 \nu^{9} + 44 \nu^{8} + 18 \nu^{7} - 16 \nu^{6} + 10 \nu^{5} - 108 \nu^{4} - 256 \nu^{3} - 80 \nu^{2} + 304 \nu + 416 ) / 128 \)
|
\(\beta_{5}\) | \(=\) |
\( ( - 5 \nu^{11} - 14 \nu^{10} + 3 \nu^{9} + 28 \nu^{8} + 38 \nu^{7} + 16 \nu^{6} + 6 \nu^{5} - 36 \nu^{4} - 176 \nu^{3} - 176 \nu^{2} + 80 \nu + 352 ) / 64 \)
|
\(\beta_{6}\) | \(=\) |
\( ( -\nu^{11} - \nu^{10} + 2\nu^{9} + 5\nu^{8} + 3\nu^{7} - 4\nu^{5} - 14\nu^{4} - 26\nu^{3} - 8\nu^{2} + 40\nu + 48 ) / 8 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 21 \nu^{11} + 54 \nu^{10} + 21 \nu^{9} - 52 \nu^{8} - 78 \nu^{7} - 112 \nu^{6} - 118 \nu^{5} + 84 \nu^{4} + 448 \nu^{3} + 752 \nu^{2} + 176 \nu - 480 ) / 128 \)
|
\(\beta_{8}\) | \(=\) |
\( ( - 23 \nu^{11} - 18 \nu^{10} + 41 \nu^{9} + 60 \nu^{8} + 58 \nu^{7} + 48 \nu^{6} - 14 \nu^{5} - 220 \nu^{4} - 448 \nu^{3} - 144 \nu^{2} + 624 \nu + 544 ) / 128 \)
|
\(\beta_{9}\) | \(=\) |
\( ( - 23 \nu^{11} - 34 \nu^{10} + 41 \nu^{9} + 108 \nu^{8} + 90 \nu^{7} + 16 \nu^{6} - 78 \nu^{5} - 252 \nu^{4} - 576 \nu^{3} - 528 \nu^{2} + 880 \nu + 1312 ) / 128 \)
|
\(\beta_{10}\) | \(=\) |
\( ( - 17 \nu^{11} - 22 \nu^{10} + 31 \nu^{9} + 76 \nu^{8} + 54 \nu^{7} - 34 \nu^{5} - 180 \nu^{4} - 416 \nu^{3} - 176 \nu^{2} + 720 \nu + 800 ) / 64 \)
|
\(\beta_{11}\) | \(=\) |
\( ( 19 \nu^{11} + 18 \nu^{10} - 29 \nu^{9} - 68 \nu^{8} - 66 \nu^{7} - 16 \nu^{6} + 38 \nu^{5} + 220 \nu^{4} + 352 \nu^{3} + 240 \nu^{2} - 560 \nu - 736 ) / 64 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{10} - \beta_{6} - \beta_{5} - \beta_{4} - \beta_{2} - 1 ) / 4 \)
|
\(\nu^{2}\) | \(=\) |
\( ( \beta_{10} - 2\beta_{9} + \beta_{6} + \beta_{5} - \beta_{4} + \beta_{2} + 3 ) / 4 \)
|
\(\nu^{3}\) | \(=\) |
\( ( -2\beta_{11} + \beta_{10} - 2\beta_{8} - 3\beta_{6} + \beta_{5} - \beta_{4} + 2\beta_{3} + \beta_{2} + 2\beta _1 + 1 ) / 4 \)
|
\(\nu^{4}\) | \(=\) |
\( ( 2 \beta_{11} + \beta_{10} + 2 \beta_{9} + 2 \beta_{7} - \beta_{6} + 3 \beta_{5} - \beta_{4} - 8 \beta_{3} + \beta_{2} + 2 \beta _1 + 5 ) / 4 \)
|
\(\nu^{5}\) | \(=\) |
\( ( -2\beta_{11} + \beta_{10} - 2\beta_{9} - 7\beta_{6} + \beta_{5} + 5\beta_{4} + 6\beta_{3} - 5\beta_{2} + 2\beta _1 - 3 ) / 4 \)
|
\(\nu^{6}\) | \(=\) |
\( ( 2 \beta_{11} - \beta_{10} + 2 \beta_{9} + 4 \beta_{8} + 3 \beta_{6} + 3 \beta_{5} - 9 \beta_{4} + 2 \beta_{3} - 3 \beta_{2} + 6 \beta _1 + 11 ) / 4 \)
|
\(\nu^{7}\) | \(=\) |
\( ( - 6 \beta_{11} + \beta_{10} - 6 \beta_{9} + 4 \beta_{7} - 7 \beta_{6} + 9 \beta_{5} - 3 \beta_{4} - 2 \beta_{3} - \beta_{2} - 2 \beta _1 - 15 ) / 4 \)
|
\(\nu^{8}\) | \(=\) |
\( ( - 2 \beta_{11} - \beta_{10} + 2 \beta_{9} - 12 \beta_{8} + 4 \beta_{7} + 7 \beta_{6} + 15 \beta_{5} - \beta_{4} - 6 \beta_{3} - 3 \beta_{2} + 18 \beta _1 - 9 ) / 4 \)
|
\(\nu^{9}\) | \(=\) |
\( ( 2 \beta_{11} - 7 \beta_{10} + 14 \beta_{9} + 12 \beta_{8} + 4 \beta_{7} - 23 \beta_{6} + 17 \beta_{5} + 17 \beta_{4} + 30 \beta_{3} + 11 \beta_{2} + 6 \beta _1 - 23 ) / 4 \)
|
\(\nu^{10}\) | \(=\) |
\( ( - 2 \beta_{11} - 21 \beta_{10} + 10 \beta_{9} + 4 \beta_{8} + 16 \beta_{7} + 15 \beta_{6} - \beta_{5} + 7 \beta_{4} - 50 \beta_{3} - 35 \beta_{2} + 10 \beta _1 + 19 ) / 4 \)
|
\(\nu^{11}\) | \(=\) |
\( ( 10 \beta_{11} - 7 \beta_{10} + 6 \beta_{9} + 12 \beta_{8} - 4 \beta_{7} - 7 \beta_{6} + 17 \beta_{5} + \beta_{4} + 110 \beta_{3} - 29 \beta_{2} - 2 \beta _1 - 111 ) / 4 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).
\(n\) | \(127\) | \(129\) | \(197\) |
\(\chi(n)\) | \(1\) | \(1\) | \(\beta_{3}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
113.1 |
|
0 | −2.21570 | + | 2.21570i | 0 | −0.393125 | − | 0.393125i | 0 | − | 1.00000i | 0 | − | 6.81864i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||
113.2 | 0 | −1.39123 | + | 1.39123i | 0 | 2.16478 | + | 2.16478i | 0 | − | 1.00000i | 0 | − | 0.871066i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||
113.3 | 0 | −0.631188 | + | 0.631188i | 0 | −2.34259 | − | 2.34259i | 0 | − | 1.00000i | 0 | 2.20320i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||
113.4 | 0 | −0.416854 | + | 0.416854i | 0 | −1.13169 | − | 1.13169i | 0 | − | 1.00000i | 0 | 2.65247i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||
113.5 | 0 | 0.599978 | − | 0.599978i | 0 | 0.974969 | + | 0.974969i | 0 | − | 1.00000i | 0 | 2.28005i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||
113.6 | 0 | 2.05500 | − | 2.05500i | 0 | 2.72766 | + | 2.72766i | 0 | − | 1.00000i | 0 | − | 5.44602i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||
337.1 | 0 | −2.21570 | − | 2.21570i | 0 | −0.393125 | + | 0.393125i | 0 | 1.00000i | 0 | 6.81864i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||
337.2 | 0 | −1.39123 | − | 1.39123i | 0 | 2.16478 | − | 2.16478i | 0 | 1.00000i | 0 | 0.871066i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||
337.3 | 0 | −0.631188 | − | 0.631188i | 0 | −2.34259 | + | 2.34259i | 0 | 1.00000i | 0 | − | 2.20320i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||
337.4 | 0 | −0.416854 | − | 0.416854i | 0 | −1.13169 | + | 1.13169i | 0 | 1.00000i | 0 | − | 2.65247i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||
337.5 | 0 | 0.599978 | + | 0.599978i | 0 | 0.974969 | − | 0.974969i | 0 | 1.00000i | 0 | − | 2.28005i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||
337.6 | 0 | 2.05500 | + | 2.05500i | 0 | 2.72766 | − | 2.72766i | 0 | 1.00000i | 0 | 5.44602i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
16.e | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 448.2.m.d | 12 | |
4.b | odd | 2 | 1 | 112.2.m.d | ✓ | 12 | |
8.b | even | 2 | 1 | 896.2.m.h | 12 | ||
8.d | odd | 2 | 1 | 896.2.m.g | 12 | ||
16.e | even | 4 | 1 | inner | 448.2.m.d | 12 | |
16.e | even | 4 | 1 | 896.2.m.h | 12 | ||
16.f | odd | 4 | 1 | 112.2.m.d | ✓ | 12 | |
16.f | odd | 4 | 1 | 896.2.m.g | 12 | ||
28.d | even | 2 | 1 | 784.2.m.h | 12 | ||
28.f | even | 6 | 2 | 784.2.x.m | 24 | ||
28.g | odd | 6 | 2 | 784.2.x.l | 24 | ||
32.g | even | 8 | 2 | 7168.2.a.bi | 12 | ||
32.h | odd | 8 | 2 | 7168.2.a.bj | 12 | ||
112.j | even | 4 | 1 | 784.2.m.h | 12 | ||
112.u | odd | 12 | 2 | 784.2.x.l | 24 | ||
112.v | even | 12 | 2 | 784.2.x.m | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
112.2.m.d | ✓ | 12 | 4.b | odd | 2 | 1 | |
112.2.m.d | ✓ | 12 | 16.f | odd | 4 | 1 | |
448.2.m.d | 12 | 1.a | even | 1 | 1 | trivial | |
448.2.m.d | 12 | 16.e | even | 4 | 1 | inner | |
784.2.m.h | 12 | 28.d | even | 2 | 1 | ||
784.2.m.h | 12 | 112.j | even | 4 | 1 | ||
784.2.x.l | 24 | 28.g | odd | 6 | 2 | ||
784.2.x.l | 24 | 112.u | odd | 12 | 2 | ||
784.2.x.m | 24 | 28.f | even | 6 | 2 | ||
784.2.x.m | 24 | 112.v | even | 12 | 2 | ||
896.2.m.g | 12 | 8.d | odd | 2 | 1 | ||
896.2.m.g | 12 | 16.f | odd | 4 | 1 | ||
896.2.m.h | 12 | 8.b | even | 2 | 1 | ||
896.2.m.h | 12 | 16.e | even | 4 | 1 | ||
7168.2.a.bi | 12 | 32.g | even | 8 | 2 | ||
7168.2.a.bj | 12 | 32.h | odd | 8 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{12} + 4 T_{3}^{11} + 8 T_{3}^{10} + 4 T_{3}^{9} + 76 T_{3}^{8} + 288 T_{3}^{7} + 552 T_{3}^{6} + 376 T_{3}^{5} + 164 T_{3}^{4} + 144 T_{3}^{3} + 288 T_{3}^{2} + 192 T_{3} + 64 \)
acting on \(S_{2}^{\mathrm{new}}(448, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{12} \)
$3$
\( T^{12} + 4 T^{11} + 8 T^{10} + 4 T^{9} + \cdots + 64 \)
$5$
\( T^{12} - 4 T^{11} + 8 T^{10} + 12 T^{9} + \cdots + 2304 \)
$7$
\( (T^{2} + 1)^{6} \)
$11$
\( T^{12} - 32 T^{9} + 740 T^{8} + \cdots + 541696 \)
$13$
\( T^{12} + 20 T^{9} + 1724 T^{8} + \cdots + 3211264 \)
$17$
\( (T^{6} + 4 T^{5} - 44 T^{4} - 200 T^{3} + \cdots - 96)^{2} \)
$19$
\( T^{12} + 76 T^{9} + 2444 T^{8} + \cdots + 2849344 \)
$23$
\( T^{12} + 136 T^{10} + \cdots + 10137856 \)
$29$
\( T^{12} + 4 T^{11} + 8 T^{10} + \cdots + 8620096 \)
$31$
\( (T^{6} - 4 T^{5} - 16 T^{4} + 72 T^{3} + \cdots + 64)^{2} \)
$37$
\( T^{12} + 20 T^{11} + 200 T^{10} + \cdots + 5053504 \)
$41$
\( T^{12} + 120 T^{10} + 4704 T^{8} + \cdots + 25600 \)
$43$
\( T^{12} + 16 T^{11} + 128 T^{10} + \cdots + 23040000 \)
$47$
\( (T^{6} + 8 T^{5} - 104 T^{4} - 1032 T^{3} + \cdots + 19776)^{2} \)
$53$
\( T^{12} - 4 T^{11} + 8 T^{10} + \cdots + 78400 \)
$59$
\( T^{12} - 16 T^{11} + \cdots + 119596096 \)
$61$
\( T^{12} + 20 T^{11} + 200 T^{10} + \cdots + 256 \)
$67$
\( T^{12} + 24 T^{11} + 288 T^{10} + \cdots + 3686400 \)
$71$
\( T^{12} + 432 T^{10} + 60960 T^{8} + \cdots + 6553600 \)
$73$
\( T^{12} + 616 T^{10} + \cdots + 3050573824 \)
$79$
\( (T^{6} + 12 T^{5} - 44 T^{4} - 576 T^{3} + \cdots - 2240)^{2} \)
$83$
\( T^{12} - 20 T^{11} + \cdots + 320093429824 \)
$89$
\( T^{12} + 552 T^{10} + \cdots + 35476475904 \)
$97$
\( (T^{6} - 24 T^{5} - 60 T^{4} + 2568 T^{3} + \cdots - 39008)^{2} \)
show more
show less