Properties

Label 448.2.i.i
Level $448$
Weight $2$
Character orbit 448.i
Analytic conductor $3.577$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 448.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.57729801055\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 224)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{12}^{3} - \zeta_{12}) q^{3} + ( - \zeta_{12}^{2} + 1) q^{5} + (3 \zeta_{12}^{3} - 2 \zeta_{12}) q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \zeta_{12}^{3} - \zeta_{12}) q^{3} + ( - \zeta_{12}^{2} + 1) q^{5} + (3 \zeta_{12}^{3} - 2 \zeta_{12}) q^{7} + ( - 3 \zeta_{12}^{3} - 3 \zeta_{12}) q^{11} + (\zeta_{12}^{3} - 2 \zeta_{12}) q^{15} - 5 \zeta_{12}^{2} q^{17} + (2 \zeta_{12}^{3} - \zeta_{12}) q^{19} + (\zeta_{12}^{2} + 4) q^{21} + (2 \zeta_{12}^{3} - \zeta_{12}) q^{23} + 4 \zeta_{12}^{2} q^{25} + (3 \zeta_{12}^{3} - 6 \zeta_{12}) q^{27} - 8 q^{29} + ( - 5 \zeta_{12}^{3} - 5 \zeta_{12}) q^{31} + (9 \zeta_{12}^{2} - 9) q^{33} + (2 \zeta_{12}^{3} + \zeta_{12}) q^{35} + (5 \zeta_{12}^{2} - 5) q^{37} + 4 q^{41} + ( - 4 \zeta_{12}^{3} + 8 \zeta_{12}) q^{43} + ( - 10 \zeta_{12}^{3} + 5 \zeta_{12}) q^{47} + ( - 8 \zeta_{12}^{2} + 3) q^{49} + (10 \zeta_{12}^{3} - 5 \zeta_{12}) q^{51} - \zeta_{12}^{2} q^{53} + (3 \zeta_{12}^{3} - 6 \zeta_{12}) q^{55} + 3 q^{57} + ( - \zeta_{12}^{3} - \zeta_{12}) q^{59} + ( - 11 \zeta_{12}^{2} + 11) q^{61} + (7 \zeta_{12}^{3} + 7 \zeta_{12}) q^{67} + 3 q^{69} + ( - 8 \zeta_{12}^{3} + 16 \zeta_{12}) q^{71} - 15 \zeta_{12}^{2} q^{73} + ( - 8 \zeta_{12}^{3} + 4 \zeta_{12}) q^{75} + (3 \zeta_{12}^{2} + 12) q^{77} + (2 \zeta_{12}^{3} - \zeta_{12}) q^{79} + 9 \zeta_{12}^{2} q^{81} + ( - 4 \zeta_{12}^{3} + 8 \zeta_{12}) q^{83} - 5 q^{85} + (8 \zeta_{12}^{3} + 8 \zeta_{12}) q^{87} + (7 \zeta_{12}^{2} - 7) q^{89} + (15 \zeta_{12}^{2} - 15) q^{93} + (\zeta_{12}^{3} + \zeta_{12}) q^{95} + 12 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{5} - 10 q^{17} + 18 q^{21} + 8 q^{25} - 32 q^{29} - 18 q^{33} - 10 q^{37} + 16 q^{41} - 4 q^{49} - 2 q^{53} + 12 q^{57} + 22 q^{61} + 12 q^{69} - 30 q^{73} + 54 q^{77} + 18 q^{81} - 20 q^{85} - 14 q^{89} - 30 q^{93} + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(-1 + \zeta_{12}^{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
65.1
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
0 −0.866025 1.50000i 0 0.500000 0.866025i 0 −1.73205 + 2.00000i 0 0 0
65.2 0 0.866025 + 1.50000i 0 0.500000 0.866025i 0 1.73205 2.00000i 0 0 0
193.1 0 −0.866025 + 1.50000i 0 0.500000 + 0.866025i 0 −1.73205 2.00000i 0 0 0
193.2 0 0.866025 1.50000i 0 0.500000 + 0.866025i 0 1.73205 + 2.00000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
7.c even 3 1 inner
28.g odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 448.2.i.i 4
4.b odd 2 1 inner 448.2.i.i 4
7.c even 3 1 inner 448.2.i.i 4
7.c even 3 1 3136.2.a.bh 2
7.d odd 6 1 3136.2.a.bu 2
8.b even 2 1 224.2.i.b 4
8.d odd 2 1 224.2.i.b 4
24.f even 2 1 2016.2.s.r 4
24.h odd 2 1 2016.2.s.r 4
28.f even 6 1 3136.2.a.bu 2
28.g odd 6 1 inner 448.2.i.i 4
28.g odd 6 1 3136.2.a.bh 2
56.e even 2 1 1568.2.i.u 4
56.h odd 2 1 1568.2.i.u 4
56.j odd 6 1 1568.2.a.n 2
56.j odd 6 1 1568.2.i.u 4
56.k odd 6 1 224.2.i.b 4
56.k odd 6 1 1568.2.a.s 2
56.m even 6 1 1568.2.a.n 2
56.m even 6 1 1568.2.i.u 4
56.p even 6 1 224.2.i.b 4
56.p even 6 1 1568.2.a.s 2
168.s odd 6 1 2016.2.s.r 4
168.v even 6 1 2016.2.s.r 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
224.2.i.b 4 8.b even 2 1
224.2.i.b 4 8.d odd 2 1
224.2.i.b 4 56.k odd 6 1
224.2.i.b 4 56.p even 6 1
448.2.i.i 4 1.a even 1 1 trivial
448.2.i.i 4 4.b odd 2 1 inner
448.2.i.i 4 7.c even 3 1 inner
448.2.i.i 4 28.g odd 6 1 inner
1568.2.a.n 2 56.j odd 6 1
1568.2.a.n 2 56.m even 6 1
1568.2.a.s 2 56.k odd 6 1
1568.2.a.s 2 56.p even 6 1
1568.2.i.u 4 56.e even 2 1
1568.2.i.u 4 56.h odd 2 1
1568.2.i.u 4 56.j odd 6 1
1568.2.i.u 4 56.m even 6 1
2016.2.s.r 4 24.f even 2 1
2016.2.s.r 4 24.h odd 2 1
2016.2.s.r 4 168.s odd 6 1
2016.2.s.r 4 168.v even 6 1
3136.2.a.bh 2 7.c even 3 1
3136.2.a.bh 2 28.g odd 6 1
3136.2.a.bu 2 7.d odd 6 1
3136.2.a.bu 2 28.f even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(448, [\chi])\):

\( T_{3}^{4} + 3T_{3}^{2} + 9 \) Copy content Toggle raw display
\( T_{5}^{2} - T_{5} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$5$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} + 2T^{2} + 49 \) Copy content Toggle raw display
$11$ \( T^{4} + 27T^{2} + 729 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + 5 T + 25)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$23$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$29$ \( (T + 8)^{4} \) Copy content Toggle raw display
$31$ \( T^{4} + 75T^{2} + 5625 \) Copy content Toggle raw display
$37$ \( (T^{2} + 5 T + 25)^{2} \) Copy content Toggle raw display
$41$ \( (T - 4)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} - 48)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 75T^{2} + 5625 \) Copy content Toggle raw display
$53$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$61$ \( (T^{2} - 11 T + 121)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 147 T^{2} + 21609 \) Copy content Toggle raw display
$71$ \( (T^{2} - 192)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 15 T + 225)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$83$ \( (T^{2} - 48)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 7 T + 49)^{2} \) Copy content Toggle raw display
$97$ \( (T - 12)^{4} \) Copy content Toggle raw display
show more
show less