Properties

Label 448.2.ba.c.81.5
Level $448$
Weight $2$
Character 448.81
Analytic conductor $3.577$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,2,Mod(81,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.81"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 9, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 448.ba (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.57729801055\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 81.5
Character \(\chi\) \(=\) 448.81
Dual form 448.2.ba.c.177.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.831674 + 0.222846i) q^{3} +(-2.02749 - 0.543265i) q^{5} +(2.63544 + 0.233350i) q^{7} +(-1.95606 + 1.12933i) q^{9} +(-1.03385 - 3.85837i) q^{11} +(-0.990473 - 0.990473i) q^{13} +1.80728 q^{15} +(3.07828 - 5.33174i) q^{17} +(1.01626 - 3.79274i) q^{19} +(-2.24383 + 0.393227i) q^{21} +(-5.91462 + 3.41481i) q^{23} +(-0.514543 - 0.297072i) q^{25} +(3.20161 - 3.20161i) q^{27} +(-3.83574 - 3.83574i) q^{29} +(2.05131 - 3.55296i) q^{31} +(1.71965 + 2.97851i) q^{33} +(-5.21656 - 1.90486i) q^{35} +(0.0740993 + 0.0198548i) q^{37} +(1.04447 + 0.603027i) q^{39} -8.68707i q^{41} +(-0.713530 + 0.713530i) q^{43} +(4.57941 - 1.22705i) q^{45} +(-1.95337 - 3.38334i) q^{47} +(6.89110 + 1.22996i) q^{49} +(-1.37197 + 5.12025i) q^{51} +(1.89324 + 7.06568i) q^{53} +8.38446i q^{55} +3.38079i q^{57} +(0.851626 + 3.17831i) q^{59} +(-2.37044 + 8.84662i) q^{61} +(-5.41860 + 2.51983i) q^{63} +(1.47009 + 2.54627i) q^{65} +(1.49739 - 0.401223i) q^{67} +(4.15805 - 4.15805i) q^{69} +2.86486i q^{71} +(8.95624 + 5.17089i) q^{73} +(0.494133 + 0.132403i) q^{75} +(-1.82429 - 10.4097i) q^{77} +(3.33631 + 5.77865i) q^{79} +(1.43876 - 2.49200i) q^{81} +(-10.2078 - 10.2078i) q^{83} +(-9.13773 + 9.13773i) q^{85} +(4.04486 + 2.33530i) q^{87} +(-1.16348 + 0.671733i) q^{89} +(-2.37921 - 2.84146i) q^{91} +(-0.914251 + 3.41203i) q^{93} +(-4.12092 + 7.13765i) q^{95} -18.7539 q^{97} +(6.37963 + 6.37963i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 4 q^{5} + 4 q^{11} - 24 q^{13} + 40 q^{15} + 8 q^{17} + 4 q^{19} - 8 q^{21} + 24 q^{27} + 24 q^{29} - 28 q^{31} + 16 q^{33} - 28 q^{35} - 24 q^{37} + 40 q^{43} - 28 q^{45} + 20 q^{47} - 24 q^{51}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.831674 + 0.222846i −0.480167 + 0.128660i −0.490780 0.871283i \(-0.663288\pi\)
0.0106134 + 0.999944i \(0.496622\pi\)
\(4\) 0 0
\(5\) −2.02749 0.543265i −0.906722 0.242955i −0.224821 0.974400i \(-0.572180\pi\)
−0.681901 + 0.731445i \(0.738846\pi\)
\(6\) 0 0
\(7\) 2.63544 + 0.233350i 0.996103 + 0.0881982i
\(8\) 0 0
\(9\) −1.95606 + 1.12933i −0.652019 + 0.376443i
\(10\) 0 0
\(11\) −1.03385 3.85837i −0.311716 1.16334i −0.927008 0.375042i \(-0.877628\pi\)
0.615291 0.788300i \(-0.289038\pi\)
\(12\) 0 0
\(13\) −0.990473 0.990473i −0.274708 0.274708i 0.556284 0.830992i \(-0.312227\pi\)
−0.830992 + 0.556284i \(0.812227\pi\)
\(14\) 0 0
\(15\) 1.80728 0.466636
\(16\) 0 0
\(17\) 3.07828 5.33174i 0.746592 1.29314i −0.202855 0.979209i \(-0.565022\pi\)
0.949447 0.313927i \(-0.101645\pi\)
\(18\) 0 0
\(19\) 1.01626 3.79274i 0.233146 0.870114i −0.745829 0.666137i \(-0.767947\pi\)
0.978976 0.203977i \(-0.0653867\pi\)
\(20\) 0 0
\(21\) −2.24383 + 0.393227i −0.489643 + 0.0858091i
\(22\) 0 0
\(23\) −5.91462 + 3.41481i −1.23328 + 0.712036i −0.967713 0.252055i \(-0.918894\pi\)
−0.265570 + 0.964092i \(0.585560\pi\)
\(24\) 0 0
\(25\) −0.514543 0.297072i −0.102909 0.0594143i
\(26\) 0 0
\(27\) 3.20161 3.20161i 0.616151 0.616151i
\(28\) 0 0
\(29\) −3.83574 3.83574i −0.712279 0.712279i 0.254732 0.967012i \(-0.418013\pi\)
−0.967012 + 0.254732i \(0.918013\pi\)
\(30\) 0 0
\(31\) 2.05131 3.55296i 0.368425 0.638131i −0.620894 0.783894i \(-0.713230\pi\)
0.989320 + 0.145763i \(0.0465637\pi\)
\(32\) 0 0
\(33\) 1.71965 + 2.97851i 0.299352 + 0.518493i
\(34\) 0 0
\(35\) −5.21656 1.90486i −0.881760 0.321980i
\(36\) 0 0
\(37\) 0.0740993 + 0.0198548i 0.0121818 + 0.00326412i 0.264905 0.964275i \(-0.414659\pi\)
−0.252723 + 0.967539i \(0.581326\pi\)
\(38\) 0 0
\(39\) 1.04447 + 0.603027i 0.167250 + 0.0965616i
\(40\) 0 0
\(41\) 8.68707i 1.35669i −0.734742 0.678346i \(-0.762697\pi\)
0.734742 0.678346i \(-0.237303\pi\)
\(42\) 0 0
\(43\) −0.713530 + 0.713530i −0.108812 + 0.108812i −0.759417 0.650604i \(-0.774516\pi\)
0.650604 + 0.759417i \(0.274516\pi\)
\(44\) 0 0
\(45\) 4.57941 1.22705i 0.682658 0.182918i
\(46\) 0 0
\(47\) −1.95337 3.38334i −0.284929 0.493511i 0.687663 0.726030i \(-0.258637\pi\)
−0.972592 + 0.232519i \(0.925303\pi\)
\(48\) 0 0
\(49\) 6.89110 + 1.22996i 0.984442 + 0.175709i
\(50\) 0 0
\(51\) −1.37197 + 5.12025i −0.192114 + 0.716978i
\(52\) 0 0
\(53\) 1.89324 + 7.06568i 0.260057 + 0.970545i 0.965207 + 0.261487i \(0.0842129\pi\)
−0.705150 + 0.709058i \(0.749120\pi\)
\(54\) 0 0
\(55\) 8.38446i 1.13056i
\(56\) 0 0
\(57\) 3.38079i 0.447797i
\(58\) 0 0
\(59\) 0.851626 + 3.17831i 0.110872 + 0.413781i 0.998945 0.0459220i \(-0.0146226\pi\)
−0.888073 + 0.459703i \(0.847956\pi\)
\(60\) 0 0
\(61\) −2.37044 + 8.84662i −0.303504 + 1.13269i 0.630721 + 0.776010i \(0.282759\pi\)
−0.934225 + 0.356684i \(0.883907\pi\)
\(62\) 0 0
\(63\) −5.41860 + 2.51983i −0.682679 + 0.317469i
\(64\) 0 0
\(65\) 1.47009 + 2.54627i 0.182342 + 0.315825i
\(66\) 0 0
\(67\) 1.49739 0.401223i 0.182935 0.0490172i −0.166189 0.986094i \(-0.553146\pi\)
0.349123 + 0.937077i \(0.386479\pi\)
\(68\) 0 0
\(69\) 4.15805 4.15805i 0.500571 0.500571i
\(70\) 0 0
\(71\) 2.86486i 0.339997i 0.985444 + 0.169998i \(0.0543762\pi\)
−0.985444 + 0.169998i \(0.945624\pi\)
\(72\) 0 0
\(73\) 8.95624 + 5.17089i 1.04825 + 0.605207i 0.922159 0.386812i \(-0.126424\pi\)
0.126090 + 0.992019i \(0.459757\pi\)
\(74\) 0 0
\(75\) 0.494133 + 0.132403i 0.0570576 + 0.0152885i
\(76\) 0 0
\(77\) −1.82429 10.4097i −0.207897 1.18630i
\(78\) 0 0
\(79\) 3.33631 + 5.77865i 0.375364 + 0.650149i 0.990381 0.138364i \(-0.0441845\pi\)
−0.615018 + 0.788513i \(0.710851\pi\)
\(80\) 0 0
\(81\) 1.43876 2.49200i 0.159862 0.276889i
\(82\) 0 0
\(83\) −10.2078 10.2078i −1.12045 1.12045i −0.991674 0.128776i \(-0.958895\pi\)
−0.128776 0.991674i \(-0.541105\pi\)
\(84\) 0 0
\(85\) −9.13773 + 9.13773i −0.991126 + 0.991126i
\(86\) 0 0
\(87\) 4.04486 + 2.33530i 0.433655 + 0.250371i
\(88\) 0 0
\(89\) −1.16348 + 0.671733i −0.123328 + 0.0712036i −0.560395 0.828225i \(-0.689351\pi\)
0.437067 + 0.899429i \(0.356017\pi\)
\(90\) 0 0
\(91\) −2.37921 2.84146i −0.249409 0.297866i
\(92\) 0 0
\(93\) −0.914251 + 3.41203i −0.0948034 + 0.353811i
\(94\) 0 0
\(95\) −4.12092 + 7.13765i −0.422798 + 0.732307i
\(96\) 0 0
\(97\) −18.7539 −1.90417 −0.952086 0.305831i \(-0.901066\pi\)
−0.952086 + 0.305831i \(0.901066\pi\)
\(98\) 0 0
\(99\) 6.37963 + 6.37963i 0.641177 + 0.641177i
\(100\) 0 0
\(101\) 1.15143 + 4.29719i 0.114571 + 0.427587i 0.999254 0.0386065i \(-0.0122919\pi\)
−0.884683 + 0.466193i \(0.845625\pi\)
\(102\) 0 0
\(103\) 7.76159 4.48115i 0.764772 0.441541i −0.0662345 0.997804i \(-0.521099\pi\)
0.831006 + 0.556263i \(0.187765\pi\)
\(104\) 0 0
\(105\) 4.76297 + 0.421728i 0.464818 + 0.0411565i
\(106\) 0 0
\(107\) 12.2706 + 3.28789i 1.18624 + 0.317852i 0.797399 0.603453i \(-0.206209\pi\)
0.388841 + 0.921305i \(0.372875\pi\)
\(108\) 0 0
\(109\) −13.9805 + 3.74605i −1.33909 + 0.358807i −0.856095 0.516819i \(-0.827116\pi\)
−0.482990 + 0.875626i \(0.660449\pi\)
\(110\) 0 0
\(111\) −0.0660510 −0.00626928
\(112\) 0 0
\(113\) 2.61081 0.245605 0.122802 0.992431i \(-0.460812\pi\)
0.122802 + 0.992431i \(0.460812\pi\)
\(114\) 0 0
\(115\) 13.8470 3.71029i 1.29124 0.345986i
\(116\) 0 0
\(117\) 3.05599 + 0.818851i 0.282527 + 0.0757028i
\(118\) 0 0
\(119\) 9.35678 13.3332i 0.857735 1.22225i
\(120\) 0 0
\(121\) −4.29189 + 2.47792i −0.390171 + 0.225266i
\(122\) 0 0
\(123\) 1.93588 + 7.22481i 0.174553 + 0.651439i
\(124\) 0 0
\(125\) 8.30298 + 8.30298i 0.742641 + 0.742641i
\(126\) 0 0
\(127\) 9.68594 0.859488 0.429744 0.902951i \(-0.358604\pi\)
0.429744 + 0.902951i \(0.358604\pi\)
\(128\) 0 0
\(129\) 0.434417 0.752432i 0.0382483 0.0662479i
\(130\) 0 0
\(131\) −3.58278 + 13.3711i −0.313029 + 1.16824i 0.612782 + 0.790252i \(0.290050\pi\)
−0.925811 + 0.377987i \(0.876616\pi\)
\(132\) 0 0
\(133\) 3.56333 9.75839i 0.308980 0.846160i
\(134\) 0 0
\(135\) −8.23057 + 4.75192i −0.708375 + 0.408980i
\(136\) 0 0
\(137\) −9.80462 5.66070i −0.837665 0.483626i 0.0188049 0.999823i \(-0.494014\pi\)
−0.856470 + 0.516197i \(0.827347\pi\)
\(138\) 0 0
\(139\) −2.29276 + 2.29276i −0.194469 + 0.194469i −0.797624 0.603155i \(-0.793910\pi\)
0.603155 + 0.797624i \(0.293910\pi\)
\(140\) 0 0
\(141\) 2.37854 + 2.37854i 0.200309 + 0.200309i
\(142\) 0 0
\(143\) −2.79761 + 4.84561i −0.233948 + 0.405210i
\(144\) 0 0
\(145\) 5.69311 + 9.86075i 0.472787 + 0.818891i
\(146\) 0 0
\(147\) −6.00523 + 0.512728i −0.495303 + 0.0422891i
\(148\) 0 0
\(149\) 1.82301 + 0.488473i 0.149346 + 0.0400172i 0.332718 0.943026i \(-0.392034\pi\)
−0.183371 + 0.983044i \(0.558701\pi\)
\(150\) 0 0
\(151\) −12.3236 7.11503i −1.00288 0.579013i −0.0937803 0.995593i \(-0.529895\pi\)
−0.909099 + 0.416580i \(0.863228\pi\)
\(152\) 0 0
\(153\) 13.9056i 1.12420i
\(154\) 0 0
\(155\) −6.08920 + 6.08920i −0.489097 + 0.489097i
\(156\) 0 0
\(157\) 18.7320 5.01921i 1.49497 0.400577i 0.583560 0.812070i \(-0.301659\pi\)
0.911413 + 0.411493i \(0.134993\pi\)
\(158\) 0 0
\(159\) −3.14912 5.45443i −0.249741 0.432565i
\(160\) 0 0
\(161\) −16.3845 + 7.61934i −1.29128 + 0.600488i
\(162\) 0 0
\(163\) 1.09977 4.10438i 0.0861403 0.321480i −0.909387 0.415950i \(-0.863449\pi\)
0.995528 + 0.0944702i \(0.0301157\pi\)
\(164\) 0 0
\(165\) −1.86845 6.97313i −0.145458 0.542858i
\(166\) 0 0
\(167\) 12.2720i 0.949638i −0.880084 0.474819i \(-0.842514\pi\)
0.880084 0.474819i \(-0.157486\pi\)
\(168\) 0 0
\(169\) 11.0379i 0.849071i
\(170\) 0 0
\(171\) 2.29539 + 8.56650i 0.175533 + 0.655097i
\(172\) 0 0
\(173\) 3.86401 14.4207i 0.293776 1.09639i −0.648409 0.761292i \(-0.724565\pi\)
0.942185 0.335093i \(-0.108768\pi\)
\(174\) 0 0
\(175\) −1.28673 0.902983i −0.0972674 0.0682591i
\(176\) 0 0
\(177\) −1.41655 2.45354i −0.106474 0.184419i
\(178\) 0 0
\(179\) 6.59910 1.76822i 0.493240 0.132163i −0.00362111 0.999993i \(-0.501153\pi\)
0.496861 + 0.867830i \(0.334486\pi\)
\(180\) 0 0
\(181\) 5.61848 5.61848i 0.417618 0.417618i −0.466764 0.884382i \(-0.654580\pi\)
0.884382 + 0.466764i \(0.154580\pi\)
\(182\) 0 0
\(183\) 7.88574i 0.582931i
\(184\) 0 0
\(185\) −0.139449 0.0805110i −0.0102525 0.00591929i
\(186\) 0 0
\(187\) −23.7543 6.36494i −1.73708 0.465450i
\(188\) 0 0
\(189\) 9.18476 7.69057i 0.668093 0.559407i
\(190\) 0 0
\(191\) −3.19941 5.54154i −0.231501 0.400972i 0.726749 0.686903i \(-0.241030\pi\)
−0.958250 + 0.285932i \(0.907697\pi\)
\(192\) 0 0
\(193\) 4.90762 8.50025i 0.353258 0.611861i −0.633560 0.773694i \(-0.718407\pi\)
0.986818 + 0.161832i \(0.0517403\pi\)
\(194\) 0 0
\(195\) −1.79006 1.79006i −0.128189 0.128189i
\(196\) 0 0
\(197\) 14.8073 14.8073i 1.05498 1.05498i 0.0565783 0.998398i \(-0.481981\pi\)
0.998398 0.0565783i \(-0.0180191\pi\)
\(198\) 0 0
\(199\) −3.76329 2.17274i −0.266772 0.154021i 0.360648 0.932702i \(-0.382556\pi\)
−0.627420 + 0.778681i \(0.715889\pi\)
\(200\) 0 0
\(201\) −1.15593 + 0.667374i −0.0815327 + 0.0470729i
\(202\) 0 0
\(203\) −9.21380 11.0039i −0.646682 0.772325i
\(204\) 0 0
\(205\) −4.71938 + 17.6130i −0.329616 + 1.23014i
\(206\) 0 0
\(207\) 7.71288 13.3591i 0.536082 0.928522i
\(208\) 0 0
\(209\) −15.6844 −1.08492
\(210\) 0 0
\(211\) 14.5998 + 14.5998i 1.00509 + 1.00509i 0.999987 + 0.00510394i \(0.00162464\pi\)
0.00510394 + 0.999987i \(0.498375\pi\)
\(212\) 0 0
\(213\) −0.638424 2.38263i −0.0437441 0.163255i
\(214\) 0 0
\(215\) 1.83431 1.05904i 0.125099 0.0722260i
\(216\) 0 0
\(217\) 6.23518 8.88495i 0.423271 0.603150i
\(218\) 0 0
\(219\) −8.60098 2.30463i −0.581201 0.155732i
\(220\) 0 0
\(221\) −8.32990 + 2.23199i −0.560329 + 0.150140i
\(222\) 0 0
\(223\) −0.272719 −0.0182626 −0.00913130 0.999958i \(-0.502907\pi\)
−0.00913130 + 0.999958i \(0.502907\pi\)
\(224\) 0 0
\(225\) 1.34197 0.0894645
\(226\) 0 0
\(227\) 11.0202 2.95285i 0.731436 0.195988i 0.126167 0.992009i \(-0.459732\pi\)
0.605268 + 0.796021i \(0.293066\pi\)
\(228\) 0 0
\(229\) −15.1779 4.06690i −1.00298 0.268748i −0.280288 0.959916i \(-0.590430\pi\)
−0.722694 + 0.691168i \(0.757097\pi\)
\(230\) 0 0
\(231\) 3.83699 + 8.25098i 0.252455 + 0.542874i
\(232\) 0 0
\(233\) −4.95726 + 2.86207i −0.324761 + 0.187501i −0.653513 0.756916i \(-0.726705\pi\)
0.328752 + 0.944416i \(0.393372\pi\)
\(234\) 0 0
\(235\) 2.12240 + 7.92090i 0.138450 + 0.516703i
\(236\) 0 0
\(237\) −4.06247 4.06247i −0.263886 0.263886i
\(238\) 0 0
\(239\) −14.5430 −0.940708 −0.470354 0.882478i \(-0.655874\pi\)
−0.470354 + 0.882478i \(0.655874\pi\)
\(240\) 0 0
\(241\) 1.50912 2.61387i 0.0972111 0.168374i −0.813318 0.581819i \(-0.802341\pi\)
0.910529 + 0.413445i \(0.135674\pi\)
\(242\) 0 0
\(243\) −4.15686 + 15.5136i −0.266663 + 0.995199i
\(244\) 0 0
\(245\) −13.3034 6.23743i −0.849926 0.398495i
\(246\) 0 0
\(247\) −4.76319 + 2.75003i −0.303074 + 0.174980i
\(248\) 0 0
\(249\) 10.7643 + 6.21478i 0.682160 + 0.393845i
\(250\) 0 0
\(251\) 13.5264 13.5264i 0.853777 0.853777i −0.136819 0.990596i \(-0.543688\pi\)
0.990596 + 0.136819i \(0.0436880\pi\)
\(252\) 0 0
\(253\) 19.2904 + 19.2904i 1.21278 + 1.21278i
\(254\) 0 0
\(255\) 5.56330 9.63591i 0.348387 0.603424i
\(256\) 0 0
\(257\) −1.52413 2.63988i −0.0950728 0.164671i 0.814566 0.580071i \(-0.196975\pi\)
−0.909639 + 0.415400i \(0.863642\pi\)
\(258\) 0 0
\(259\) 0.190651 + 0.0696174i 0.0118465 + 0.00432581i
\(260\) 0 0
\(261\) 11.8347 + 3.17111i 0.732552 + 0.196287i
\(262\) 0 0
\(263\) −23.3754 13.4958i −1.44139 0.832188i −0.443449 0.896300i \(-0.646245\pi\)
−0.997943 + 0.0641116i \(0.979579\pi\)
\(264\) 0 0
\(265\) 15.3541i 0.943197i
\(266\) 0 0
\(267\) 0.817939 0.817939i 0.0500570 0.0500570i
\(268\) 0 0
\(269\) −17.5785 + 4.71013i −1.07178 + 0.287182i −0.751223 0.660048i \(-0.770536\pi\)
−0.320554 + 0.947230i \(0.603869\pi\)
\(270\) 0 0
\(271\) 15.6541 + 27.1137i 0.950917 + 1.64704i 0.743446 + 0.668796i \(0.233190\pi\)
0.207472 + 0.978241i \(0.433477\pi\)
\(272\) 0 0
\(273\) 2.61193 + 1.83297i 0.158081 + 0.110936i
\(274\) 0 0
\(275\) −0.614253 + 2.29242i −0.0370408 + 0.138238i
\(276\) 0 0
\(277\) 4.26100 + 15.9023i 0.256019 + 0.955476i 0.967521 + 0.252792i \(0.0813487\pi\)
−0.711502 + 0.702684i \(0.751985\pi\)
\(278\) 0 0
\(279\) 9.26640i 0.554765i
\(280\) 0 0
\(281\) 25.4166i 1.51622i 0.652124 + 0.758112i \(0.273878\pi\)
−0.652124 + 0.758112i \(0.726122\pi\)
\(282\) 0 0
\(283\) −1.61086 6.01181i −0.0957556 0.357365i 0.901377 0.433035i \(-0.142557\pi\)
−0.997133 + 0.0756698i \(0.975891\pi\)
\(284\) 0 0
\(285\) 1.83666 6.85452i 0.108795 0.406027i
\(286\) 0 0
\(287\) 2.02713 22.8943i 0.119658 1.35141i
\(288\) 0 0
\(289\) −10.4516 18.1027i −0.614800 1.06486i
\(290\) 0 0
\(291\) 15.5971 4.17924i 0.914320 0.244991i
\(292\) 0 0
\(293\) 18.5820 18.5820i 1.08557 1.08557i 0.0895915 0.995979i \(-0.471444\pi\)
0.995979 0.0895915i \(-0.0285562\pi\)
\(294\) 0 0
\(295\) 6.90666i 0.402121i
\(296\) 0 0
\(297\) −15.6630 9.04303i −0.908859 0.524730i
\(298\) 0 0
\(299\) 9.24055 + 2.47600i 0.534395 + 0.143191i
\(300\) 0 0
\(301\) −2.04697 + 1.71396i −0.117985 + 0.0987912i
\(302\) 0 0
\(303\) −1.91523 3.31727i −0.110027 0.190572i
\(304\) 0 0
\(305\) 9.61211 16.6487i 0.550388 0.953300i
\(306\) 0 0
\(307\) −19.0620 19.0620i −1.08792 1.08792i −0.995742 0.0921822i \(-0.970616\pi\)
−0.0921822 0.995742i \(-0.529384\pi\)
\(308\) 0 0
\(309\) −5.45650 + 5.45650i −0.310409 + 0.310409i
\(310\) 0 0
\(311\) 5.95180 + 3.43627i 0.337496 + 0.194853i 0.659164 0.751999i \(-0.270910\pi\)
−0.321668 + 0.946852i \(0.604244\pi\)
\(312\) 0 0
\(313\) 6.94756 4.01118i 0.392699 0.226725i −0.290630 0.956836i \(-0.593865\pi\)
0.683329 + 0.730110i \(0.260531\pi\)
\(314\) 0 0
\(315\) 12.3551 2.16521i 0.696131 0.121996i
\(316\) 0 0
\(317\) 0.719764 2.68620i 0.0404260 0.150872i −0.942763 0.333464i \(-0.891782\pi\)
0.983189 + 0.182593i \(0.0584490\pi\)
\(318\) 0 0
\(319\) −10.8341 + 18.7653i −0.606595 + 1.05065i
\(320\) 0 0
\(321\) −10.9378 −0.610488
\(322\) 0 0
\(323\) −17.0935 17.0935i −0.951110 0.951110i
\(324\) 0 0
\(325\) 0.215400 + 0.803883i 0.0119482 + 0.0445914i
\(326\) 0 0
\(327\) 10.7924 6.23099i 0.596820 0.344574i
\(328\) 0 0
\(329\) −4.35850 9.37242i −0.240292 0.516718i
\(330\) 0 0
\(331\) −10.3801 2.78135i −0.570544 0.152877i −0.0379979 0.999278i \(-0.512098\pi\)
−0.532546 + 0.846401i \(0.678765\pi\)
\(332\) 0 0
\(333\) −0.167365 + 0.0448453i −0.00917154 + 0.00245751i
\(334\) 0 0
\(335\) −3.25391 −0.177780
\(336\) 0 0
\(337\) 16.4062 0.893704 0.446852 0.894608i \(-0.352545\pi\)
0.446852 + 0.894608i \(0.352545\pi\)
\(338\) 0 0
\(339\) −2.17134 + 0.581810i −0.117931 + 0.0315996i
\(340\) 0 0
\(341\) −15.8294 4.24147i −0.857209 0.229688i
\(342\) 0 0
\(343\) 17.8741 + 4.84953i 0.965109 + 0.261850i
\(344\) 0 0
\(345\) −10.6893 + 6.17149i −0.575495 + 0.332262i
\(346\) 0 0
\(347\) 9.39255 + 35.0535i 0.504219 + 1.88177i 0.470623 + 0.882334i \(0.344029\pi\)
0.0335953 + 0.999436i \(0.489304\pi\)
\(348\) 0 0
\(349\) 10.3424 + 10.3424i 0.553614 + 0.553614i 0.927482 0.373868i \(-0.121969\pi\)
−0.373868 + 0.927482i \(0.621969\pi\)
\(350\) 0 0
\(351\) −6.34223 −0.338523
\(352\) 0 0
\(353\) −4.57499 + 7.92412i −0.243502 + 0.421758i −0.961709 0.274071i \(-0.911630\pi\)
0.718207 + 0.695829i \(0.244963\pi\)
\(354\) 0 0
\(355\) 1.55638 5.80848i 0.0826040 0.308282i
\(356\) 0 0
\(357\) −4.81055 + 13.1740i −0.254601 + 0.697240i
\(358\) 0 0
\(359\) 7.29942 4.21432i 0.385248 0.222423i −0.294851 0.955543i \(-0.595270\pi\)
0.680099 + 0.733120i \(0.261937\pi\)
\(360\) 0 0
\(361\) 3.10240 + 1.79117i 0.163284 + 0.0942723i
\(362\) 0 0
\(363\) 3.01725 3.01725i 0.158365 0.158365i
\(364\) 0 0
\(365\) −15.3495 15.3495i −0.803432 0.803432i
\(366\) 0 0
\(367\) 4.65182 8.05718i 0.242823 0.420582i −0.718694 0.695326i \(-0.755260\pi\)
0.961517 + 0.274745i \(0.0885933\pi\)
\(368\) 0 0
\(369\) 9.81057 + 16.9924i 0.510718 + 0.884589i
\(370\) 0 0
\(371\) 3.34075 + 19.0630i 0.173443 + 0.989699i
\(372\) 0 0
\(373\) −19.8310 5.31370i −1.02681 0.275133i −0.294172 0.955752i \(-0.595044\pi\)
−0.732637 + 0.680620i \(0.761711\pi\)
\(374\) 0 0
\(375\) −8.75565 5.05508i −0.452140 0.261043i
\(376\) 0 0
\(377\) 7.59840i 0.391337i
\(378\) 0 0
\(379\) 9.02290 9.02290i 0.463475 0.463475i −0.436317 0.899793i \(-0.643718\pi\)
0.899793 + 0.436317i \(0.143718\pi\)
\(380\) 0 0
\(381\) −8.05554 + 2.15847i −0.412698 + 0.110582i
\(382\) 0 0
\(383\) −0.562798 0.974794i −0.0287576 0.0498097i 0.851288 0.524698i \(-0.175822\pi\)
−0.880046 + 0.474888i \(0.842488\pi\)
\(384\) 0 0
\(385\) −1.95652 + 22.0967i −0.0997133 + 1.12615i
\(386\) 0 0
\(387\) 0.589894 2.20152i 0.0299860 0.111909i
\(388\) 0 0
\(389\) 4.47334 + 16.6947i 0.226807 + 0.846457i 0.981672 + 0.190577i \(0.0610358\pi\)
−0.754865 + 0.655880i \(0.772298\pi\)
\(390\) 0 0
\(391\) 42.0469i 2.12640i
\(392\) 0 0
\(393\) 11.9188i 0.601224i
\(394\) 0 0
\(395\) −3.62499 13.5287i −0.182393 0.680701i
\(396\) 0 0
\(397\) 7.33912 27.3900i 0.368340 1.37466i −0.494497 0.869179i \(-0.664648\pi\)
0.862837 0.505483i \(-0.168686\pi\)
\(398\) 0 0
\(399\) −0.788909 + 8.90987i −0.0394948 + 0.446052i
\(400\) 0 0
\(401\) 11.2636 + 19.5091i 0.562477 + 0.974238i 0.997280 + 0.0737127i \(0.0234848\pi\)
−0.434803 + 0.900526i \(0.643182\pi\)
\(402\) 0 0
\(403\) −5.55088 + 1.48735i −0.276509 + 0.0740904i
\(404\) 0 0
\(405\) −4.27088 + 4.27088i −0.212222 + 0.212222i
\(406\) 0 0
\(407\) 0.306429i 0.0151891i
\(408\) 0 0
\(409\) 26.7305 + 15.4328i 1.32174 + 0.763105i 0.984006 0.178138i \(-0.0570073\pi\)
0.337731 + 0.941243i \(0.390341\pi\)
\(410\) 0 0
\(411\) 9.41570 + 2.52293i 0.464442 + 0.124447i
\(412\) 0 0
\(413\) 1.50275 + 8.57498i 0.0739455 + 0.421947i
\(414\) 0 0
\(415\) 15.1507 + 26.2417i 0.743717 + 1.28816i
\(416\) 0 0
\(417\) 1.39589 2.41776i 0.0683572 0.118398i
\(418\) 0 0
\(419\) 7.74947 + 7.74947i 0.378586 + 0.378586i 0.870592 0.492006i \(-0.163736\pi\)
−0.492006 + 0.870592i \(0.663736\pi\)
\(420\) 0 0
\(421\) −12.7552 + 12.7552i −0.621651 + 0.621651i −0.945953 0.324302i \(-0.894870\pi\)
0.324302 + 0.945953i \(0.394870\pi\)
\(422\) 0 0
\(423\) 7.64182 + 4.41201i 0.371558 + 0.214519i
\(424\) 0 0
\(425\) −3.16781 + 1.82894i −0.153662 + 0.0887165i
\(426\) 0 0
\(427\) −8.31153 + 22.7616i −0.402223 + 1.10151i
\(428\) 0 0
\(429\) 1.24688 4.65340i 0.0601997 0.224668i
\(430\) 0 0
\(431\) 4.92680 8.53348i 0.237316 0.411043i −0.722627 0.691238i \(-0.757066\pi\)
0.959943 + 0.280195i \(0.0903990\pi\)
\(432\) 0 0
\(433\) 14.9150 0.716769 0.358385 0.933574i \(-0.383328\pi\)
0.358385 + 0.933574i \(0.383328\pi\)
\(434\) 0 0
\(435\) −6.93224 6.93224i −0.332375 0.332375i
\(436\) 0 0
\(437\) 6.94067 + 25.9029i 0.332017 + 1.23911i
\(438\) 0 0
\(439\) 8.04703 4.64596i 0.384064 0.221739i −0.295521 0.955336i \(-0.595493\pi\)
0.679585 + 0.733597i \(0.262160\pi\)
\(440\) 0 0
\(441\) −14.8684 + 5.37644i −0.708019 + 0.256021i
\(442\) 0 0
\(443\) 9.83379 + 2.63496i 0.467217 + 0.125191i 0.484744 0.874656i \(-0.338913\pi\)
−0.0175270 + 0.999846i \(0.505579\pi\)
\(444\) 0 0
\(445\) 2.72387 0.729858i 0.129124 0.0345986i
\(446\) 0 0
\(447\) −1.62500 −0.0768598
\(448\) 0 0
\(449\) 3.82136 0.180341 0.0901705 0.995926i \(-0.471259\pi\)
0.0901705 + 0.995926i \(0.471259\pi\)
\(450\) 0 0
\(451\) −33.5179 + 8.98110i −1.57830 + 0.422904i
\(452\) 0 0
\(453\) 11.8348 + 3.17111i 0.556045 + 0.148992i
\(454\) 0 0
\(455\) 3.28015 + 7.05358i 0.153776 + 0.330677i
\(456\) 0 0
\(457\) 21.7306 12.5462i 1.01651 0.586885i 0.103422 0.994638i \(-0.467021\pi\)
0.913092 + 0.407753i \(0.133688\pi\)
\(458\) 0 0
\(459\) −7.21470 26.9256i −0.336753 1.25678i
\(460\) 0 0
\(461\) −7.13847 7.13847i −0.332472 0.332472i 0.521053 0.853524i \(-0.325539\pi\)
−0.853524 + 0.521053i \(0.825539\pi\)
\(462\) 0 0
\(463\) −3.67655 −0.170864 −0.0854320 0.996344i \(-0.527227\pi\)
−0.0854320 + 0.996344i \(0.527227\pi\)
\(464\) 0 0
\(465\) 3.70727 6.42118i 0.171921 0.297775i
\(466\) 0 0
\(467\) −2.51848 + 9.39910i −0.116541 + 0.434938i −0.999398 0.0347050i \(-0.988951\pi\)
0.882856 + 0.469643i \(0.155617\pi\)
\(468\) 0 0
\(469\) 4.03990 0.707985i 0.186545 0.0326917i
\(470\) 0 0
\(471\) −14.4604 + 8.34869i −0.666298 + 0.384687i
\(472\) 0 0
\(473\) 3.49074 + 2.01538i 0.160505 + 0.0926673i
\(474\) 0 0
\(475\) −1.64963 + 1.64963i −0.0756900 + 0.0756900i
\(476\) 0 0
\(477\) −11.6828 11.6828i −0.534917 0.534917i
\(478\) 0 0
\(479\) −8.06678 + 13.9721i −0.368581 + 0.638400i −0.989344 0.145598i \(-0.953490\pi\)
0.620763 + 0.783998i \(0.286823\pi\)
\(480\) 0 0
\(481\) −0.0537277 0.0930591i −0.00244977 0.00424313i
\(482\) 0 0
\(483\) 11.9286 9.98802i 0.542770 0.454471i
\(484\) 0 0
\(485\) 38.0234 + 10.1883i 1.72655 + 0.462629i
\(486\) 0 0
\(487\) 11.3224 + 6.53697i 0.513065 + 0.296218i 0.734093 0.679049i \(-0.237608\pi\)
−0.221027 + 0.975268i \(0.570941\pi\)
\(488\) 0 0
\(489\) 3.65859i 0.165447i
\(490\) 0 0
\(491\) −10.1749 + 10.1749i −0.459188 + 0.459188i −0.898389 0.439201i \(-0.855262\pi\)
0.439201 + 0.898389i \(0.355262\pi\)
\(492\) 0 0
\(493\) −32.2586 + 8.64368i −1.45286 + 0.389292i
\(494\) 0 0
\(495\) −9.46882 16.4005i −0.425592 0.737146i
\(496\) 0 0
\(497\) −0.668517 + 7.55018i −0.0299871 + 0.338672i
\(498\) 0 0
\(499\) 10.7751 40.2131i 0.482358 1.80019i −0.109313 0.994007i \(-0.534865\pi\)
0.591672 0.806179i \(-0.298468\pi\)
\(500\) 0 0
\(501\) 2.73477 + 10.2063i 0.122181 + 0.455985i
\(502\) 0 0
\(503\) 35.0535i 1.56296i 0.623930 + 0.781480i \(0.285535\pi\)
−0.623930 + 0.781480i \(0.714465\pi\)
\(504\) 0 0
\(505\) 9.33805i 0.415538i
\(506\) 0 0
\(507\) 2.45976 + 9.17995i 0.109242 + 0.407696i
\(508\) 0 0
\(509\) 0.769772 2.87283i 0.0341195 0.127336i −0.946765 0.321924i \(-0.895670\pi\)
0.980885 + 0.194588i \(0.0623371\pi\)
\(510\) 0 0
\(511\) 22.3970 + 15.7175i 0.990786 + 0.695302i
\(512\) 0 0
\(513\) −8.88921 15.3966i −0.392468 0.679775i
\(514\) 0 0
\(515\) −18.1710 + 4.86891i −0.800710 + 0.214550i
\(516\) 0 0
\(517\) −11.0347 + 11.0347i −0.485305 + 0.485305i
\(518\) 0 0
\(519\) 12.8544i 0.564245i
\(520\) 0 0
\(521\) −21.8703 12.6268i −0.958155 0.553191i −0.0625503 0.998042i \(-0.519923\pi\)
−0.895605 + 0.444851i \(0.853257\pi\)
\(522\) 0 0
\(523\) −0.671120 0.179826i −0.0293460 0.00786324i 0.244116 0.969746i \(-0.421502\pi\)
−0.273462 + 0.961883i \(0.588169\pi\)
\(524\) 0 0
\(525\) 1.27136 + 0.464245i 0.0554868 + 0.0202613i
\(526\) 0 0
\(527\) −12.6290 21.8740i −0.550127 0.952848i
\(528\) 0 0
\(529\) 11.8218 20.4760i 0.513991 0.890259i
\(530\) 0 0
\(531\) −5.25519 5.25519i −0.228056 0.228056i
\(532\) 0 0
\(533\) −8.60431 + 8.60431i −0.372694 + 0.372694i
\(534\) 0 0
\(535\) −23.0923 13.3323i −0.998366 0.576407i
\(536\) 0 0
\(537\) −5.09425 + 2.94117i −0.219833 + 0.126921i
\(538\) 0 0
\(539\) −2.37869 27.8600i −0.102457 1.20001i
\(540\) 0 0
\(541\) −3.00200 + 11.2036i −0.129066 + 0.481681i −0.999952 0.00980419i \(-0.996879\pi\)
0.870886 + 0.491485i \(0.163546\pi\)
\(542\) 0 0
\(543\) −3.42068 + 5.92480i −0.146796 + 0.254257i
\(544\) 0 0
\(545\) 30.3804 1.30135
\(546\) 0 0
\(547\) −8.29783 8.29783i −0.354790 0.354790i 0.507098 0.861888i \(-0.330718\pi\)
−0.861888 + 0.507098i \(0.830718\pi\)
\(548\) 0 0
\(549\) −5.35402 19.9815i −0.228504 0.852789i
\(550\) 0 0
\(551\) −18.4461 + 10.6498i −0.785829 + 0.453699i
\(552\) 0 0
\(553\) 7.44419 + 16.0078i 0.316559 + 0.680722i
\(554\) 0 0
\(555\) 0.133918 + 0.0358832i 0.00568449 + 0.00152316i
\(556\) 0 0
\(557\) 19.4942 5.22346i 0.825997 0.221325i 0.179030 0.983844i \(-0.442704\pi\)
0.646967 + 0.762518i \(0.276037\pi\)
\(558\) 0 0
\(559\) 1.41347 0.0597832
\(560\) 0 0
\(561\) 21.1742 0.893975
\(562\) 0 0
\(563\) 24.7408 6.62929i 1.04270 0.279391i 0.303469 0.952841i \(-0.401855\pi\)
0.739233 + 0.673450i \(0.235188\pi\)
\(564\) 0 0
\(565\) −5.29340 1.41836i −0.222695 0.0596709i
\(566\) 0 0
\(567\) 4.37327 6.23179i 0.183660 0.261710i
\(568\) 0 0
\(569\) 28.6248 16.5265i 1.20001 0.692828i 0.239455 0.970908i \(-0.423031\pi\)
0.960558 + 0.278080i \(0.0896980\pi\)
\(570\) 0 0
\(571\) −3.86560 14.4266i −0.161770 0.603735i −0.998430 0.0560119i \(-0.982162\pi\)
0.836660 0.547723i \(-0.184505\pi\)
\(572\) 0 0
\(573\) 3.89577 + 3.89577i 0.162748 + 0.162748i
\(574\) 0 0
\(575\) 4.05777 0.169221
\(576\) 0 0
\(577\) −0.666623 + 1.15463i −0.0277519 + 0.0480677i −0.879568 0.475774i \(-0.842168\pi\)
0.851816 + 0.523841i \(0.175502\pi\)
\(578\) 0 0
\(579\) −2.18729 + 8.16308i −0.0909007 + 0.339246i
\(580\) 0 0
\(581\) −24.5200 29.2840i −1.01726 1.21490i
\(582\) 0 0
\(583\) 25.3047 14.6097i 1.04801 0.605070i
\(584\) 0 0
\(585\) −5.75114 3.32042i −0.237781 0.137283i
\(586\) 0 0
\(587\) 19.7266 19.7266i 0.814203 0.814203i −0.171058 0.985261i \(-0.554719\pi\)
0.985261 + 0.171058i \(0.0547186\pi\)
\(588\) 0 0
\(589\) −11.3908 11.3908i −0.469350 0.469350i
\(590\) 0 0
\(591\) −9.01509 + 15.6146i −0.370831 + 0.642298i
\(592\) 0 0
\(593\) −9.40250 16.2856i −0.386114 0.668769i 0.605809 0.795610i \(-0.292850\pi\)
−0.991923 + 0.126841i \(0.959516\pi\)
\(594\) 0 0
\(595\) −26.2142 + 21.9496i −1.07468 + 0.899848i
\(596\) 0 0
\(597\) 3.61401 + 0.968372i 0.147912 + 0.0396328i
\(598\) 0 0
\(599\) 24.0798 + 13.9025i 0.983873 + 0.568039i 0.903437 0.428720i \(-0.141035\pi\)
0.0804358 + 0.996760i \(0.474369\pi\)
\(600\) 0 0
\(601\) 13.6372i 0.556271i 0.960542 + 0.278136i \(0.0897165\pi\)
−0.960542 + 0.278136i \(0.910284\pi\)
\(602\) 0 0
\(603\) −2.47586 + 2.47586i −0.100825 + 0.100825i
\(604\) 0 0
\(605\) 10.0479 2.69233i 0.408506 0.109459i
\(606\) 0 0
\(607\) −14.5489 25.1994i −0.590522 1.02281i −0.994162 0.107896i \(-0.965589\pi\)
0.403640 0.914918i \(-0.367745\pi\)
\(608\) 0 0
\(609\) 10.1151 + 7.09843i 0.409883 + 0.287643i
\(610\) 0 0
\(611\) −1.41635 + 5.28588i −0.0572993 + 0.213844i
\(612\) 0 0
\(613\) −7.49934 27.9879i −0.302895 1.13042i −0.934742 0.355327i \(-0.884369\pi\)
0.631846 0.775094i \(-0.282297\pi\)
\(614\) 0 0
\(615\) 15.6999i 0.633082i
\(616\) 0 0
\(617\) 5.44754i 0.219310i −0.993970 0.109655i \(-0.965025\pi\)
0.993970 0.109655i \(-0.0349745\pi\)
\(618\) 0 0
\(619\) −1.57246 5.86850i −0.0632025 0.235875i 0.927098 0.374820i \(-0.122295\pi\)
−0.990300 + 0.138945i \(0.955629\pi\)
\(620\) 0 0
\(621\) −8.00343 + 29.8692i −0.321167 + 1.19861i
\(622\) 0 0
\(623\) −3.22302 + 1.49882i −0.129128 + 0.0600488i
\(624\) 0 0
\(625\) −10.8381 18.7722i −0.433526 0.750888i
\(626\) 0 0
\(627\) 13.0443 3.49522i 0.520941 0.139586i
\(628\) 0 0
\(629\) 0.333959 0.333959i 0.0133158 0.0133158i
\(630\) 0 0
\(631\) 31.5326i 1.25529i −0.778499 0.627646i \(-0.784018\pi\)
0.778499 0.627646i \(-0.215982\pi\)
\(632\) 0 0
\(633\) −15.3958 8.88875i −0.611927 0.353296i
\(634\) 0 0
\(635\) −19.6381 5.26203i −0.779316 0.208817i
\(636\) 0 0
\(637\) −5.60720 8.04369i −0.222165 0.318703i
\(638\) 0 0
\(639\) −3.23537 5.60383i −0.127989 0.221684i
\(640\) 0 0
\(641\) −13.6133 + 23.5789i −0.537691 + 0.931309i 0.461337 + 0.887225i \(0.347370\pi\)
−0.999028 + 0.0440835i \(0.985963\pi\)
\(642\) 0 0
\(643\) 8.13921 + 8.13921i 0.320979 + 0.320979i 0.849143 0.528164i \(-0.177119\pi\)
−0.528164 + 0.849143i \(0.677119\pi\)
\(644\) 0 0
\(645\) −1.28955 + 1.28955i −0.0507758 + 0.0507758i
\(646\) 0 0
\(647\) −6.70236 3.86961i −0.263497 0.152130i 0.362432 0.932010i \(-0.381947\pi\)
−0.625929 + 0.779880i \(0.715280\pi\)
\(648\) 0 0
\(649\) 11.3826 6.57177i 0.446808 0.257965i
\(650\) 0 0
\(651\) −3.20565 + 8.77887i −0.125639 + 0.344071i
\(652\) 0 0
\(653\) 2.60819 9.73388i 0.102066 0.380916i −0.895930 0.444196i \(-0.853489\pi\)
0.997996 + 0.0632798i \(0.0201561\pi\)
\(654\) 0 0
\(655\) 14.5281 25.1634i 0.567660 0.983216i
\(656\) 0 0
\(657\) −23.3585 −0.911304
\(658\) 0 0
\(659\) 4.61254 + 4.61254i 0.179679 + 0.179679i 0.791216 0.611537i \(-0.209448\pi\)
−0.611537 + 0.791216i \(0.709448\pi\)
\(660\) 0 0
\(661\) −5.03853 18.8040i −0.195976 0.731393i −0.992012 0.126143i \(-0.959740\pi\)
0.796036 0.605249i \(-0.206927\pi\)
\(662\) 0 0
\(663\) 6.43036 3.71257i 0.249735 0.144184i
\(664\) 0 0
\(665\) −12.5260 + 17.8492i −0.485738 + 0.692163i
\(666\) 0 0
\(667\) 35.7853 + 9.58863i 1.38561 + 0.371273i
\(668\) 0 0
\(669\) 0.226813 0.0607743i 0.00876910 0.00234967i
\(670\) 0 0
\(671\) 36.5842 1.41232
\(672\) 0 0
\(673\) −28.4799 −1.09782 −0.548910 0.835881i \(-0.684957\pi\)
−0.548910 + 0.835881i \(0.684957\pi\)
\(674\) 0 0
\(675\) −2.59848 + 0.696260i −0.100015 + 0.0267991i
\(676\) 0 0
\(677\) −10.0011 2.67980i −0.384375 0.102993i 0.0614567 0.998110i \(-0.480425\pi\)
−0.445832 + 0.895117i \(0.647092\pi\)
\(678\) 0 0
\(679\) −49.4248 4.37623i −1.89675 0.167944i
\(680\) 0 0
\(681\) −8.50717 + 4.91162i −0.325995 + 0.188214i
\(682\) 0 0
\(683\) 2.41481 + 9.01220i 0.0924002 + 0.344842i 0.996612 0.0822411i \(-0.0262077\pi\)
−0.904212 + 0.427083i \(0.859541\pi\)
\(684\) 0 0
\(685\) 16.8035 + 16.8035i 0.642029 + 0.642029i
\(686\) 0 0
\(687\) 13.5293 0.516176
\(688\) 0 0
\(689\) 5.12316 8.87357i 0.195177 0.338056i
\(690\) 0 0
\(691\) 6.68364 24.9437i 0.254258 0.948902i −0.714244 0.699896i \(-0.753230\pi\)
0.968502 0.249006i \(-0.0801038\pi\)
\(692\) 0 0
\(693\) 15.3244 + 18.3018i 0.582128 + 0.695229i
\(694\) 0 0
\(695\) 5.89412 3.40297i 0.223577 0.129082i
\(696\) 0 0
\(697\) −46.3172 26.7412i −1.75439 1.01290i
\(698\) 0 0
\(699\) 3.48502 3.48502i 0.131815 0.131815i
\(700\) 0 0
\(701\) 3.43743 + 3.43743i 0.129830 + 0.129830i 0.769036 0.639206i \(-0.220737\pi\)
−0.639206 + 0.769036i \(0.720737\pi\)
\(702\) 0 0
\(703\) 0.150608 0.260861i 0.00568031 0.00983858i
\(704\) 0 0
\(705\) −3.53029 6.11463i −0.132958 0.230290i
\(706\) 0 0
\(707\) 2.03177 + 11.5937i 0.0764126 + 0.436025i
\(708\) 0 0
\(709\) −28.9026 7.74444i −1.08546 0.290849i −0.328630 0.944459i \(-0.606587\pi\)
−0.756831 + 0.653610i \(0.773254\pi\)
\(710\) 0 0
\(711\) −13.0520 7.53558i −0.489488 0.282606i
\(712\) 0 0
\(713\) 28.0192i 1.04933i
\(714\) 0 0
\(715\) 8.30458 8.30458i 0.310574 0.310574i
\(716\) 0 0
\(717\) 12.0950 3.24085i 0.451697 0.121032i
\(718\) 0 0
\(719\) 2.49771 + 4.32616i 0.0931488 + 0.161339i 0.908835 0.417157i \(-0.136973\pi\)
−0.815686 + 0.578495i \(0.803640\pi\)
\(720\) 0 0
\(721\) 21.5009 9.99865i 0.800735 0.372369i
\(722\) 0 0
\(723\) −0.672604 + 2.51019i −0.0250144 + 0.0933551i
\(724\) 0 0
\(725\) 0.834164 + 3.11314i 0.0309801 + 0.115619i
\(726\) 0 0
\(727\) 4.59798i 0.170530i −0.996358 0.0852648i \(-0.972826\pi\)
0.996358 0.0852648i \(-0.0271736\pi\)
\(728\) 0 0
\(729\) 5.19606i 0.192447i
\(730\) 0 0
\(731\) 1.60791 + 6.00080i 0.0594707 + 0.221948i
\(732\) 0 0
\(733\) −2.74210 + 10.2337i −0.101282 + 0.377989i −0.997897 0.0648221i \(-0.979352\pi\)
0.896615 + 0.442811i \(0.146019\pi\)
\(734\) 0 0
\(735\) 12.4541 + 2.22288i 0.459377 + 0.0819922i
\(736\) 0 0
\(737\) −3.09614 5.36266i −0.114048 0.197536i
\(738\) 0 0
\(739\) 45.8723 12.2915i 1.68744 0.452149i 0.717714 0.696338i \(-0.245189\pi\)
0.969728 + 0.244190i \(0.0785219\pi\)
\(740\) 0 0
\(741\) 3.34858 3.34858i 0.123013 0.123013i
\(742\) 0 0
\(743\) 17.5619i 0.644285i 0.946691 + 0.322142i \(0.104403\pi\)
−0.946691 + 0.322142i \(0.895597\pi\)
\(744\) 0 0
\(745\) −3.43076 1.98075i −0.125693 0.0725690i
\(746\) 0 0
\(747\) 31.4949 + 8.43904i 1.15234 + 0.308768i
\(748\) 0 0
\(749\) 31.5711 + 11.5284i 1.15358 + 0.421238i
\(750\) 0 0
\(751\) −9.02361 15.6293i −0.329276 0.570323i 0.653092 0.757278i \(-0.273471\pi\)
−0.982368 + 0.186955i \(0.940138\pi\)
\(752\) 0 0
\(753\) −8.23522 + 14.2638i −0.300108 + 0.519803i
\(754\) 0 0
\(755\) 21.1206 + 21.1206i 0.768658 + 0.768658i
\(756\) 0 0
\(757\) 18.4795 18.4795i 0.671647 0.671647i −0.286448 0.958096i \(-0.592475\pi\)
0.958096 + 0.286448i \(0.0924747\pi\)
\(758\) 0 0
\(759\) −20.3421 11.7445i −0.738371 0.426299i
\(760\) 0 0
\(761\) −5.61500 + 3.24182i −0.203543 + 0.117516i −0.598307 0.801267i \(-0.704160\pi\)
0.394764 + 0.918783i \(0.370826\pi\)
\(762\) 0 0
\(763\) −37.7188 + 6.61015i −1.36551 + 0.239304i
\(764\) 0 0
\(765\) 7.55440 28.1934i 0.273130 1.01933i
\(766\) 0 0
\(767\) 2.30452 3.99155i 0.0832114 0.144126i
\(768\) 0 0
\(769\) −23.9598 −0.864014 −0.432007 0.901870i \(-0.642194\pi\)
−0.432007 + 0.901870i \(0.642194\pi\)
\(770\) 0 0
\(771\) 1.85587 + 1.85587i 0.0668374 + 0.0668374i
\(772\) 0 0
\(773\) −0.711549 2.65554i −0.0255926 0.0955130i 0.951948 0.306259i \(-0.0990774\pi\)
−0.977541 + 0.210746i \(0.932411\pi\)
\(774\) 0 0
\(775\) −2.11097 + 1.21877i −0.0758283 + 0.0437795i
\(776\) 0 0
\(777\) −0.174073 0.0154130i −0.00624485 0.000552939i
\(778\) 0 0
\(779\) −32.9478 8.82834i −1.18048 0.316308i
\(780\) 0 0
\(781\) 11.0537 2.96183i 0.395532 0.105983i
\(782\) 0 0
\(783\) −24.5611 −0.877743
\(784\) 0 0
\(785\) −40.7056 −1.45285
\(786\) 0 0
\(787\) −47.5886 + 12.7513i −1.69635 + 0.454536i −0.972016 0.234913i \(-0.924519\pi\)
−0.724334 + 0.689449i \(0.757853\pi\)
\(788\) 0 0
\(789\) 22.4482 + 6.01499i 0.799178 + 0.214139i
\(790\) 0 0
\(791\) 6.88064 + 0.609234i 0.244647 + 0.0216619i
\(792\) 0 0
\(793\) 11.1102 6.41448i 0.394535 0.227785i
\(794\) 0 0
\(795\) 3.42161 + 12.7696i 0.121352 + 0.452892i
\(796\) 0 0
\(797\) 22.5200 + 22.5200i 0.797699 + 0.797699i 0.982732 0.185033i \(-0.0592394\pi\)
−0.185033 + 0.982732i \(0.559239\pi\)
\(798\) 0 0
\(799\) −24.0521 −0.850903
\(800\) 0 0
\(801\) 1.51722 2.62789i 0.0536082 0.0928521i
\(802\) 0 0
\(803\) 10.6918 39.9024i 0.377306 1.40812i
\(804\) 0 0
\(805\) 37.3587 6.54704i 1.31672 0.230753i
\(806\) 0 0
\(807\) 13.5699 7.83459i 0.477683 0.275791i
\(808\) 0 0
\(809\) 41.1059 + 23.7325i 1.44521 + 0.834391i 0.998190 0.0601343i \(-0.0191529\pi\)
0.447017 + 0.894525i \(0.352486\pi\)
\(810\) 0 0
\(811\) −39.0893 + 39.0893i −1.37261 + 1.37261i −0.516058 + 0.856554i \(0.672601\pi\)
−0.856554 + 0.516058i \(0.827399\pi\)
\(812\) 0 0
\(813\) −19.0613 19.0613i −0.668507 0.668507i
\(814\) 0 0
\(815\) −4.45953 + 7.72414i −0.156211 + 0.270565i
\(816\) 0 0
\(817\) 1.98110 + 3.43137i 0.0693099 + 0.120048i
\(818\) 0 0
\(819\) 7.86281 + 2.87115i 0.274749 + 0.100326i
\(820\) 0 0
\(821\) −12.1621 3.25883i −0.424461 0.113734i 0.0402639 0.999189i \(-0.487180\pi\)
−0.464725 + 0.885455i \(0.653847\pi\)
\(822\) 0 0
\(823\) 4.29959 + 2.48237i 0.149874 + 0.0865300i 0.573062 0.819512i \(-0.305755\pi\)
−0.423187 + 0.906042i \(0.639089\pi\)
\(824\) 0 0
\(825\) 2.04343i 0.0711432i
\(826\) 0 0
\(827\) −11.3168 + 11.3168i −0.393524 + 0.393524i −0.875942 0.482417i \(-0.839759\pi\)
0.482417 + 0.875942i \(0.339759\pi\)
\(828\) 0 0
\(829\) −34.1690 + 9.15557i −1.18674 + 0.317986i −0.797597 0.603191i \(-0.793896\pi\)
−0.389143 + 0.921177i \(0.627229\pi\)
\(830\) 0 0
\(831\) −7.08753 12.2760i −0.245864 0.425848i
\(832\) 0 0
\(833\) 27.7705 32.9553i 0.962192 1.14183i
\(834\) 0 0
\(835\) −6.66696 + 24.8814i −0.230719 + 0.861057i
\(836\) 0 0
\(837\) −4.80774 17.9427i −0.166180 0.620191i
\(838\) 0 0
\(839\) 47.7342i 1.64797i −0.566614 0.823983i \(-0.691747\pi\)
0.566614 0.823983i \(-0.308253\pi\)
\(840\) 0 0
\(841\) 0.425820i 0.0146834i
\(842\) 0 0
\(843\) −5.66398 21.1383i −0.195078 0.728041i
\(844\) 0 0
\(845\) −5.99651 + 22.3793i −0.206286 + 0.769871i
\(846\) 0 0
\(847\) −11.8892 + 5.52890i −0.408519 + 0.189975i
\(848\) 0 0
\(849\) 2.67942 + 4.64089i 0.0919573 + 0.159275i
\(850\) 0 0
\(851\) −0.506069 + 0.135601i −0.0173478 + 0.00464834i
\(852\) 0 0
\(853\) 3.65043 3.65043i 0.124988 0.124988i −0.641846 0.766834i \(-0.721831\pi\)
0.766834 + 0.641846i \(0.221831\pi\)
\(854\) 0 0
\(855\) 18.6155i 0.636637i
\(856\) 0 0
\(857\) −19.0400 10.9927i −0.650394 0.375505i 0.138213 0.990402i \(-0.455864\pi\)
−0.788607 + 0.614898i \(0.789197\pi\)
\(858\) 0 0
\(859\) −11.9718 3.20783i −0.408472 0.109450i 0.0487316 0.998812i \(-0.484482\pi\)
−0.457203 + 0.889362i \(0.651149\pi\)
\(860\) 0 0
\(861\) 3.41599 + 19.4923i 0.116417 + 0.664296i
\(862\) 0 0
\(863\) 9.23283 + 15.9917i 0.314289 + 0.544365i 0.979286 0.202481i \(-0.0649005\pi\)
−0.664997 + 0.746846i \(0.731567\pi\)
\(864\) 0 0
\(865\) −15.6685 + 27.1387i −0.532745 + 0.922742i
\(866\) 0 0
\(867\) 12.7264 + 12.7264i 0.432213 + 0.432213i
\(868\) 0 0
\(869\) 18.8469 18.8469i 0.639338 0.639338i
\(870\) 0 0
\(871\) −1.88052 1.08572i −0.0637191 0.0367882i
\(872\) 0 0
\(873\) 36.6837 21.1793i 1.24156 0.716812i
\(874\) 0 0
\(875\) 19.9445 + 23.8195i 0.674247 + 0.805246i
\(876\) 0 0
\(877\) 5.01836 18.7288i 0.169458 0.632426i −0.827971 0.560770i \(-0.810505\pi\)
0.997429 0.0716557i \(-0.0228283\pi\)
\(878\) 0 0
\(879\) −11.3132 + 19.5951i −0.381585 + 0.660925i
\(880\) 0 0
\(881\) 21.6393 0.729046 0.364523 0.931194i \(-0.381232\pi\)
0.364523 + 0.931194i \(0.381232\pi\)
\(882\) 0 0
\(883\) 34.6173 + 34.6173i 1.16496 + 1.16496i 0.983374 + 0.181589i \(0.0581241\pi\)
0.181589 + 0.983374i \(0.441876\pi\)
\(884\) 0 0
\(885\) 1.53912 + 5.74408i 0.0517370 + 0.193085i
\(886\) 0 0
\(887\) −3.36305 + 1.94166i −0.112920 + 0.0651945i −0.555396 0.831586i \(-0.687433\pi\)
0.442476 + 0.896780i \(0.354100\pi\)
\(888\) 0 0
\(889\) 25.5267 + 2.26022i 0.856138 + 0.0758052i
\(890\) 0 0
\(891\) −11.1025 2.97491i −0.371948 0.0996632i
\(892\) 0 0
\(893\) −14.8173 + 3.97028i −0.495841 + 0.132860i
\(894\) 0 0
\(895\) −14.3402 −0.479341
\(896\) 0 0
\(897\) −8.23688 −0.275022
\(898\) 0 0
\(899\) −21.4965 + 5.75998i −0.716949 + 0.192106i
\(900\) 0 0
\(901\) 43.5002 + 11.6559i 1.44920 + 0.388313i
\(902\) 0 0
\(903\) 1.32046 1.88162i 0.0439421 0.0626163i
\(904\) 0 0
\(905\) −14.4437 + 8.33910i −0.480126 + 0.277201i
\(906\) 0 0
\(907\) −10.3652 38.6836i −0.344172 1.28447i −0.893577 0.448911i \(-0.851812\pi\)
0.549404 0.835557i \(-0.314855\pi\)
\(908\) 0 0
\(909\) −7.10521 7.10521i −0.235665 0.235665i
\(910\) 0 0
\(911\) 30.3771 1.00644 0.503218 0.864159i \(-0.332149\pi\)
0.503218 + 0.864159i \(0.332149\pi\)
\(912\) 0 0
\(913\) −28.8321 + 49.9387i −0.954203 + 1.65273i
\(914\) 0 0
\(915\) −4.28404 + 15.9883i −0.141626 + 0.528556i
\(916\) 0 0
\(917\) −12.5624 + 34.4027i −0.414845 + 1.13608i
\(918\) 0 0
\(919\) 9.74979 5.62904i 0.321616 0.185685i −0.330497 0.943807i \(-0.607216\pi\)
0.652113 + 0.758122i \(0.273883\pi\)
\(920\) 0 0
\(921\) 20.1012 + 11.6054i 0.662358 + 0.382413i
\(922\) 0 0
\(923\) 2.83757 2.83757i 0.0933998 0.0933998i
\(924\) 0 0
\(925\) −0.0322290 0.0322290i −0.00105968 0.00105968i
\(926\) 0 0
\(927\) −10.1214 + 17.5308i −0.332430 + 0.575786i
\(928\) 0 0
\(929\) 12.8415 + 22.2420i 0.421314 + 0.729738i 0.996068 0.0885883i \(-0.0282356\pi\)
−0.574754 + 0.818326i \(0.694902\pi\)
\(930\) 0 0
\(931\) 11.6681 24.8862i 0.382406 0.815611i
\(932\) 0 0
\(933\) −5.71572 1.53152i −0.187124 0.0501398i
\(934\) 0 0
\(935\) 44.7037 + 25.8097i 1.46197 + 0.844068i
\(936\) 0 0
\(937\) 23.0570i 0.753238i −0.926368 0.376619i \(-0.877087\pi\)
0.926368 0.376619i \(-0.122913\pi\)
\(938\) 0 0
\(939\) −4.88423 + 4.88423i −0.159391 + 0.159391i
\(940\) 0 0
\(941\) 30.8769 8.27344i 1.00656 0.269706i 0.282367 0.959306i \(-0.408880\pi\)
0.724191 + 0.689600i \(0.242214\pi\)
\(942\) 0 0
\(943\) 29.6647 + 51.3807i 0.966015 + 1.67319i
\(944\) 0 0
\(945\) −22.8000 + 10.6028i −0.741685 + 0.344909i
\(946\) 0 0
\(947\) 2.78357 10.3884i 0.0904539 0.337578i −0.905837 0.423626i \(-0.860757\pi\)
0.996291 + 0.0860477i \(0.0274237\pi\)
\(948\) 0 0
\(949\) −3.74929 13.9925i −0.121707 0.454217i
\(950\) 0 0
\(951\) 2.39443i 0.0776449i
\(952\) 0 0
\(953\) 2.60332i 0.0843297i 0.999111 + 0.0421649i \(0.0134255\pi\)
−0.999111 + 0.0421649i \(0.986575\pi\)
\(954\) 0 0
\(955\) 3.47625 + 12.9735i 0.112489 + 0.419814i
\(956\) 0 0
\(957\) 4.82869 18.0209i 0.156089 0.582534i
\(958\) 0 0
\(959\) −24.5186 17.2063i −0.791745 0.555622i
\(960\) 0 0
\(961\) 7.08430 + 12.2704i 0.228526 + 0.395818i
\(962\) 0 0
\(963\) −27.7150 + 7.42622i −0.893104 + 0.239307i
\(964\) 0 0
\(965\) −14.5680 + 14.5680i −0.468962 + 0.468962i
\(966\) 0 0
\(967\) 10.6383i 0.342106i −0.985262 0.171053i \(-0.945283\pi\)
0.985262 0.171053i \(-0.0547169\pi\)
\(968\) 0 0
\(969\) 18.0255 + 10.4070i 0.579062 + 0.334322i
\(970\) 0 0
\(971\) −1.79607 0.481257i −0.0576388 0.0154443i 0.229884 0.973218i \(-0.426165\pi\)
−0.287523 + 0.957774i \(0.592832\pi\)
\(972\) 0 0
\(973\) −6.57744 + 5.50741i −0.210863 + 0.176560i
\(974\) 0 0
\(975\) −0.358285 0.620567i −0.0114743 0.0198741i
\(976\) 0 0
\(977\) −3.20547 + 5.55203i −0.102552 + 0.177625i −0.912735 0.408551i \(-0.866034\pi\)
0.810183 + 0.586176i \(0.199367\pi\)
\(978\) 0 0
\(979\) 3.79465 + 3.79465i 0.121278 + 0.121278i
\(980\) 0 0
\(981\) 23.1160 23.1160i 0.738038 0.738038i
\(982\) 0 0
\(983\) −16.6011 9.58464i −0.529492 0.305702i 0.211317 0.977417i \(-0.432225\pi\)
−0.740810 + 0.671715i \(0.765558\pi\)
\(984\) 0 0
\(985\) −38.0660 + 21.9774i −1.21288 + 0.700258i
\(986\) 0 0
\(987\) 5.71346 + 6.82352i 0.181861 + 0.217195i
\(988\) 0 0
\(989\) 1.78369 6.65683i 0.0567181 0.211675i
\(990\) 0 0
\(991\) −8.09070 + 14.0135i −0.257009 + 0.445153i −0.965439 0.260628i \(-0.916070\pi\)
0.708430 + 0.705781i \(0.249404\pi\)
\(992\) 0 0
\(993\) 9.25270 0.293626
\(994\) 0 0
\(995\) 6.44966 + 6.44966i 0.204468 + 0.204468i
\(996\) 0 0
\(997\) 6.95744 + 25.9655i 0.220344 + 0.822336i 0.984217 + 0.176969i \(0.0566291\pi\)
−0.763872 + 0.645368i \(0.776704\pi\)
\(998\) 0 0
\(999\) 0.300805 0.173670i 0.00951705 0.00549467i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.2.ba.c.81.5 48
4.3 odd 2 112.2.w.c.109.12 yes 48
7.2 even 3 inner 448.2.ba.c.401.8 48
8.3 odd 2 896.2.ba.f.417.5 48
8.5 even 2 896.2.ba.e.417.8 48
16.3 odd 4 896.2.ba.f.865.8 48
16.5 even 4 inner 448.2.ba.c.305.8 48
16.11 odd 4 112.2.w.c.53.4 yes 48
16.13 even 4 896.2.ba.e.865.5 48
28.3 even 6 784.2.m.k.589.4 24
28.11 odd 6 784.2.m.j.589.4 24
28.19 even 6 784.2.x.o.765.4 48
28.23 odd 6 112.2.w.c.93.4 yes 48
28.27 even 2 784.2.x.o.557.12 48
56.37 even 6 896.2.ba.e.289.5 48
56.51 odd 6 896.2.ba.f.289.8 48
112.11 odd 12 784.2.m.j.197.4 24
112.27 even 4 784.2.x.o.165.4 48
112.37 even 12 inner 448.2.ba.c.177.5 48
112.51 odd 12 896.2.ba.f.737.5 48
112.59 even 12 784.2.m.k.197.4 24
112.75 even 12 784.2.x.o.373.12 48
112.93 even 12 896.2.ba.e.737.8 48
112.107 odd 12 112.2.w.c.37.12 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.w.c.37.12 48 112.107 odd 12
112.2.w.c.53.4 yes 48 16.11 odd 4
112.2.w.c.93.4 yes 48 28.23 odd 6
112.2.w.c.109.12 yes 48 4.3 odd 2
448.2.ba.c.81.5 48 1.1 even 1 trivial
448.2.ba.c.177.5 48 112.37 even 12 inner
448.2.ba.c.305.8 48 16.5 even 4 inner
448.2.ba.c.401.8 48 7.2 even 3 inner
784.2.m.j.197.4 24 112.11 odd 12
784.2.m.j.589.4 24 28.11 odd 6
784.2.m.k.197.4 24 112.59 even 12
784.2.m.k.589.4 24 28.3 even 6
784.2.x.o.165.4 48 112.27 even 4
784.2.x.o.373.12 48 112.75 even 12
784.2.x.o.557.12 48 28.27 even 2
784.2.x.o.765.4 48 28.19 even 6
896.2.ba.e.289.5 48 56.37 even 6
896.2.ba.e.417.8 48 8.5 even 2
896.2.ba.e.737.8 48 112.93 even 12
896.2.ba.e.865.5 48 16.13 even 4
896.2.ba.f.289.8 48 56.51 odd 6
896.2.ba.f.417.5 48 8.3 odd 2
896.2.ba.f.737.5 48 112.51 odd 12
896.2.ba.f.865.8 48 16.3 odd 4