Properties

Label 448.2.ba.b.401.1
Level $448$
Weight $2$
Character 448.401
Analytic conductor $3.577$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,2,Mod(81,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 9, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.81"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 448.ba (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.57729801055\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 401.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 448.401
Dual form 448.2.ba.b.305.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.133975 - 0.500000i) q^{3} +(0.232051 + 0.866025i) q^{5} +(1.73205 - 2.00000i) q^{7} +(2.36603 + 1.36603i) q^{9} +(-2.86603 - 0.767949i) q^{11} +(3.73205 + 3.73205i) q^{13} +0.464102 q^{15} +(-3.23205 - 5.59808i) q^{17} +(2.86603 - 0.767949i) q^{19} +(-0.767949 - 1.13397i) q^{21} +(3.86603 + 2.23205i) q^{23} +(3.63397 - 2.09808i) q^{25} +(2.09808 - 2.09808i) q^{27} +(-0.267949 - 0.267949i) q^{29} +(1.86603 + 3.23205i) q^{31} +(-0.767949 + 1.33013i) q^{33} +(2.13397 + 1.03590i) q^{35} +(0.303848 + 1.13397i) q^{37} +(2.36603 - 1.36603i) q^{39} -4.92820i q^{41} +(-6.46410 + 6.46410i) q^{43} +(-0.633975 + 2.36603i) q^{45} +(2.13397 - 3.69615i) q^{47} +(-1.00000 - 6.92820i) q^{49} +(-3.23205 + 0.866025i) q^{51} +(3.96410 + 1.06218i) q^{53} -2.66025i q^{55} -1.53590i q^{57} +(-11.3301 - 3.03590i) q^{59} +(-6.96410 + 1.86603i) q^{61} +(6.83013 - 2.36603i) q^{63} +(-2.36603 + 4.09808i) q^{65} +(-1.33013 + 4.96410i) q^{67} +(1.63397 - 1.63397i) q^{69} -0.535898i q^{71} +(-6.23205 + 3.59808i) q^{73} +(-0.562178 - 2.09808i) q^{75} +(-6.50000 + 4.40192i) q^{77} +(-8.33013 + 14.4282i) q^{79} +(3.33013 + 5.76795i) q^{81} +(-1.53590 - 1.53590i) q^{83} +(4.09808 - 4.09808i) q^{85} +(-0.169873 + 0.0980762i) q^{87} +(4.50000 + 2.59808i) q^{89} +(13.9282 - 1.00000i) q^{91} +(1.86603 - 0.500000i) q^{93} +(1.33013 + 2.30385i) q^{95} -2.92820 q^{97} +(-5.73205 - 5.73205i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 6 q^{5} + 6 q^{9} - 8 q^{11} + 8 q^{13} - 12 q^{15} - 6 q^{17} + 8 q^{19} - 10 q^{21} + 12 q^{23} + 18 q^{25} - 2 q^{27} - 8 q^{29} + 4 q^{31} - 10 q^{33} + 12 q^{35} + 22 q^{37} + 6 q^{39}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.133975 0.500000i 0.0773503 0.288675i −0.916406 0.400251i \(-0.868923\pi\)
0.993756 + 0.111576i \(0.0355897\pi\)
\(4\) 0 0
\(5\) 0.232051 + 0.866025i 0.103776 + 0.387298i 0.998203 0.0599153i \(-0.0190830\pi\)
−0.894427 + 0.447214i \(0.852416\pi\)
\(6\) 0 0
\(7\) 1.73205 2.00000i 0.654654 0.755929i
\(8\) 0 0
\(9\) 2.36603 + 1.36603i 0.788675 + 0.455342i
\(10\) 0 0
\(11\) −2.86603 0.767949i −0.864139 0.231545i −0.200587 0.979676i \(-0.564285\pi\)
−0.663552 + 0.748130i \(0.730952\pi\)
\(12\) 0 0
\(13\) 3.73205 + 3.73205i 1.03508 + 1.03508i 0.999362 + 0.0357229i \(0.0113734\pi\)
0.0357229 + 0.999362i \(0.488627\pi\)
\(14\) 0 0
\(15\) 0.464102 0.119831
\(16\) 0 0
\(17\) −3.23205 5.59808i −0.783887 1.35773i −0.929661 0.368415i \(-0.879901\pi\)
0.145774 0.989318i \(-0.453433\pi\)
\(18\) 0 0
\(19\) 2.86603 0.767949i 0.657511 0.176180i 0.0853887 0.996348i \(-0.472787\pi\)
0.572123 + 0.820168i \(0.306120\pi\)
\(20\) 0 0
\(21\) −0.767949 1.13397i −0.167580 0.247454i
\(22\) 0 0
\(23\) 3.86603 + 2.23205i 0.806122 + 0.465415i 0.845607 0.533805i \(-0.179239\pi\)
−0.0394853 + 0.999220i \(0.512572\pi\)
\(24\) 0 0
\(25\) 3.63397 2.09808i 0.726795 0.419615i
\(26\) 0 0
\(27\) 2.09808 2.09808i 0.403775 0.403775i
\(28\) 0 0
\(29\) −0.267949 0.267949i −0.0497569 0.0497569i 0.681791 0.731547i \(-0.261202\pi\)
−0.731547 + 0.681791i \(0.761202\pi\)
\(30\) 0 0
\(31\) 1.86603 + 3.23205i 0.335148 + 0.580493i 0.983513 0.180836i \(-0.0578803\pi\)
−0.648365 + 0.761329i \(0.724547\pi\)
\(32\) 0 0
\(33\) −0.767949 + 1.33013i −0.133683 + 0.231545i
\(34\) 0 0
\(35\) 2.13397 + 1.03590i 0.360708 + 0.175099i
\(36\) 0 0
\(37\) 0.303848 + 1.13397i 0.0499522 + 0.186424i 0.986394 0.164399i \(-0.0525685\pi\)
−0.936442 + 0.350823i \(0.885902\pi\)
\(38\) 0 0
\(39\) 2.36603 1.36603i 0.378867 0.218739i
\(40\) 0 0
\(41\) 4.92820i 0.769656i −0.922988 0.384828i \(-0.874261\pi\)
0.922988 0.384828i \(-0.125739\pi\)
\(42\) 0 0
\(43\) −6.46410 + 6.46410i −0.985766 + 0.985766i −0.999900 0.0141339i \(-0.995501\pi\)
0.0141339 + 0.999900i \(0.495501\pi\)
\(44\) 0 0
\(45\) −0.633975 + 2.36603i −0.0945074 + 0.352706i
\(46\) 0 0
\(47\) 2.13397 3.69615i 0.311272 0.539139i −0.667366 0.744730i \(-0.732578\pi\)
0.978638 + 0.205591i \(0.0659116\pi\)
\(48\) 0 0
\(49\) −1.00000 6.92820i −0.142857 0.989743i
\(50\) 0 0
\(51\) −3.23205 + 0.866025i −0.452578 + 0.121268i
\(52\) 0 0
\(53\) 3.96410 + 1.06218i 0.544511 + 0.145901i 0.520581 0.853812i \(-0.325715\pi\)
0.0239302 + 0.999714i \(0.492382\pi\)
\(54\) 0 0
\(55\) 2.66025i 0.358709i
\(56\) 0 0
\(57\) 1.53590i 0.203435i
\(58\) 0 0
\(59\) −11.3301 3.03590i −1.47506 0.395240i −0.570395 0.821370i \(-0.693210\pi\)
−0.904662 + 0.426130i \(0.859877\pi\)
\(60\) 0 0
\(61\) −6.96410 + 1.86603i −0.891662 + 0.238920i −0.675432 0.737422i \(-0.736043\pi\)
−0.216230 + 0.976342i \(0.569376\pi\)
\(62\) 0 0
\(63\) 6.83013 2.36603i 0.860515 0.298091i
\(64\) 0 0
\(65\) −2.36603 + 4.09808i −0.293469 + 0.508304i
\(66\) 0 0
\(67\) −1.33013 + 4.96410i −0.162501 + 0.606462i 0.835845 + 0.548966i \(0.184978\pi\)
−0.998346 + 0.0574958i \(0.981688\pi\)
\(68\) 0 0
\(69\) 1.63397 1.63397i 0.196707 0.196707i
\(70\) 0 0
\(71\) 0.535898i 0.0635994i −0.999494 0.0317997i \(-0.989876\pi\)
0.999494 0.0317997i \(-0.0101239\pi\)
\(72\) 0 0
\(73\) −6.23205 + 3.59808i −0.729406 + 0.421123i −0.818205 0.574927i \(-0.805031\pi\)
0.0887986 + 0.996050i \(0.471697\pi\)
\(74\) 0 0
\(75\) −0.562178 2.09808i −0.0649147 0.242265i
\(76\) 0 0
\(77\) −6.50000 + 4.40192i −0.740744 + 0.501646i
\(78\) 0 0
\(79\) −8.33013 + 14.4282i −0.937213 + 1.62330i −0.166572 + 0.986029i \(0.553270\pi\)
−0.770640 + 0.637270i \(0.780063\pi\)
\(80\) 0 0
\(81\) 3.33013 + 5.76795i 0.370014 + 0.640883i
\(82\) 0 0
\(83\) −1.53590 1.53590i −0.168587 0.168587i 0.617771 0.786358i \(-0.288036\pi\)
−0.786358 + 0.617771i \(0.788036\pi\)
\(84\) 0 0
\(85\) 4.09808 4.09808i 0.444499 0.444499i
\(86\) 0 0
\(87\) −0.169873 + 0.0980762i −0.0182123 + 0.0105149i
\(88\) 0 0
\(89\) 4.50000 + 2.59808i 0.476999 + 0.275396i 0.719165 0.694839i \(-0.244525\pi\)
−0.242166 + 0.970235i \(0.577858\pi\)
\(90\) 0 0
\(91\) 13.9282 1.00000i 1.46007 0.104828i
\(92\) 0 0
\(93\) 1.86603 0.500000i 0.193498 0.0518476i
\(94\) 0 0
\(95\) 1.33013 + 2.30385i 0.136468 + 0.236370i
\(96\) 0 0
\(97\) −2.92820 −0.297314 −0.148657 0.988889i \(-0.547495\pi\)
−0.148657 + 0.988889i \(0.547495\pi\)
\(98\) 0 0
\(99\) −5.73205 5.73205i −0.576093 0.576093i
\(100\) 0 0
\(101\) −18.8923 5.06218i −1.87985 0.503706i −0.999572 0.0292559i \(-0.990686\pi\)
−0.880283 0.474450i \(-0.842647\pi\)
\(102\) 0 0
\(103\) −5.59808 3.23205i −0.551595 0.318463i 0.198170 0.980168i \(-0.436500\pi\)
−0.749765 + 0.661704i \(0.769833\pi\)
\(104\) 0 0
\(105\) 0.803848 0.928203i 0.0784475 0.0905834i
\(106\) 0 0
\(107\) 0.866025 + 3.23205i 0.0837218 + 0.312454i 0.995069 0.0991843i \(-0.0316233\pi\)
−0.911347 + 0.411638i \(0.864957\pi\)
\(108\) 0 0
\(109\) 0.571797 2.13397i 0.0547682 0.204398i −0.933120 0.359565i \(-0.882925\pi\)
0.987888 + 0.155167i \(0.0495917\pi\)
\(110\) 0 0
\(111\) 0.607695 0.0576799
\(112\) 0 0
\(113\) −1.46410 −0.137731 −0.0688655 0.997626i \(-0.521938\pi\)
−0.0688655 + 0.997626i \(0.521938\pi\)
\(114\) 0 0
\(115\) −1.03590 + 3.86603i −0.0965980 + 0.360509i
\(116\) 0 0
\(117\) 3.73205 + 13.9282i 0.345028 + 1.28766i
\(118\) 0 0
\(119\) −16.7942 3.23205i −1.53952 0.296282i
\(120\) 0 0
\(121\) −1.90192 1.09808i −0.172902 0.0998251i
\(122\) 0 0
\(123\) −2.46410 0.660254i −0.222181 0.0595331i
\(124\) 0 0
\(125\) 5.83013 + 5.83013i 0.521462 + 0.521462i
\(126\) 0 0
\(127\) −9.46410 −0.839803 −0.419902 0.907570i \(-0.637935\pi\)
−0.419902 + 0.907570i \(0.637935\pi\)
\(128\) 0 0
\(129\) 2.36603 + 4.09808i 0.208317 + 0.360815i
\(130\) 0 0
\(131\) −7.59808 + 2.03590i −0.663847 + 0.177877i −0.574982 0.818166i \(-0.694991\pi\)
−0.0888654 + 0.996044i \(0.528324\pi\)
\(132\) 0 0
\(133\) 3.42820 7.06218i 0.297263 0.612368i
\(134\) 0 0
\(135\) 2.30385 + 1.33013i 0.198284 + 0.114479i
\(136\) 0 0
\(137\) −15.2321 + 8.79423i −1.30136 + 0.751342i −0.980638 0.195831i \(-0.937260\pi\)
−0.320724 + 0.947173i \(0.603926\pi\)
\(138\) 0 0
\(139\) 11.9282 11.9282i 1.01174 1.01174i 0.0118067 0.999930i \(-0.496242\pi\)
0.999930 0.0118067i \(-0.00375827\pi\)
\(140\) 0 0
\(141\) −1.56218 1.56218i −0.131559 0.131559i
\(142\) 0 0
\(143\) −7.83013 13.5622i −0.654788 1.13413i
\(144\) 0 0
\(145\) 0.169873 0.294229i 0.0141072 0.0244344i
\(146\) 0 0
\(147\) −3.59808 0.428203i −0.296764 0.0353176i
\(148\) 0 0
\(149\) 2.03590 + 7.59808i 0.166787 + 0.622459i 0.997805 + 0.0662134i \(0.0210918\pi\)
−0.831018 + 0.556245i \(0.812242\pi\)
\(150\) 0 0
\(151\) 9.86603 5.69615i 0.802886 0.463546i −0.0415935 0.999135i \(-0.513243\pi\)
0.844479 + 0.535588i \(0.179910\pi\)
\(152\) 0 0
\(153\) 17.6603i 1.42775i
\(154\) 0 0
\(155\) −2.36603 + 2.36603i −0.190044 + 0.190044i
\(156\) 0 0
\(157\) 4.89230 18.2583i 0.390448 1.45717i −0.438948 0.898513i \(-0.644649\pi\)
0.829396 0.558661i \(-0.188685\pi\)
\(158\) 0 0
\(159\) 1.06218 1.83975i 0.0842362 0.145901i
\(160\) 0 0
\(161\) 11.1603 3.86603i 0.879551 0.304685i
\(162\) 0 0
\(163\) 12.0622 3.23205i 0.944783 0.253154i 0.246636 0.969108i \(-0.420675\pi\)
0.698147 + 0.715954i \(0.254008\pi\)
\(164\) 0 0
\(165\) −1.33013 0.356406i −0.103550 0.0277462i
\(166\) 0 0
\(167\) 21.8564i 1.69130i 0.533738 + 0.845650i \(0.320787\pi\)
−0.533738 + 0.845650i \(0.679213\pi\)
\(168\) 0 0
\(169\) 14.8564i 1.14280i
\(170\) 0 0
\(171\) 7.83013 + 2.09808i 0.598785 + 0.160444i
\(172\) 0 0
\(173\) −2.23205 + 0.598076i −0.169700 + 0.0454709i −0.342668 0.939456i \(-0.611331\pi\)
0.172969 + 0.984927i \(0.444664\pi\)
\(174\) 0 0
\(175\) 2.09808 10.9019i 0.158600 0.824108i
\(176\) 0 0
\(177\) −3.03590 + 5.25833i −0.228192 + 0.395240i
\(178\) 0 0
\(179\) 2.40192 8.96410i 0.179528 0.670008i −0.816208 0.577759i \(-0.803928\pi\)
0.995736 0.0922498i \(-0.0294058\pi\)
\(180\) 0 0
\(181\) 13.3923 13.3923i 0.995442 0.995442i −0.00454748 0.999990i \(-0.501448\pi\)
0.999990 + 0.00454748i \(0.00144751\pi\)
\(182\) 0 0
\(183\) 3.73205i 0.275881i
\(184\) 0 0
\(185\) −0.911543 + 0.526279i −0.0670180 + 0.0386928i
\(186\) 0 0
\(187\) 4.96410 + 18.5263i 0.363011 + 1.35478i
\(188\) 0 0
\(189\) −0.562178 7.83013i −0.0408924 0.569558i
\(190\) 0 0
\(191\) 4.33013 7.50000i 0.313317 0.542681i −0.665761 0.746165i \(-0.731893\pi\)
0.979078 + 0.203484i \(0.0652264\pi\)
\(192\) 0 0
\(193\) 11.5000 + 19.9186i 0.827788 + 1.43377i 0.899770 + 0.436365i \(0.143734\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) 0 0
\(195\) 1.73205 + 1.73205i 0.124035 + 0.124035i
\(196\) 0 0
\(197\) −16.6603 + 16.6603i −1.18699 + 1.18699i −0.209100 + 0.977894i \(0.567053\pi\)
−0.977894 + 0.209100i \(0.932947\pi\)
\(198\) 0 0
\(199\) −10.3301 + 5.96410i −0.732283 + 0.422784i −0.819257 0.573427i \(-0.805614\pi\)
0.0869736 + 0.996211i \(0.472280\pi\)
\(200\) 0 0
\(201\) 2.30385 + 1.33013i 0.162501 + 0.0938199i
\(202\) 0 0
\(203\) −1.00000 + 0.0717968i −0.0701862 + 0.00503915i
\(204\) 0 0
\(205\) 4.26795 1.14359i 0.298087 0.0798720i
\(206\) 0 0
\(207\) 6.09808 + 10.5622i 0.423846 + 0.734122i
\(208\) 0 0
\(209\) −8.80385 −0.608975
\(210\) 0 0
\(211\) 15.9282 + 15.9282i 1.09654 + 1.09654i 0.994812 + 0.101731i \(0.0324380\pi\)
0.101731 + 0.994812i \(0.467562\pi\)
\(212\) 0 0
\(213\) −0.267949 0.0717968i −0.0183596 0.00491943i
\(214\) 0 0
\(215\) −7.09808 4.09808i −0.484085 0.279486i
\(216\) 0 0
\(217\) 9.69615 + 1.86603i 0.658218 + 0.126674i
\(218\) 0 0
\(219\) 0.964102 + 3.59808i 0.0651479 + 0.243135i
\(220\) 0 0
\(221\) 8.83013 32.9545i 0.593979 2.21676i
\(222\) 0 0
\(223\) −9.85641 −0.660034 −0.330017 0.943975i \(-0.607054\pi\)
−0.330017 + 0.943975i \(0.607054\pi\)
\(224\) 0 0
\(225\) 11.4641 0.764273
\(226\) 0 0
\(227\) 2.99038 11.1603i 0.198479 0.740732i −0.792860 0.609403i \(-0.791409\pi\)
0.991339 0.131329i \(-0.0419243\pi\)
\(228\) 0 0
\(229\) −3.57180 13.3301i −0.236031 0.880880i −0.977681 0.210093i \(-0.932623\pi\)
0.741650 0.670787i \(-0.234043\pi\)
\(230\) 0 0
\(231\) 1.33013 + 3.83975i 0.0875159 + 0.252637i
\(232\) 0 0
\(233\) −0.696152 0.401924i −0.0456065 0.0263309i 0.477023 0.878891i \(-0.341716\pi\)
−0.522630 + 0.852560i \(0.675049\pi\)
\(234\) 0 0
\(235\) 3.69615 + 0.990381i 0.241110 + 0.0646053i
\(236\) 0 0
\(237\) 6.09808 + 6.09808i 0.396113 + 0.396113i
\(238\) 0 0
\(239\) 8.53590 0.552141 0.276071 0.961137i \(-0.410968\pi\)
0.276071 + 0.961137i \(0.410968\pi\)
\(240\) 0 0
\(241\) −6.96410 12.0622i −0.448597 0.776993i 0.549698 0.835364i \(-0.314743\pi\)
−0.998295 + 0.0583704i \(0.981410\pi\)
\(242\) 0 0
\(243\) 11.9282 3.19615i 0.765195 0.205033i
\(244\) 0 0
\(245\) 5.76795 2.47372i 0.368501 0.158040i
\(246\) 0 0
\(247\) 13.5622 + 7.83013i 0.862941 + 0.498219i
\(248\) 0 0
\(249\) −0.973721 + 0.562178i −0.0617070 + 0.0356266i
\(250\) 0 0
\(251\) 17.5885 17.5885i 1.11017 1.11017i 0.117047 0.993126i \(-0.462657\pi\)
0.993126 0.117047i \(-0.0373429\pi\)
\(252\) 0 0
\(253\) −9.36603 9.36603i −0.588837 0.588837i
\(254\) 0 0
\(255\) −1.50000 2.59808i −0.0939336 0.162698i
\(256\) 0 0
\(257\) 9.69615 16.7942i 0.604829 1.04760i −0.387249 0.921975i \(-0.626575\pi\)
0.992078 0.125620i \(-0.0400920\pi\)
\(258\) 0 0
\(259\) 2.79423 + 1.35641i 0.173625 + 0.0842830i
\(260\) 0 0
\(261\) −0.267949 1.00000i −0.0165856 0.0618984i
\(262\) 0 0
\(263\) 3.99038 2.30385i 0.246057 0.142061i −0.371900 0.928273i \(-0.621294\pi\)
0.617958 + 0.786211i \(0.287960\pi\)
\(264\) 0 0
\(265\) 3.67949i 0.226029i
\(266\) 0 0
\(267\) 1.90192 1.90192i 0.116396 0.116396i
\(268\) 0 0
\(269\) −2.62436 + 9.79423i −0.160010 + 0.597165i 0.838614 + 0.544726i \(0.183366\pi\)
−0.998624 + 0.0524390i \(0.983300\pi\)
\(270\) 0 0
\(271\) 6.06218 10.5000i 0.368251 0.637830i −0.621041 0.783778i \(-0.713290\pi\)
0.989292 + 0.145948i \(0.0466233\pi\)
\(272\) 0 0
\(273\) 1.36603 7.09808i 0.0826756 0.429595i
\(274\) 0 0
\(275\) −12.0263 + 3.22243i −0.725212 + 0.194320i
\(276\) 0 0
\(277\) 4.50000 + 1.20577i 0.270379 + 0.0724478i 0.391461 0.920195i \(-0.371970\pi\)
−0.121082 + 0.992642i \(0.538636\pi\)
\(278\) 0 0
\(279\) 10.1962i 0.610428i
\(280\) 0 0
\(281\) 0.928203i 0.0553720i −0.999617 0.0276860i \(-0.991186\pi\)
0.999617 0.0276860i \(-0.00881385\pi\)
\(282\) 0 0
\(283\) −14.5263 3.89230i −0.863498 0.231374i −0.200224 0.979750i \(-0.564167\pi\)
−0.663274 + 0.748377i \(0.730834\pi\)
\(284\) 0 0
\(285\) 1.33013 0.356406i 0.0787899 0.0211117i
\(286\) 0 0
\(287\) −9.85641 8.53590i −0.581805 0.503858i
\(288\) 0 0
\(289\) −12.3923 + 21.4641i −0.728959 + 1.26259i
\(290\) 0 0
\(291\) −0.392305 + 1.46410i −0.0229973 + 0.0858272i
\(292\) 0 0
\(293\) −7.92820 + 7.92820i −0.463171 + 0.463171i −0.899693 0.436523i \(-0.856210\pi\)
0.436523 + 0.899693i \(0.356210\pi\)
\(294\) 0 0
\(295\) 10.5167i 0.612304i
\(296\) 0 0
\(297\) −7.62436 + 4.40192i −0.442410 + 0.255426i
\(298\) 0 0
\(299\) 6.09808 + 22.7583i 0.352661 + 1.31615i
\(300\) 0 0
\(301\) 1.73205 + 24.1244i 0.0998337 + 1.39050i
\(302\) 0 0
\(303\) −5.06218 + 8.76795i −0.290815 + 0.503706i
\(304\) 0 0
\(305\) −3.23205 5.59808i −0.185067 0.320545i
\(306\) 0 0
\(307\) −9.00000 9.00000i −0.513657 0.513657i 0.401988 0.915645i \(-0.368319\pi\)
−0.915645 + 0.401988i \(0.868319\pi\)
\(308\) 0 0
\(309\) −2.36603 + 2.36603i −0.134598 + 0.134598i
\(310\) 0 0
\(311\) 5.59808 3.23205i 0.317438 0.183273i −0.332812 0.942993i \(-0.607998\pi\)
0.650250 + 0.759720i \(0.274664\pi\)
\(312\) 0 0
\(313\) 18.6962 + 10.7942i 1.05677 + 0.610126i 0.924537 0.381093i \(-0.124452\pi\)
0.132232 + 0.991219i \(0.457786\pi\)
\(314\) 0 0
\(315\) 3.63397 + 5.36603i 0.204751 + 0.302341i
\(316\) 0 0
\(317\) 14.1603 3.79423i 0.795319 0.213105i 0.161791 0.986825i \(-0.448273\pi\)
0.633528 + 0.773720i \(0.281606\pi\)
\(318\) 0 0
\(319\) 0.562178 + 0.973721i 0.0314759 + 0.0545179i
\(320\) 0 0
\(321\) 1.73205 0.0966736
\(322\) 0 0
\(323\) −13.5622 13.5622i −0.754620 0.754620i
\(324\) 0 0
\(325\) 21.3923 + 5.73205i 1.18663 + 0.317957i
\(326\) 0 0
\(327\) −0.990381 0.571797i −0.0547682 0.0316204i
\(328\) 0 0
\(329\) −3.69615 10.6699i −0.203775 0.588249i
\(330\) 0 0
\(331\) −5.25833 19.6244i −0.289024 1.07865i −0.945848 0.324609i \(-0.894767\pi\)
0.656824 0.754044i \(-0.271899\pi\)
\(332\) 0 0
\(333\) −0.830127 + 3.09808i −0.0454907 + 0.169774i
\(334\) 0 0
\(335\) −4.60770 −0.251745
\(336\) 0 0
\(337\) −6.14359 −0.334663 −0.167331 0.985901i \(-0.553515\pi\)
−0.167331 + 0.985901i \(0.553515\pi\)
\(338\) 0 0
\(339\) −0.196152 + 0.732051i −0.0106535 + 0.0397595i
\(340\) 0 0
\(341\) −2.86603 10.6962i −0.155204 0.579229i
\(342\) 0 0
\(343\) −15.5885 10.0000i −0.841698 0.539949i
\(344\) 0 0
\(345\) 1.79423 + 1.03590i 0.0965980 + 0.0557709i
\(346\) 0 0
\(347\) −23.5263 6.30385i −1.26296 0.338408i −0.435628 0.900127i \(-0.643474\pi\)
−0.827329 + 0.561718i \(0.810140\pi\)
\(348\) 0 0
\(349\) 6.12436 + 6.12436i 0.327829 + 0.327829i 0.851761 0.523931i \(-0.175535\pi\)
−0.523931 + 0.851761i \(0.675535\pi\)
\(350\) 0 0
\(351\) 15.6603 0.835883
\(352\) 0 0
\(353\) 13.8923 + 24.0622i 0.739413 + 1.28070i 0.952760 + 0.303724i \(0.0982301\pi\)
−0.213347 + 0.976976i \(0.568437\pi\)
\(354\) 0 0
\(355\) 0.464102 0.124356i 0.0246320 0.00660011i
\(356\) 0 0
\(357\) −3.86603 + 7.96410i −0.204612 + 0.421505i
\(358\) 0 0
\(359\) −3.86603 2.23205i −0.204041 0.117803i 0.394498 0.918897i \(-0.370919\pi\)
−0.598539 + 0.801094i \(0.704252\pi\)
\(360\) 0 0
\(361\) −8.83013 + 5.09808i −0.464744 + 0.268320i
\(362\) 0 0
\(363\) −0.803848 + 0.803848i −0.0421911 + 0.0421911i
\(364\) 0 0
\(365\) −4.56218 4.56218i −0.238795 0.238795i
\(366\) 0 0
\(367\) 3.06218 + 5.30385i 0.159844 + 0.276859i 0.934812 0.355142i \(-0.115567\pi\)
−0.774968 + 0.632000i \(0.782234\pi\)
\(368\) 0 0
\(369\) 6.73205 11.6603i 0.350457 0.607009i
\(370\) 0 0
\(371\) 8.99038 6.08846i 0.466757 0.316097i
\(372\) 0 0
\(373\) −0.232051 0.866025i −0.0120151 0.0448411i 0.959658 0.281170i \(-0.0907224\pi\)
−0.971673 + 0.236329i \(0.924056\pi\)
\(374\) 0 0
\(375\) 3.69615 2.13397i 0.190868 0.110198i
\(376\) 0 0
\(377\) 2.00000i 0.103005i
\(378\) 0 0
\(379\) −0.124356 + 0.124356i −0.00638772 + 0.00638772i −0.710293 0.703906i \(-0.751438\pi\)
0.703906 + 0.710293i \(0.251438\pi\)
\(380\) 0 0
\(381\) −1.26795 + 4.73205i −0.0649590 + 0.242430i
\(382\) 0 0
\(383\) −12.5981 + 21.8205i −0.643732 + 1.11498i 0.340861 + 0.940114i \(0.389281\pi\)
−0.984593 + 0.174862i \(0.944052\pi\)
\(384\) 0 0
\(385\) −5.32051 4.60770i −0.271158 0.234830i
\(386\) 0 0
\(387\) −24.1244 + 6.46410i −1.22631 + 0.328589i
\(388\) 0 0
\(389\) −22.3564 5.99038i −1.13351 0.303724i −0.357174 0.934038i \(-0.616260\pi\)
−0.776341 + 0.630313i \(0.782926\pi\)
\(390\) 0 0
\(391\) 28.8564i 1.45933i
\(392\) 0 0
\(393\) 4.07180i 0.205395i
\(394\) 0 0
\(395\) −14.4282 3.86603i −0.725962 0.194521i
\(396\) 0 0
\(397\) −25.6244 + 6.86603i −1.28605 + 0.344596i −0.836159 0.548488i \(-0.815204\pi\)
−0.449891 + 0.893084i \(0.648537\pi\)
\(398\) 0 0
\(399\) −3.07180 2.66025i −0.153782 0.133179i
\(400\) 0 0
\(401\) 7.50000 12.9904i 0.374532 0.648709i −0.615725 0.787961i \(-0.711137\pi\)
0.990257 + 0.139253i \(0.0444700\pi\)
\(402\) 0 0
\(403\) −5.09808 + 19.0263i −0.253953 + 0.947766i
\(404\) 0 0
\(405\) −4.22243 + 4.22243i −0.209814 + 0.209814i
\(406\) 0 0
\(407\) 3.48334i 0.172663i
\(408\) 0 0
\(409\) 7.50000 4.33013i 0.370851 0.214111i −0.302979 0.952997i \(-0.597981\pi\)
0.673830 + 0.738886i \(0.264648\pi\)
\(410\) 0 0
\(411\) 2.35641 + 8.79423i 0.116233 + 0.433787i
\(412\) 0 0
\(413\) −25.6962 + 17.4019i −1.26442 + 0.856293i
\(414\) 0 0
\(415\) 0.973721 1.68653i 0.0477981 0.0827887i
\(416\) 0 0
\(417\) −4.36603 7.56218i −0.213805 0.370321i
\(418\) 0 0
\(419\) 19.0000 + 19.0000i 0.928211 + 0.928211i 0.997590 0.0693796i \(-0.0221020\pi\)
−0.0693796 + 0.997590i \(0.522102\pi\)
\(420\) 0 0
\(421\) 8.66025 8.66025i 0.422075 0.422075i −0.463843 0.885918i \(-0.653530\pi\)
0.885918 + 0.463843i \(0.153530\pi\)
\(422\) 0 0
\(423\) 10.0981 5.83013i 0.490985 0.283470i
\(424\) 0 0
\(425\) −23.4904 13.5622i −1.13945 0.657862i
\(426\) 0 0
\(427\) −8.33013 + 17.1603i −0.403123 + 0.830443i
\(428\) 0 0
\(429\) −7.83013 + 2.09808i −0.378042 + 0.101296i
\(430\) 0 0
\(431\) 15.3301 + 26.5526i 0.738426 + 1.27899i 0.953204 + 0.302329i \(0.0977640\pi\)
−0.214777 + 0.976663i \(0.568903\pi\)
\(432\) 0 0
\(433\) −33.1769 −1.59438 −0.797190 0.603728i \(-0.793681\pi\)
−0.797190 + 0.603728i \(0.793681\pi\)
\(434\) 0 0
\(435\) −0.124356 0.124356i −0.00596240 0.00596240i
\(436\) 0 0
\(437\) 12.7942 + 3.42820i 0.612031 + 0.163993i
\(438\) 0 0
\(439\) 6.52628 + 3.76795i 0.311482 + 0.179834i 0.647590 0.761989i \(-0.275777\pi\)
−0.336107 + 0.941824i \(0.609110\pi\)
\(440\) 0 0
\(441\) 7.09808 17.7583i 0.338004 0.845635i
\(442\) 0 0
\(443\) −2.79423 10.4282i −0.132758 0.495459i 0.867239 0.497892i \(-0.165892\pi\)
−0.999997 + 0.00243278i \(0.999226\pi\)
\(444\) 0 0
\(445\) −1.20577 + 4.50000i −0.0571590 + 0.213320i
\(446\) 0 0
\(447\) 4.07180 0.192589
\(448\) 0 0
\(449\) −23.3205 −1.10056 −0.550281 0.834979i \(-0.685480\pi\)
−0.550281 + 0.834979i \(0.685480\pi\)
\(450\) 0 0
\(451\) −3.78461 + 14.1244i −0.178210 + 0.665090i
\(452\) 0 0
\(453\) −1.52628 5.69615i −0.0717109 0.267629i
\(454\) 0 0
\(455\) 4.09808 + 11.8301i 0.192121 + 0.554605i
\(456\) 0 0
\(457\) −16.2846 9.40192i −0.761762 0.439803i 0.0681661 0.997674i \(-0.478285\pi\)
−0.829928 + 0.557871i \(0.811619\pi\)
\(458\) 0 0
\(459\) −18.5263 4.96410i −0.864733 0.231704i
\(460\) 0 0
\(461\) 18.6603 + 18.6603i 0.869095 + 0.869095i 0.992372 0.123278i \(-0.0393405\pi\)
−0.123278 + 0.992372i \(0.539341\pi\)
\(462\) 0 0
\(463\) −2.14359 −0.0996212 −0.0498106 0.998759i \(-0.515862\pi\)
−0.0498106 + 0.998759i \(0.515862\pi\)
\(464\) 0 0
\(465\) 0.866025 + 1.50000i 0.0401610 + 0.0695608i
\(466\) 0 0
\(467\) −25.9904 + 6.96410i −1.20269 + 0.322260i −0.803890 0.594777i \(-0.797240\pi\)
−0.398801 + 0.917038i \(0.630574\pi\)
\(468\) 0 0
\(469\) 7.62436 + 11.2583i 0.352060 + 0.519861i
\(470\) 0 0
\(471\) −8.47372 4.89230i −0.390448 0.225426i
\(472\) 0 0
\(473\) 23.4904 13.5622i 1.08009 0.623590i
\(474\) 0 0
\(475\) 8.80385 8.80385i 0.403948 0.403948i
\(476\) 0 0
\(477\) 7.92820 + 7.92820i 0.363007 + 0.363007i
\(478\) 0 0
\(479\) 7.79423 + 13.5000i 0.356127 + 0.616831i 0.987310 0.158803i \(-0.0507636\pi\)
−0.631183 + 0.775634i \(0.717430\pi\)
\(480\) 0 0
\(481\) −3.09808 + 5.36603i −0.141260 + 0.244670i
\(482\) 0 0
\(483\) −0.437822 6.09808i −0.0199216 0.277472i
\(484\) 0 0
\(485\) −0.679492 2.53590i −0.0308541 0.115149i
\(486\) 0 0
\(487\) 10.6699 6.16025i 0.483498 0.279148i −0.238375 0.971173i \(-0.576615\pi\)
0.721873 + 0.692025i \(0.243281\pi\)
\(488\) 0 0
\(489\) 6.46410i 0.292317i
\(490\) 0 0
\(491\) 3.58846 3.58846i 0.161945 0.161945i −0.621483 0.783428i \(-0.713469\pi\)
0.783428 + 0.621483i \(0.213469\pi\)
\(492\) 0 0
\(493\) −0.633975 + 2.36603i −0.0285528 + 0.106560i
\(494\) 0 0
\(495\) 3.63397 6.29423i 0.163335 0.282905i
\(496\) 0 0
\(497\) −1.07180 0.928203i −0.0480767 0.0416356i
\(498\) 0 0
\(499\) 24.9904 6.69615i 1.11872 0.299761i 0.348356 0.937362i \(-0.386740\pi\)
0.770367 + 0.637601i \(0.220073\pi\)
\(500\) 0 0
\(501\) 10.9282 + 2.92820i 0.488236 + 0.130822i
\(502\) 0 0
\(503\) 31.8564i 1.42041i 0.703996 + 0.710203i \(0.251397\pi\)
−0.703996 + 0.710203i \(0.748603\pi\)
\(504\) 0 0
\(505\) 17.5359i 0.780337i
\(506\) 0 0
\(507\) 7.42820 + 1.99038i 0.329898 + 0.0883959i
\(508\) 0 0
\(509\) −9.42820 + 2.52628i −0.417898 + 0.111975i −0.461640 0.887067i \(-0.652739\pi\)
0.0437420 + 0.999043i \(0.486072\pi\)
\(510\) 0 0
\(511\) −3.59808 + 18.6962i −0.159170 + 0.827069i
\(512\) 0 0
\(513\) 4.40192 7.62436i 0.194350 0.336624i
\(514\) 0 0
\(515\) 1.50000 5.59808i 0.0660979 0.246681i
\(516\) 0 0
\(517\) −8.95448 + 8.95448i −0.393818 + 0.393818i
\(518\) 0 0
\(519\) 1.19615i 0.0525053i
\(520\) 0 0
\(521\) 13.3756 7.72243i 0.585998 0.338326i −0.177516 0.984118i \(-0.556806\pi\)
0.763513 + 0.645792i \(0.223473\pi\)
\(522\) 0 0
\(523\) −8.65064 32.2846i −0.378266 1.41171i −0.848514 0.529173i \(-0.822502\pi\)
0.470248 0.882534i \(-0.344164\pi\)
\(524\) 0 0
\(525\) −5.16987 2.50962i −0.225632 0.109529i
\(526\) 0 0
\(527\) 12.0622 20.8923i 0.525437 0.910083i
\(528\) 0 0
\(529\) −1.53590 2.66025i −0.0667782 0.115663i
\(530\) 0 0
\(531\) −22.6603 22.6603i −0.983371 0.983371i
\(532\) 0 0
\(533\) 18.3923 18.3923i 0.796659 0.796659i
\(534\) 0 0
\(535\) −2.59808 + 1.50000i −0.112325 + 0.0648507i
\(536\) 0 0
\(537\) −4.16025 2.40192i −0.179528 0.103651i
\(538\) 0 0
\(539\) −2.45448 + 20.6244i −0.105722 + 0.888354i
\(540\) 0 0
\(541\) −9.23205 + 2.47372i −0.396917 + 0.106354i −0.451756 0.892142i \(-0.649202\pi\)
0.0548389 + 0.998495i \(0.482535\pi\)
\(542\) 0 0
\(543\) −4.90192 8.49038i −0.210362 0.364357i
\(544\) 0 0
\(545\) 1.98076 0.0848465
\(546\) 0 0
\(547\) 23.0526 + 23.0526i 0.985656 + 0.985656i 0.999899 0.0142423i \(-0.00453363\pi\)
−0.0142423 + 0.999899i \(0.504534\pi\)
\(548\) 0 0
\(549\) −19.0263 5.09808i −0.812022 0.217581i
\(550\) 0 0
\(551\) −0.973721 0.562178i −0.0414819 0.0239496i
\(552\) 0 0
\(553\) 14.4282 + 41.6506i 0.613550 + 1.77117i
\(554\) 0 0
\(555\) 0.141016 + 0.526279i 0.00598580 + 0.0223393i
\(556\) 0 0
\(557\) −1.76795 + 6.59808i −0.0749104 + 0.279569i −0.993213 0.116310i \(-0.962893\pi\)
0.918303 + 0.395879i \(0.129560\pi\)
\(558\) 0 0
\(559\) −48.2487 −2.04070
\(560\) 0 0
\(561\) 9.92820 0.419169
\(562\) 0 0
\(563\) −0.650635 + 2.42820i −0.0274210 + 0.102337i −0.978280 0.207287i \(-0.933536\pi\)
0.950859 + 0.309624i \(0.100203\pi\)
\(564\) 0 0
\(565\) −0.339746 1.26795i −0.0142932 0.0533430i
\(566\) 0 0
\(567\) 17.3038 + 3.33013i 0.726693 + 0.139852i
\(568\) 0 0
\(569\) 5.08846 + 2.93782i 0.213319 + 0.123160i 0.602853 0.797852i \(-0.294031\pi\)
−0.389534 + 0.921012i \(0.627364\pi\)
\(570\) 0 0
\(571\) −26.7224 7.16025i −1.11830 0.299647i −0.348104 0.937456i \(-0.613174\pi\)
−0.770195 + 0.637809i \(0.779841\pi\)
\(572\) 0 0
\(573\) −3.16987 3.16987i −0.132423 0.132423i
\(574\) 0 0
\(575\) 18.7321 0.781181
\(576\) 0 0
\(577\) −6.62436 11.4737i −0.275776 0.477657i 0.694555 0.719440i \(-0.255601\pi\)
−0.970330 + 0.241782i \(0.922268\pi\)
\(578\) 0 0
\(579\) 11.5000 3.08142i 0.477924 0.128059i
\(580\) 0 0
\(581\) −5.73205 + 0.411543i −0.237806 + 0.0170737i
\(582\) 0 0
\(583\) −10.5455 6.08846i −0.436751 0.252158i
\(584\) 0 0
\(585\) −11.1962 + 6.46410i −0.462904 + 0.267258i
\(586\) 0 0
\(587\) −21.9282 + 21.9282i −0.905074 + 0.905074i −0.995870 0.0907957i \(-0.971059\pi\)
0.0907957 + 0.995870i \(0.471059\pi\)
\(588\) 0 0
\(589\) 7.83013 + 7.83013i 0.322635 + 0.322635i
\(590\) 0 0
\(591\) 6.09808 + 10.5622i 0.250841 + 0.434470i
\(592\) 0 0
\(593\) 5.69615 9.86603i 0.233913 0.405149i −0.725043 0.688703i \(-0.758180\pi\)
0.958956 + 0.283554i \(0.0915136\pi\)
\(594\) 0 0
\(595\) −1.09808 15.2942i −0.0450167 0.627002i
\(596\) 0 0
\(597\) 1.59808 + 5.96410i 0.0654049 + 0.244094i
\(598\) 0 0
\(599\) 16.6699 9.62436i 0.681113 0.393241i −0.119162 0.992875i \(-0.538021\pi\)
0.800274 + 0.599634i \(0.204687\pi\)
\(600\) 0 0
\(601\) 10.0000i 0.407909i 0.978980 + 0.203954i \(0.0653794\pi\)
−0.978980 + 0.203954i \(0.934621\pi\)
\(602\) 0 0
\(603\) −9.92820 + 9.92820i −0.404308 + 0.404308i
\(604\) 0 0
\(605\) 0.509619 1.90192i 0.0207190 0.0773242i
\(606\) 0 0
\(607\) 8.52628 14.7679i 0.346071 0.599413i −0.639477 0.768810i \(-0.720849\pi\)
0.985548 + 0.169398i \(0.0541823\pi\)
\(608\) 0 0
\(609\) −0.0980762 + 0.509619i −0.00397425 + 0.0206508i
\(610\) 0 0
\(611\) 21.7583 5.83013i 0.880248 0.235862i
\(612\) 0 0
\(613\) −9.23205 2.47372i −0.372879 0.0999126i 0.0675126 0.997718i \(-0.478494\pi\)
−0.440392 + 0.897806i \(0.645160\pi\)
\(614\) 0 0
\(615\) 2.28719i 0.0922283i
\(616\) 0 0
\(617\) 0.535898i 0.0215745i 0.999942 + 0.0107872i \(0.00343375\pi\)
−0.999942 + 0.0107872i \(0.996566\pi\)
\(618\) 0 0
\(619\) 19.0622 + 5.10770i 0.766174 + 0.205296i 0.620680 0.784064i \(-0.286856\pi\)
0.145493 + 0.989359i \(0.453523\pi\)
\(620\) 0 0
\(621\) 12.7942 3.42820i 0.513415 0.137569i
\(622\) 0 0
\(623\) 12.9904 4.50000i 0.520449 0.180289i
\(624\) 0 0
\(625\) 6.79423 11.7679i 0.271769 0.470718i
\(626\) 0 0
\(627\) −1.17949 + 4.40192i −0.0471044 + 0.175796i
\(628\) 0 0
\(629\) 5.36603 5.36603i 0.213957 0.213957i
\(630\) 0 0
\(631\) 32.2487i 1.28380i −0.766788 0.641900i \(-0.778146\pi\)
0.766788 0.641900i \(-0.221854\pi\)
\(632\) 0 0
\(633\) 10.0981 5.83013i 0.401362 0.231727i
\(634\) 0 0
\(635\) −2.19615 8.19615i −0.0871517 0.325254i
\(636\) 0 0
\(637\) 22.1244 29.5885i 0.876599 1.17234i
\(638\) 0 0
\(639\) 0.732051 1.26795i 0.0289595 0.0501593i
\(640\) 0 0
\(641\) 5.57180 + 9.65064i 0.220073 + 0.381177i 0.954830 0.297153i \(-0.0960372\pi\)
−0.734757 + 0.678330i \(0.762704\pi\)
\(642\) 0 0
\(643\) 5.39230 + 5.39230i 0.212652 + 0.212652i 0.805393 0.592741i \(-0.201954\pi\)
−0.592741 + 0.805393i \(0.701954\pi\)
\(644\) 0 0
\(645\) −3.00000 + 3.00000i −0.118125 + 0.118125i
\(646\) 0 0
\(647\) 30.8660 17.8205i 1.21347 0.700596i 0.249955 0.968257i \(-0.419584\pi\)
0.963513 + 0.267661i \(0.0862507\pi\)
\(648\) 0 0
\(649\) 30.1410 + 17.4019i 1.18314 + 0.683085i
\(650\) 0 0
\(651\) 2.23205 4.59808i 0.0874810 0.180213i
\(652\) 0 0
\(653\) 32.5526 8.72243i 1.27388 0.341335i 0.442364 0.896836i \(-0.354140\pi\)
0.831516 + 0.555501i \(0.187473\pi\)
\(654\) 0 0
\(655\) −3.52628 6.10770i −0.137783 0.238647i
\(656\) 0 0
\(657\) −19.6603 −0.767020
\(658\) 0 0
\(659\) −18.8564 18.8564i −0.734541 0.734541i 0.236975 0.971516i \(-0.423844\pi\)
−0.971516 + 0.236975i \(0.923844\pi\)
\(660\) 0 0
\(661\) 22.1603 + 5.93782i 0.861934 + 0.230955i 0.662597 0.748976i \(-0.269454\pi\)
0.199337 + 0.979931i \(0.436121\pi\)
\(662\) 0 0
\(663\) −15.2942 8.83013i −0.593979 0.342934i
\(664\) 0 0
\(665\) 6.91154 + 1.33013i 0.268018 + 0.0515801i
\(666\) 0 0
\(667\) −0.437822 1.63397i −0.0169525 0.0632677i
\(668\) 0 0
\(669\) −1.32051 + 4.92820i −0.0510538 + 0.190535i
\(670\) 0 0
\(671\) 21.3923 0.825841
\(672\) 0 0
\(673\) 40.7846 1.57213 0.786066 0.618143i \(-0.212115\pi\)
0.786066 + 0.618143i \(0.212115\pi\)
\(674\) 0 0
\(675\) 3.22243 12.0263i 0.124031 0.462892i
\(676\) 0 0
\(677\) 11.4474 + 42.7224i 0.439961 + 1.64196i 0.728908 + 0.684611i \(0.240028\pi\)
−0.288947 + 0.957345i \(0.593305\pi\)
\(678\) 0 0
\(679\) −5.07180 + 5.85641i −0.194638 + 0.224748i
\(680\) 0 0
\(681\) −5.17949 2.99038i −0.198479 0.114592i
\(682\) 0 0
\(683\) 45.5788 + 12.2128i 1.74403 + 0.467310i 0.983335 0.181804i \(-0.0581936\pi\)
0.760691 + 0.649114i \(0.224860\pi\)
\(684\) 0 0
\(685\) −11.1506 11.1506i −0.426044 0.426044i
\(686\) 0 0
\(687\) −7.14359 −0.272545
\(688\) 0 0
\(689\) 10.8301 + 18.7583i 0.412595 + 0.714635i
\(690\) 0 0
\(691\) 22.9904 6.16025i 0.874595 0.234347i 0.206521 0.978442i \(-0.433786\pi\)
0.668074 + 0.744095i \(0.267119\pi\)
\(692\) 0 0
\(693\) −21.3923 + 1.53590i −0.812626 + 0.0583440i
\(694\) 0 0
\(695\) 13.0981 + 7.56218i 0.496838 + 0.286850i
\(696\) 0 0
\(697\) −27.5885 + 15.9282i −1.04499 + 0.603324i
\(698\) 0 0
\(699\) −0.294229 + 0.294229i −0.0111287 + 0.0111287i
\(700\) 0 0
\(701\) −13.3923 13.3923i −0.505820 0.505820i 0.407420 0.913241i \(-0.366428\pi\)
−0.913241 + 0.407420i \(0.866428\pi\)
\(702\) 0 0
\(703\) 1.74167 + 3.01666i 0.0656883 + 0.113776i
\(704\) 0 0
\(705\) 0.990381 1.71539i 0.0372999 0.0646053i
\(706\) 0 0
\(707\) −42.8468 + 29.0167i −1.61142 + 1.09128i
\(708\) 0 0
\(709\) −12.2321 45.6506i −0.459384 1.71445i −0.674868 0.737938i \(-0.735800\pi\)
0.215484 0.976507i \(-0.430867\pi\)
\(710\) 0 0
\(711\) −39.4186 + 22.7583i −1.47831 + 0.853504i
\(712\) 0 0
\(713\) 16.6603i 0.623931i
\(714\) 0 0
\(715\) 9.92820 9.92820i 0.371294 0.371294i
\(716\) 0 0
\(717\) 1.14359 4.26795i 0.0427083 0.159389i
\(718\) 0 0
\(719\) 0.205771 0.356406i 0.00767398 0.0132917i −0.862163 0.506631i \(-0.830891\pi\)
0.869837 + 0.493339i \(0.164224\pi\)
\(720\) 0 0
\(721\) −16.1603 + 5.59808i −0.601839 + 0.208483i
\(722\) 0 0
\(723\) −6.96410 + 1.86603i −0.258998 + 0.0693982i
\(724\) 0 0
\(725\) −1.53590 0.411543i −0.0570418 0.0152843i
\(726\) 0 0
\(727\) 41.3205i 1.53249i 0.642547 + 0.766246i \(0.277878\pi\)
−0.642547 + 0.766246i \(0.722122\pi\)
\(728\) 0 0
\(729\) 13.5885i 0.503276i
\(730\) 0 0
\(731\) 57.0788 + 15.2942i 2.11114 + 0.565677i
\(732\) 0 0
\(733\) 32.8923 8.81347i 1.21490 0.325533i 0.406220 0.913775i \(-0.366847\pi\)
0.808685 + 0.588242i \(0.200180\pi\)
\(734\) 0 0
\(735\) −0.464102 3.21539i −0.0171186 0.118601i
\(736\) 0 0
\(737\) 7.62436 13.2058i 0.280847 0.486441i
\(738\) 0 0
\(739\) 10.3109 38.4808i 0.379292 1.41554i −0.467679 0.883899i \(-0.654910\pi\)
0.846971 0.531639i \(-0.178424\pi\)
\(740\) 0 0
\(741\) 5.73205 5.73205i 0.210572 0.210572i
\(742\) 0 0
\(743\) 11.0718i 0.406185i 0.979160 + 0.203092i \(0.0650992\pi\)
−0.979160 + 0.203092i \(0.934901\pi\)
\(744\) 0 0
\(745\) −6.10770 + 3.52628i −0.223769 + 0.129193i
\(746\) 0 0
\(747\) −1.53590 5.73205i −0.0561956 0.209725i
\(748\) 0 0
\(749\) 7.96410 + 3.86603i 0.291002 + 0.141261i
\(750\) 0 0
\(751\) 6.52628 11.3038i 0.238147 0.412483i −0.722035 0.691856i \(-0.756793\pi\)
0.960183 + 0.279373i \(0.0901266\pi\)
\(752\) 0 0
\(753\) −6.43782 11.1506i −0.234607 0.406352i
\(754\) 0 0
\(755\) 7.22243 + 7.22243i 0.262851 + 0.262851i
\(756\) 0 0
\(757\) −18.6603 + 18.6603i −0.678218 + 0.678218i −0.959597 0.281378i \(-0.909208\pi\)
0.281378 + 0.959597i \(0.409208\pi\)
\(758\) 0 0
\(759\) −5.93782 + 3.42820i −0.215529 + 0.124436i
\(760\) 0 0
\(761\) −11.7679 6.79423i −0.426588 0.246291i 0.271304 0.962494i \(-0.412545\pi\)
−0.697892 + 0.716203i \(0.745878\pi\)
\(762\) 0 0
\(763\) −3.27757 4.83975i −0.118656 0.175211i
\(764\) 0 0
\(765\) 15.2942 4.09808i 0.552964 0.148166i
\(766\) 0 0
\(767\) −30.9545 53.6147i −1.11770 1.93592i
\(768\) 0 0
\(769\) 9.85641 0.355431 0.177716 0.984082i \(-0.443129\pi\)
0.177716 + 0.984082i \(0.443129\pi\)
\(770\) 0 0
\(771\) −7.09808 7.09808i −0.255631 0.255631i
\(772\) 0 0
\(773\) 10.9641 + 2.93782i 0.394351 + 0.105666i 0.450545 0.892754i \(-0.351230\pi\)
−0.0561936 + 0.998420i \(0.517896\pi\)
\(774\) 0 0
\(775\) 13.5622 + 7.83013i 0.487168 + 0.281266i
\(776\) 0 0
\(777\) 1.05256 1.21539i 0.0377603 0.0436019i
\(778\) 0 0
\(779\) −3.78461 14.1244i −0.135598 0.506058i
\(780\) 0 0
\(781\) −0.411543 + 1.53590i −0.0147262 + 0.0549588i
\(782\) 0 0
\(783\) −1.12436 −0.0401812
\(784\) 0 0
\(785\) 16.9474 0.604880
\(786\) 0 0
\(787\) −3.52628 + 13.1603i −0.125698 + 0.469112i −0.999864 0.0165161i \(-0.994743\pi\)
0.874165 + 0.485628i \(0.161409\pi\)
\(788\) 0 0
\(789\) −0.617314 2.30385i −0.0219770 0.0820191i
\(790\) 0 0
\(791\) −2.53590 + 2.92820i −0.0901662 + 0.104115i
\(792\) 0 0
\(793\) −32.9545 19.0263i −1.17025 0.675643i
\(794\) 0 0
\(795\) 1.83975 + 0.492958i 0.0652491 + 0.0174834i
\(796\) 0 0
\(797\) −13.3397 13.3397i −0.472518 0.472518i 0.430211 0.902729i \(-0.358439\pi\)
−0.902729 + 0.430211i \(0.858439\pi\)
\(798\) 0 0
\(799\) −27.5885 −0.976009
\(800\) 0 0
\(801\) 7.09808 + 12.2942i 0.250798 + 0.434395i
\(802\) 0 0
\(803\) 20.6244 5.52628i 0.727818 0.195018i
\(804\) 0 0
\(805\) 5.93782 + 8.76795i 0.209281 + 0.309030i
\(806\) 0 0
\(807\) 4.54552 + 2.62436i 0.160010 + 0.0923817i
\(808\) 0 0
\(809\) 29.4282 16.9904i 1.03464 0.597350i 0.116330 0.993211i \(-0.462887\pi\)
0.918311 + 0.395861i \(0.129554\pi\)
\(810\) 0 0
\(811\) −24.3205 + 24.3205i −0.854009 + 0.854009i −0.990624 0.136616i \(-0.956377\pi\)
0.136616 + 0.990624i \(0.456377\pi\)
\(812\) 0 0
\(813\) −4.43782 4.43782i −0.155641 0.155641i
\(814\) 0 0
\(815\) 5.59808 + 9.69615i 0.196092 + 0.339641i
\(816\) 0 0
\(817\) −13.5622 + 23.4904i −0.474481 + 0.821824i
\(818\) 0 0
\(819\) 34.3205 + 16.6603i 1.19926 + 0.582156i
\(820\) 0 0
\(821\) −0.160254 0.598076i −0.00559290 0.0208730i 0.963073 0.269240i \(-0.0867726\pi\)
−0.968666 + 0.248367i \(0.920106\pi\)
\(822\) 0 0
\(823\) −14.9378 + 8.62436i −0.520700 + 0.300626i −0.737221 0.675652i \(-0.763862\pi\)
0.216521 + 0.976278i \(0.430529\pi\)
\(824\) 0 0
\(825\) 6.44486i 0.224381i
\(826\) 0 0
\(827\) 3.78461 3.78461i 0.131604 0.131604i −0.638237 0.769840i \(-0.720336\pi\)
0.769840 + 0.638237i \(0.220336\pi\)
\(828\) 0 0
\(829\) 0.820508 3.06218i 0.0284974 0.106354i −0.950212 0.311603i \(-0.899134\pi\)
0.978710 + 0.205250i \(0.0658006\pi\)
\(830\) 0 0
\(831\) 1.20577 2.08846i 0.0418277 0.0724478i
\(832\) 0 0
\(833\) −35.5526 + 27.9904i −1.23182 + 0.969809i
\(834\) 0 0
\(835\) −18.9282 + 5.07180i −0.655037 + 0.175517i
\(836\) 0 0
\(837\) 10.6962 + 2.86603i 0.369713 + 0.0990643i
\(838\) 0 0
\(839\) 17.7128i 0.611514i −0.952110 0.305757i \(-0.901090\pi\)
0.952110 0.305757i \(-0.0989096\pi\)
\(840\) 0 0
\(841\) 28.8564i 0.995048i
\(842\) 0 0
\(843\) −0.464102 0.124356i −0.0159845 0.00428304i
\(844\) 0 0
\(845\) −12.8660 + 3.44744i −0.442605 + 0.118596i
\(846\) 0 0
\(847\) −5.49038 + 1.90192i −0.188652 + 0.0653509i
\(848\) 0 0
\(849\) −3.89230 + 6.74167i −0.133584 + 0.231374i
\(850\) 0 0
\(851\) −1.35641 + 5.06218i −0.0464970 + 0.173529i
\(852\) 0 0
\(853\) −11.8756 + 11.8756i −0.406614 + 0.406614i −0.880556 0.473942i \(-0.842831\pi\)
0.473942 + 0.880556i \(0.342831\pi\)
\(854\) 0 0
\(855\) 7.26795i 0.248559i
\(856\) 0 0
\(857\) −11.8923 + 6.86603i −0.406233 + 0.234539i −0.689170 0.724600i \(-0.742025\pi\)
0.282937 + 0.959139i \(0.408691\pi\)
\(858\) 0 0
\(859\) 3.65064 + 13.6244i 0.124558 + 0.464857i 0.999824 0.0187858i \(-0.00598005\pi\)
−0.875265 + 0.483643i \(0.839313\pi\)
\(860\) 0 0
\(861\) −5.58846 + 3.78461i −0.190454 + 0.128979i
\(862\) 0 0
\(863\) −16.3301 + 28.2846i −0.555884 + 0.962819i 0.441950 + 0.897040i \(0.354287\pi\)
−0.997834 + 0.0657797i \(0.979047\pi\)
\(864\) 0 0
\(865\) −1.03590 1.79423i −0.0352216 0.0610056i
\(866\) 0 0
\(867\) 9.07180 + 9.07180i 0.308094 + 0.308094i
\(868\) 0 0
\(869\) 34.9545 34.9545i 1.18575 1.18575i
\(870\) 0 0
\(871\) −23.4904 + 13.5622i −0.795941 + 0.459537i
\(872\) 0 0
\(873\) −6.92820 4.00000i −0.234484 0.135379i
\(874\) 0 0
\(875\) 21.7583 1.56218i 0.735566 0.0528112i
\(876\) 0 0
\(877\) −30.5526 + 8.18653i −1.03169 + 0.276440i −0.734664 0.678431i \(-0.762660\pi\)
−0.297022 + 0.954871i \(0.595994\pi\)
\(878\) 0 0
\(879\) 2.90192 + 5.02628i 0.0978795 + 0.169532i
\(880\) 0 0
\(881\) 50.0000 1.68454 0.842271 0.539054i \(-0.181218\pi\)
0.842271 + 0.539054i \(0.181218\pi\)
\(882\) 0 0
\(883\) 5.00000 + 5.00000i 0.168263 + 0.168263i 0.786216 0.617952i \(-0.212037\pi\)
−0.617952 + 0.786216i \(0.712037\pi\)
\(884\) 0 0
\(885\) −5.25833 1.40897i −0.176757 0.0473619i
\(886\) 0 0
\(887\) −39.7750 22.9641i −1.33551 0.771059i −0.349375 0.936983i \(-0.613606\pi\)
−0.986139 + 0.165924i \(0.946939\pi\)
\(888\) 0 0
\(889\) −16.3923 + 18.9282i −0.549780 + 0.634832i
\(890\) 0 0
\(891\) −5.11474 19.0885i −0.171350 0.639487i
\(892\) 0 0
\(893\) 3.27757 12.2321i 0.109680 0.409330i
\(894\) 0 0
\(895\) 8.32051 0.278124
\(896\) 0 0
\(897\) 12.1962 0.407218
\(898\) 0 0
\(899\) 0.366025 1.36603i 0.0122076 0.0455595i
\(900\) 0 0
\(901\) −6.86603 25.6244i −0.228740 0.853671i
\(902\) 0 0
\(903\) 12.2942 + 2.36603i 0.409126 + 0.0787364i
\(904\) 0 0
\(905\) 14.7058 + 8.49038i 0.488836 + 0.282230i
\(906\) 0 0
\(907\) 26.7224 + 7.16025i 0.887304 + 0.237752i 0.673556 0.739136i \(-0.264766\pi\)
0.213748 + 0.976889i \(0.431433\pi\)
\(908\) 0 0
\(909\) −37.7846 37.7846i −1.25324 1.25324i
\(910\) 0 0
\(911\) −7.32051 −0.242539 −0.121270 0.992620i \(-0.538697\pi\)
−0.121270 + 0.992620i \(0.538697\pi\)
\(912\) 0 0
\(913\) 3.22243 + 5.58142i 0.106647 + 0.184718i
\(914\) 0 0
\(915\) −3.23205 + 0.866025i −0.106848 + 0.0286299i
\(916\) 0 0
\(917\) −9.08846 + 18.7224i −0.300127 + 0.618269i
\(918\) 0 0
\(919\) −15.8660 9.16025i −0.523372 0.302169i 0.214941 0.976627i \(-0.431044\pi\)
−0.738313 + 0.674458i \(0.764377\pi\)
\(920\) 0 0
\(921\) −5.70577 + 3.29423i −0.188012 + 0.108549i
\(922\) 0 0
\(923\) 2.00000 2.00000i 0.0658308 0.0658308i
\(924\) 0 0
\(925\) 3.48334 + 3.48334i 0.114531 + 0.114531i
\(926\) 0 0
\(927\) −8.83013 15.2942i −0.290019 0.502328i
\(928\) 0 0
\(929\) −25.0167 + 43.3301i −0.820770 + 1.42162i 0.0843396 + 0.996437i \(0.473122\pi\)
−0.905110 + 0.425178i \(0.860211\pi\)
\(930\) 0 0
\(931\) −8.18653 19.0885i −0.268303 0.625599i
\(932\) 0 0
\(933\) −0.866025 3.23205i −0.0283524 0.105813i
\(934\) 0 0
\(935\) −14.8923 + 8.59808i −0.487030 + 0.281187i
\(936\) 0 0
\(937\) 29.0718i 0.949734i −0.880058 0.474867i \(-0.842496\pi\)
0.880058 0.474867i \(-0.157504\pi\)
\(938\) 0 0
\(939\) 7.90192 7.90192i 0.257870 0.257870i
\(940\) 0 0
\(941\) 6.30385 23.5263i 0.205500 0.766935i −0.783797 0.621017i \(-0.786720\pi\)
0.989297 0.145918i \(-0.0466135\pi\)
\(942\) 0 0
\(943\) 11.0000 19.0526i 0.358209 0.620437i
\(944\) 0 0
\(945\) 6.65064 2.30385i 0.216345 0.0749442i
\(946\) 0 0
\(947\) −5.40192 + 1.44744i −0.175539 + 0.0470355i −0.345518 0.938412i \(-0.612297\pi\)
0.169979 + 0.985448i \(0.445630\pi\)
\(948\) 0 0
\(949\) −36.6865 9.83013i −1.19090 0.319099i
\(950\) 0 0
\(951\) 7.58846i 0.246073i
\(952\) 0 0
\(953\) 16.5359i 0.535650i 0.963468 + 0.267825i \(0.0863050\pi\)
−0.963468 + 0.267825i \(0.913695\pi\)
\(954\) 0 0
\(955\) 7.50000 + 2.00962i 0.242694 + 0.0650297i
\(956\) 0 0
\(957\) 0.562178 0.150635i 0.0181726 0.00486934i
\(958\) 0 0
\(959\) −8.79423 + 45.6962i −0.283980 + 1.47561i
\(960\) 0 0
\(961\) 8.53590 14.7846i 0.275352 0.476923i
\(962\) 0 0
\(963\) −2.36603 + 8.83013i −0.0762441 + 0.284547i
\(964\) 0 0
\(965\) −14.5814 + 14.5814i −0.469392 + 0.469392i
\(966\) 0 0
\(967\) 60.2487i 1.93747i 0.248102 + 0.968734i \(0.420193\pi\)
−0.248102 + 0.968734i \(0.579807\pi\)
\(968\) 0 0
\(969\) −8.59808 + 4.96410i −0.276210 + 0.159470i
\(970\) 0 0
\(971\) −14.0429 52.4090i −0.450659 1.68188i −0.700545 0.713608i \(-0.747060\pi\)
0.249885 0.968275i \(-0.419607\pi\)
\(972\) 0 0
\(973\) −3.19615 44.5167i −0.102464 1.42714i
\(974\) 0 0
\(975\) 5.73205 9.92820i 0.183573 0.317957i
\(976\) 0 0
\(977\) 8.57180 + 14.8468i 0.274236 + 0.474991i 0.969942 0.243336i \(-0.0782417\pi\)
−0.695706 + 0.718327i \(0.744908\pi\)
\(978\) 0 0
\(979\) −10.9019 10.9019i −0.348427 0.348427i
\(980\) 0 0
\(981\) 4.26795 4.26795i 0.136265 0.136265i
\(982\) 0 0
\(983\) 17.1340 9.89230i 0.546489 0.315516i −0.201216 0.979547i \(-0.564489\pi\)
0.747705 + 0.664031i \(0.231156\pi\)
\(984\) 0 0
\(985\) −18.2942 10.5622i −0.582903 0.336539i
\(986\) 0 0
\(987\) −5.83013 + 0.418584i −0.185575 + 0.0133237i
\(988\) 0 0
\(989\) −39.4186 + 10.5622i −1.25344 + 0.335858i
\(990\) 0 0
\(991\) −4.20577 7.28461i −0.133601 0.231403i 0.791461 0.611219i \(-0.209321\pi\)
−0.925062 + 0.379816i \(0.875987\pi\)
\(992\) 0 0
\(993\) −10.5167 −0.333736
\(994\) 0 0
\(995\) −7.56218 7.56218i −0.239737 0.239737i
\(996\) 0 0
\(997\) −1.50000 0.401924i −0.0475055 0.0127291i 0.234988 0.971998i \(-0.424495\pi\)
−0.282494 + 0.959269i \(0.591162\pi\)
\(998\) 0 0
\(999\) 3.01666 + 1.74167i 0.0954429 + 0.0551040i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.2.ba.b.401.1 4
4.3 odd 2 112.2.w.a.93.1 yes 4
7.4 even 3 448.2.ba.a.81.1 4
8.3 odd 2 896.2.ba.d.289.1 4
8.5 even 2 896.2.ba.a.289.1 4
16.3 odd 4 896.2.ba.b.737.1 4
16.5 even 4 448.2.ba.a.177.1 4
16.11 odd 4 112.2.w.b.37.1 yes 4
16.13 even 4 896.2.ba.c.737.1 4
28.3 even 6 784.2.x.h.557.1 4
28.11 odd 6 112.2.w.b.109.1 yes 4
28.19 even 6 784.2.m.d.589.2 4
28.23 odd 6 784.2.m.e.589.2 4
28.27 even 2 784.2.x.a.765.1 4
56.11 odd 6 896.2.ba.b.417.1 4
56.53 even 6 896.2.ba.c.417.1 4
112.11 odd 12 112.2.w.a.53.1 4
112.27 even 4 784.2.x.h.373.1 4
112.53 even 12 inner 448.2.ba.b.305.1 4
112.59 even 12 784.2.x.a.165.1 4
112.67 odd 12 896.2.ba.d.865.1 4
112.75 even 12 784.2.m.d.197.2 4
112.107 odd 12 784.2.m.e.197.2 4
112.109 even 12 896.2.ba.a.865.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.w.a.53.1 4 112.11 odd 12
112.2.w.a.93.1 yes 4 4.3 odd 2
112.2.w.b.37.1 yes 4 16.11 odd 4
112.2.w.b.109.1 yes 4 28.11 odd 6
448.2.ba.a.81.1 4 7.4 even 3
448.2.ba.a.177.1 4 16.5 even 4
448.2.ba.b.305.1 4 112.53 even 12 inner
448.2.ba.b.401.1 4 1.1 even 1 trivial
784.2.m.d.197.2 4 112.75 even 12
784.2.m.d.589.2 4 28.19 even 6
784.2.m.e.197.2 4 112.107 odd 12
784.2.m.e.589.2 4 28.23 odd 6
784.2.x.a.165.1 4 112.59 even 12
784.2.x.a.765.1 4 28.27 even 2
784.2.x.h.373.1 4 112.27 even 4
784.2.x.h.557.1 4 28.3 even 6
896.2.ba.a.289.1 4 8.5 even 2
896.2.ba.a.865.1 4 112.109 even 12
896.2.ba.b.417.1 4 56.11 odd 6
896.2.ba.b.737.1 4 16.3 odd 4
896.2.ba.c.417.1 4 56.53 even 6
896.2.ba.c.737.1 4 16.13 even 4
896.2.ba.d.289.1 4 8.3 odd 2
896.2.ba.d.865.1 4 112.67 odd 12