Properties

Label 448.2.ba.b.305.1
Level $448$
Weight $2$
Character 448.305
Analytic conductor $3.577$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,2,Mod(81,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.81"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 9, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 448.ba (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.57729801055\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 305.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 448.305
Dual form 448.2.ba.b.401.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.133975 + 0.500000i) q^{3} +(0.232051 - 0.866025i) q^{5} +(1.73205 + 2.00000i) q^{7} +(2.36603 - 1.36603i) q^{9} +(-2.86603 + 0.767949i) q^{11} +(3.73205 - 3.73205i) q^{13} +0.464102 q^{15} +(-3.23205 + 5.59808i) q^{17} +(2.86603 + 0.767949i) q^{19} +(-0.767949 + 1.13397i) q^{21} +(3.86603 - 2.23205i) q^{23} +(3.63397 + 2.09808i) q^{25} +(2.09808 + 2.09808i) q^{27} +(-0.267949 + 0.267949i) q^{29} +(1.86603 - 3.23205i) q^{31} +(-0.767949 - 1.33013i) q^{33} +(2.13397 - 1.03590i) q^{35} +(0.303848 - 1.13397i) q^{37} +(2.36603 + 1.36603i) q^{39} +4.92820i q^{41} +(-6.46410 - 6.46410i) q^{43} +(-0.633975 - 2.36603i) q^{45} +(2.13397 + 3.69615i) q^{47} +(-1.00000 + 6.92820i) q^{49} +(-3.23205 - 0.866025i) q^{51} +(3.96410 - 1.06218i) q^{53} +2.66025i q^{55} +1.53590i q^{57} +(-11.3301 + 3.03590i) q^{59} +(-6.96410 - 1.86603i) q^{61} +(6.83013 + 2.36603i) q^{63} +(-2.36603 - 4.09808i) q^{65} +(-1.33013 - 4.96410i) q^{67} +(1.63397 + 1.63397i) q^{69} +0.535898i q^{71} +(-6.23205 - 3.59808i) q^{73} +(-0.562178 + 2.09808i) q^{75} +(-6.50000 - 4.40192i) q^{77} +(-8.33013 - 14.4282i) q^{79} +(3.33013 - 5.76795i) q^{81} +(-1.53590 + 1.53590i) q^{83} +(4.09808 + 4.09808i) q^{85} +(-0.169873 - 0.0980762i) q^{87} +(4.50000 - 2.59808i) q^{89} +(13.9282 + 1.00000i) q^{91} +(1.86603 + 0.500000i) q^{93} +(1.33013 - 2.30385i) q^{95} -2.92820 q^{97} +(-5.73205 + 5.73205i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 6 q^{5} + 6 q^{9} - 8 q^{11} + 8 q^{13} - 12 q^{15} - 6 q^{17} + 8 q^{19} - 10 q^{21} + 12 q^{23} + 18 q^{25} - 2 q^{27} - 8 q^{29} + 4 q^{31} - 10 q^{33} + 12 q^{35} + 22 q^{37} + 6 q^{39}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.133975 + 0.500000i 0.0773503 + 0.288675i 0.993756 0.111576i \(-0.0355897\pi\)
−0.916406 + 0.400251i \(0.868923\pi\)
\(4\) 0 0
\(5\) 0.232051 0.866025i 0.103776 0.387298i −0.894427 0.447214i \(-0.852416\pi\)
0.998203 + 0.0599153i \(0.0190830\pi\)
\(6\) 0 0
\(7\) 1.73205 + 2.00000i 0.654654 + 0.755929i
\(8\) 0 0
\(9\) 2.36603 1.36603i 0.788675 0.455342i
\(10\) 0 0
\(11\) −2.86603 + 0.767949i −0.864139 + 0.231545i −0.663552 0.748130i \(-0.730952\pi\)
−0.200587 + 0.979676i \(0.564285\pi\)
\(12\) 0 0
\(13\) 3.73205 3.73205i 1.03508 1.03508i 0.0357229 0.999362i \(-0.488627\pi\)
0.999362 0.0357229i \(-0.0113734\pi\)
\(14\) 0 0
\(15\) 0.464102 0.119831
\(16\) 0 0
\(17\) −3.23205 + 5.59808i −0.783887 + 1.35773i 0.145774 + 0.989318i \(0.453433\pi\)
−0.929661 + 0.368415i \(0.879901\pi\)
\(18\) 0 0
\(19\) 2.86603 + 0.767949i 0.657511 + 0.176180i 0.572123 0.820168i \(-0.306120\pi\)
0.0853887 + 0.996348i \(0.472787\pi\)
\(20\) 0 0
\(21\) −0.767949 + 1.13397i −0.167580 + 0.247454i
\(22\) 0 0
\(23\) 3.86603 2.23205i 0.806122 0.465415i −0.0394853 0.999220i \(-0.512572\pi\)
0.845607 + 0.533805i \(0.179239\pi\)
\(24\) 0 0
\(25\) 3.63397 + 2.09808i 0.726795 + 0.419615i
\(26\) 0 0
\(27\) 2.09808 + 2.09808i 0.403775 + 0.403775i
\(28\) 0 0
\(29\) −0.267949 + 0.267949i −0.0497569 + 0.0497569i −0.731547 0.681791i \(-0.761202\pi\)
0.681791 + 0.731547i \(0.261202\pi\)
\(30\) 0 0
\(31\) 1.86603 3.23205i 0.335148 0.580493i −0.648365 0.761329i \(-0.724547\pi\)
0.983513 + 0.180836i \(0.0578803\pi\)
\(32\) 0 0
\(33\) −0.767949 1.33013i −0.133683 0.231545i
\(34\) 0 0
\(35\) 2.13397 1.03590i 0.360708 0.175099i
\(36\) 0 0
\(37\) 0.303848 1.13397i 0.0499522 0.186424i −0.936442 0.350823i \(-0.885902\pi\)
0.986394 + 0.164399i \(0.0525685\pi\)
\(38\) 0 0
\(39\) 2.36603 + 1.36603i 0.378867 + 0.218739i
\(40\) 0 0
\(41\) 4.92820i 0.769656i 0.922988 + 0.384828i \(0.125739\pi\)
−0.922988 + 0.384828i \(0.874261\pi\)
\(42\) 0 0
\(43\) −6.46410 6.46410i −0.985766 0.985766i 0.0141339 0.999900i \(-0.495501\pi\)
−0.999900 + 0.0141339i \(0.995501\pi\)
\(44\) 0 0
\(45\) −0.633975 2.36603i −0.0945074 0.352706i
\(46\) 0 0
\(47\) 2.13397 + 3.69615i 0.311272 + 0.539139i 0.978638 0.205591i \(-0.0659116\pi\)
−0.667366 + 0.744730i \(0.732578\pi\)
\(48\) 0 0
\(49\) −1.00000 + 6.92820i −0.142857 + 0.989743i
\(50\) 0 0
\(51\) −3.23205 0.866025i −0.452578 0.121268i
\(52\) 0 0
\(53\) 3.96410 1.06218i 0.544511 0.145901i 0.0239302 0.999714i \(-0.492382\pi\)
0.520581 + 0.853812i \(0.325715\pi\)
\(54\) 0 0
\(55\) 2.66025i 0.358709i
\(56\) 0 0
\(57\) 1.53590i 0.203435i
\(58\) 0 0
\(59\) −11.3301 + 3.03590i −1.47506 + 0.395240i −0.904662 0.426130i \(-0.859877\pi\)
−0.570395 + 0.821370i \(0.693210\pi\)
\(60\) 0 0
\(61\) −6.96410 1.86603i −0.891662 0.238920i −0.216230 0.976342i \(-0.569376\pi\)
−0.675432 + 0.737422i \(0.736043\pi\)
\(62\) 0 0
\(63\) 6.83013 + 2.36603i 0.860515 + 0.298091i
\(64\) 0 0
\(65\) −2.36603 4.09808i −0.293469 0.508304i
\(66\) 0 0
\(67\) −1.33013 4.96410i −0.162501 0.606462i −0.998346 0.0574958i \(-0.981688\pi\)
0.835845 0.548966i \(-0.184978\pi\)
\(68\) 0 0
\(69\) 1.63397 + 1.63397i 0.196707 + 0.196707i
\(70\) 0 0
\(71\) 0.535898i 0.0635994i 0.999494 + 0.0317997i \(0.0101239\pi\)
−0.999494 + 0.0317997i \(0.989876\pi\)
\(72\) 0 0
\(73\) −6.23205 3.59808i −0.729406 0.421123i 0.0887986 0.996050i \(-0.471697\pi\)
−0.818205 + 0.574927i \(0.805031\pi\)
\(74\) 0 0
\(75\) −0.562178 + 2.09808i −0.0649147 + 0.242265i
\(76\) 0 0
\(77\) −6.50000 4.40192i −0.740744 0.501646i
\(78\) 0 0
\(79\) −8.33013 14.4282i −0.937213 1.62330i −0.770640 0.637270i \(-0.780063\pi\)
−0.166572 0.986029i \(-0.553270\pi\)
\(80\) 0 0
\(81\) 3.33013 5.76795i 0.370014 0.640883i
\(82\) 0 0
\(83\) −1.53590 + 1.53590i −0.168587 + 0.168587i −0.786358 0.617771i \(-0.788036\pi\)
0.617771 + 0.786358i \(0.288036\pi\)
\(84\) 0 0
\(85\) 4.09808 + 4.09808i 0.444499 + 0.444499i
\(86\) 0 0
\(87\) −0.169873 0.0980762i −0.0182123 0.0105149i
\(88\) 0 0
\(89\) 4.50000 2.59808i 0.476999 0.275396i −0.242166 0.970235i \(-0.577858\pi\)
0.719165 + 0.694839i \(0.244525\pi\)
\(90\) 0 0
\(91\) 13.9282 + 1.00000i 1.46007 + 0.104828i
\(92\) 0 0
\(93\) 1.86603 + 0.500000i 0.193498 + 0.0518476i
\(94\) 0 0
\(95\) 1.33013 2.30385i 0.136468 0.236370i
\(96\) 0 0
\(97\) −2.92820 −0.297314 −0.148657 0.988889i \(-0.547495\pi\)
−0.148657 + 0.988889i \(0.547495\pi\)
\(98\) 0 0
\(99\) −5.73205 + 5.73205i −0.576093 + 0.576093i
\(100\) 0 0
\(101\) −18.8923 + 5.06218i −1.87985 + 0.503706i −0.880283 + 0.474450i \(0.842647\pi\)
−0.999572 + 0.0292559i \(0.990686\pi\)
\(102\) 0 0
\(103\) −5.59808 + 3.23205i −0.551595 + 0.318463i −0.749765 0.661704i \(-0.769833\pi\)
0.198170 + 0.980168i \(0.436500\pi\)
\(104\) 0 0
\(105\) 0.803848 + 0.928203i 0.0784475 + 0.0905834i
\(106\) 0 0
\(107\) 0.866025 3.23205i 0.0837218 0.312454i −0.911347 0.411638i \(-0.864957\pi\)
0.995069 + 0.0991843i \(0.0316233\pi\)
\(108\) 0 0
\(109\) 0.571797 + 2.13397i 0.0547682 + 0.204398i 0.987888 0.155167i \(-0.0495917\pi\)
−0.933120 + 0.359565i \(0.882925\pi\)
\(110\) 0 0
\(111\) 0.607695 0.0576799
\(112\) 0 0
\(113\) −1.46410 −0.137731 −0.0688655 0.997626i \(-0.521938\pi\)
−0.0688655 + 0.997626i \(0.521938\pi\)
\(114\) 0 0
\(115\) −1.03590 3.86603i −0.0965980 0.360509i
\(116\) 0 0
\(117\) 3.73205 13.9282i 0.345028 1.28766i
\(118\) 0 0
\(119\) −16.7942 + 3.23205i −1.53952 + 0.296282i
\(120\) 0 0
\(121\) −1.90192 + 1.09808i −0.172902 + 0.0998251i
\(122\) 0 0
\(123\) −2.46410 + 0.660254i −0.222181 + 0.0595331i
\(124\) 0 0
\(125\) 5.83013 5.83013i 0.521462 0.521462i
\(126\) 0 0
\(127\) −9.46410 −0.839803 −0.419902 0.907570i \(-0.637935\pi\)
−0.419902 + 0.907570i \(0.637935\pi\)
\(128\) 0 0
\(129\) 2.36603 4.09808i 0.208317 0.360815i
\(130\) 0 0
\(131\) −7.59808 2.03590i −0.663847 0.177877i −0.0888654 0.996044i \(-0.528324\pi\)
−0.574982 + 0.818166i \(0.694991\pi\)
\(132\) 0 0
\(133\) 3.42820 + 7.06218i 0.297263 + 0.612368i
\(134\) 0 0
\(135\) 2.30385 1.33013i 0.198284 0.114479i
\(136\) 0 0
\(137\) −15.2321 8.79423i −1.30136 0.751342i −0.320724 0.947173i \(-0.603926\pi\)
−0.980638 + 0.195831i \(0.937260\pi\)
\(138\) 0 0
\(139\) 11.9282 + 11.9282i 1.01174 + 1.01174i 0.999930 + 0.0118067i \(0.00375827\pi\)
0.0118067 + 0.999930i \(0.496242\pi\)
\(140\) 0 0
\(141\) −1.56218 + 1.56218i −0.131559 + 0.131559i
\(142\) 0 0
\(143\) −7.83013 + 13.5622i −0.654788 + 1.13413i
\(144\) 0 0
\(145\) 0.169873 + 0.294229i 0.0141072 + 0.0244344i
\(146\) 0 0
\(147\) −3.59808 + 0.428203i −0.296764 + 0.0353176i
\(148\) 0 0
\(149\) 2.03590 7.59808i 0.166787 0.622459i −0.831018 0.556245i \(-0.812242\pi\)
0.997805 0.0662134i \(-0.0210918\pi\)
\(150\) 0 0
\(151\) 9.86603 + 5.69615i 0.802886 + 0.463546i 0.844479 0.535588i \(-0.179910\pi\)
−0.0415935 + 0.999135i \(0.513243\pi\)
\(152\) 0 0
\(153\) 17.6603i 1.42775i
\(154\) 0 0
\(155\) −2.36603 2.36603i −0.190044 0.190044i
\(156\) 0 0
\(157\) 4.89230 + 18.2583i 0.390448 + 1.45717i 0.829396 + 0.558661i \(0.188685\pi\)
−0.438948 + 0.898513i \(0.644649\pi\)
\(158\) 0 0
\(159\) 1.06218 + 1.83975i 0.0842362 + 0.145901i
\(160\) 0 0
\(161\) 11.1603 + 3.86603i 0.879551 + 0.304685i
\(162\) 0 0
\(163\) 12.0622 + 3.23205i 0.944783 + 0.253154i 0.698147 0.715954i \(-0.254008\pi\)
0.246636 + 0.969108i \(0.420675\pi\)
\(164\) 0 0
\(165\) −1.33013 + 0.356406i −0.103550 + 0.0277462i
\(166\) 0 0
\(167\) 21.8564i 1.69130i −0.533738 0.845650i \(-0.679213\pi\)
0.533738 0.845650i \(-0.320787\pi\)
\(168\) 0 0
\(169\) 14.8564i 1.14280i
\(170\) 0 0
\(171\) 7.83013 2.09808i 0.598785 0.160444i
\(172\) 0 0
\(173\) −2.23205 0.598076i −0.169700 0.0454709i 0.172969 0.984927i \(-0.444664\pi\)
−0.342668 + 0.939456i \(0.611331\pi\)
\(174\) 0 0
\(175\) 2.09808 + 10.9019i 0.158600 + 0.824108i
\(176\) 0 0
\(177\) −3.03590 5.25833i −0.228192 0.395240i
\(178\) 0 0
\(179\) 2.40192 + 8.96410i 0.179528 + 0.670008i 0.995736 + 0.0922498i \(0.0294058\pi\)
−0.816208 + 0.577759i \(0.803928\pi\)
\(180\) 0 0
\(181\) 13.3923 + 13.3923i 0.995442 + 0.995442i 0.999990 0.00454748i \(-0.00144751\pi\)
−0.00454748 + 0.999990i \(0.501448\pi\)
\(182\) 0 0
\(183\) 3.73205i 0.275881i
\(184\) 0 0
\(185\) −0.911543 0.526279i −0.0670180 0.0386928i
\(186\) 0 0
\(187\) 4.96410 18.5263i 0.363011 1.35478i
\(188\) 0 0
\(189\) −0.562178 + 7.83013i −0.0408924 + 0.569558i
\(190\) 0 0
\(191\) 4.33013 + 7.50000i 0.313317 + 0.542681i 0.979078 0.203484i \(-0.0652264\pi\)
−0.665761 + 0.746165i \(0.731893\pi\)
\(192\) 0 0
\(193\) 11.5000 19.9186i 0.827788 1.43377i −0.0719816 0.997406i \(-0.522932\pi\)
0.899770 0.436365i \(-0.143734\pi\)
\(194\) 0 0
\(195\) 1.73205 1.73205i 0.124035 0.124035i
\(196\) 0 0
\(197\) −16.6603 16.6603i −1.18699 1.18699i −0.977894 0.209100i \(-0.932947\pi\)
−0.209100 0.977894i \(-0.567053\pi\)
\(198\) 0 0
\(199\) −10.3301 5.96410i −0.732283 0.422784i 0.0869736 0.996211i \(-0.472280\pi\)
−0.819257 + 0.573427i \(0.805614\pi\)
\(200\) 0 0
\(201\) 2.30385 1.33013i 0.162501 0.0938199i
\(202\) 0 0
\(203\) −1.00000 0.0717968i −0.0701862 0.00503915i
\(204\) 0 0
\(205\) 4.26795 + 1.14359i 0.298087 + 0.0798720i
\(206\) 0 0
\(207\) 6.09808 10.5622i 0.423846 0.734122i
\(208\) 0 0
\(209\) −8.80385 −0.608975
\(210\) 0 0
\(211\) 15.9282 15.9282i 1.09654 1.09654i 0.101731 0.994812i \(-0.467562\pi\)
0.994812 0.101731i \(-0.0324380\pi\)
\(212\) 0 0
\(213\) −0.267949 + 0.0717968i −0.0183596 + 0.00491943i
\(214\) 0 0
\(215\) −7.09808 + 4.09808i −0.484085 + 0.279486i
\(216\) 0 0
\(217\) 9.69615 1.86603i 0.658218 0.126674i
\(218\) 0 0
\(219\) 0.964102 3.59808i 0.0651479 0.243135i
\(220\) 0 0
\(221\) 8.83013 + 32.9545i 0.593979 + 2.21676i
\(222\) 0 0
\(223\) −9.85641 −0.660034 −0.330017 0.943975i \(-0.607054\pi\)
−0.330017 + 0.943975i \(0.607054\pi\)
\(224\) 0 0
\(225\) 11.4641 0.764273
\(226\) 0 0
\(227\) 2.99038 + 11.1603i 0.198479 + 0.740732i 0.991339 + 0.131329i \(0.0419243\pi\)
−0.792860 + 0.609403i \(0.791409\pi\)
\(228\) 0 0
\(229\) −3.57180 + 13.3301i −0.236031 + 0.880880i 0.741650 + 0.670787i \(0.234043\pi\)
−0.977681 + 0.210093i \(0.932623\pi\)
\(230\) 0 0
\(231\) 1.33013 3.83975i 0.0875159 0.252637i
\(232\) 0 0
\(233\) −0.696152 + 0.401924i −0.0456065 + 0.0263309i −0.522630 0.852560i \(-0.675049\pi\)
0.477023 + 0.878891i \(0.341716\pi\)
\(234\) 0 0
\(235\) 3.69615 0.990381i 0.241110 0.0646053i
\(236\) 0 0
\(237\) 6.09808 6.09808i 0.396113 0.396113i
\(238\) 0 0
\(239\) 8.53590 0.552141 0.276071 0.961137i \(-0.410968\pi\)
0.276071 + 0.961137i \(0.410968\pi\)
\(240\) 0 0
\(241\) −6.96410 + 12.0622i −0.448597 + 0.776993i −0.998295 0.0583704i \(-0.981410\pi\)
0.549698 + 0.835364i \(0.314743\pi\)
\(242\) 0 0
\(243\) 11.9282 + 3.19615i 0.765195 + 0.205033i
\(244\) 0 0
\(245\) 5.76795 + 2.47372i 0.368501 + 0.158040i
\(246\) 0 0
\(247\) 13.5622 7.83013i 0.862941 0.498219i
\(248\) 0 0
\(249\) −0.973721 0.562178i −0.0617070 0.0356266i
\(250\) 0 0
\(251\) 17.5885 + 17.5885i 1.11017 + 1.11017i 0.993126 + 0.117047i \(0.0373429\pi\)
0.117047 + 0.993126i \(0.462657\pi\)
\(252\) 0 0
\(253\) −9.36603 + 9.36603i −0.588837 + 0.588837i
\(254\) 0 0
\(255\) −1.50000 + 2.59808i −0.0939336 + 0.162698i
\(256\) 0 0
\(257\) 9.69615 + 16.7942i 0.604829 + 1.04760i 0.992078 + 0.125620i \(0.0400920\pi\)
−0.387249 + 0.921975i \(0.626575\pi\)
\(258\) 0 0
\(259\) 2.79423 1.35641i 0.173625 0.0842830i
\(260\) 0 0
\(261\) −0.267949 + 1.00000i −0.0165856 + 0.0618984i
\(262\) 0 0
\(263\) 3.99038 + 2.30385i 0.246057 + 0.142061i 0.617958 0.786211i \(-0.287960\pi\)
−0.371900 + 0.928273i \(0.621294\pi\)
\(264\) 0 0
\(265\) 3.67949i 0.226029i
\(266\) 0 0
\(267\) 1.90192 + 1.90192i 0.116396 + 0.116396i
\(268\) 0 0
\(269\) −2.62436 9.79423i −0.160010 0.597165i −0.998624 0.0524390i \(-0.983300\pi\)
0.838614 0.544726i \(-0.183366\pi\)
\(270\) 0 0
\(271\) 6.06218 + 10.5000i 0.368251 + 0.637830i 0.989292 0.145948i \(-0.0466233\pi\)
−0.621041 + 0.783778i \(0.713290\pi\)
\(272\) 0 0
\(273\) 1.36603 + 7.09808i 0.0826756 + 0.429595i
\(274\) 0 0
\(275\) −12.0263 3.22243i −0.725212 0.194320i
\(276\) 0 0
\(277\) 4.50000 1.20577i 0.270379 0.0724478i −0.121082 0.992642i \(-0.538636\pi\)
0.391461 + 0.920195i \(0.371970\pi\)
\(278\) 0 0
\(279\) 10.1962i 0.610428i
\(280\) 0 0
\(281\) 0.928203i 0.0553720i 0.999617 + 0.0276860i \(0.00881385\pi\)
−0.999617 + 0.0276860i \(0.991186\pi\)
\(282\) 0 0
\(283\) −14.5263 + 3.89230i −0.863498 + 0.231374i −0.663274 0.748377i \(-0.730834\pi\)
−0.200224 + 0.979750i \(0.564167\pi\)
\(284\) 0 0
\(285\) 1.33013 + 0.356406i 0.0787899 + 0.0211117i
\(286\) 0 0
\(287\) −9.85641 + 8.53590i −0.581805 + 0.503858i
\(288\) 0 0
\(289\) −12.3923 21.4641i −0.728959 1.26259i
\(290\) 0 0
\(291\) −0.392305 1.46410i −0.0229973 0.0858272i
\(292\) 0 0
\(293\) −7.92820 7.92820i −0.463171 0.463171i 0.436523 0.899693i \(-0.356210\pi\)
−0.899693 + 0.436523i \(0.856210\pi\)
\(294\) 0 0
\(295\) 10.5167i 0.612304i
\(296\) 0 0
\(297\) −7.62436 4.40192i −0.442410 0.255426i
\(298\) 0 0
\(299\) 6.09808 22.7583i 0.352661 1.31615i
\(300\) 0 0
\(301\) 1.73205 24.1244i 0.0998337 1.39050i
\(302\) 0 0
\(303\) −5.06218 8.76795i −0.290815 0.503706i
\(304\) 0 0
\(305\) −3.23205 + 5.59808i −0.185067 + 0.320545i
\(306\) 0 0
\(307\) −9.00000 + 9.00000i −0.513657 + 0.513657i −0.915645 0.401988i \(-0.868319\pi\)
0.401988 + 0.915645i \(0.368319\pi\)
\(308\) 0 0
\(309\) −2.36603 2.36603i −0.134598 0.134598i
\(310\) 0 0
\(311\) 5.59808 + 3.23205i 0.317438 + 0.183273i 0.650250 0.759720i \(-0.274664\pi\)
−0.332812 + 0.942993i \(0.607998\pi\)
\(312\) 0 0
\(313\) 18.6962 10.7942i 1.05677 0.610126i 0.132232 0.991219i \(-0.457786\pi\)
0.924537 + 0.381093i \(0.124452\pi\)
\(314\) 0 0
\(315\) 3.63397 5.36603i 0.204751 0.302341i
\(316\) 0 0
\(317\) 14.1603 + 3.79423i 0.795319 + 0.213105i 0.633528 0.773720i \(-0.281606\pi\)
0.161791 + 0.986825i \(0.448273\pi\)
\(318\) 0 0
\(319\) 0.562178 0.973721i 0.0314759 0.0545179i
\(320\) 0 0
\(321\) 1.73205 0.0966736
\(322\) 0 0
\(323\) −13.5622 + 13.5622i −0.754620 + 0.754620i
\(324\) 0 0
\(325\) 21.3923 5.73205i 1.18663 0.317957i
\(326\) 0 0
\(327\) −0.990381 + 0.571797i −0.0547682 + 0.0316204i
\(328\) 0 0
\(329\) −3.69615 + 10.6699i −0.203775 + 0.588249i
\(330\) 0 0
\(331\) −5.25833 + 19.6244i −0.289024 + 1.07865i 0.656824 + 0.754044i \(0.271899\pi\)
−0.945848 + 0.324609i \(0.894767\pi\)
\(332\) 0 0
\(333\) −0.830127 3.09808i −0.0454907 0.169774i
\(334\) 0 0
\(335\) −4.60770 −0.251745
\(336\) 0 0
\(337\) −6.14359 −0.334663 −0.167331 0.985901i \(-0.553515\pi\)
−0.167331 + 0.985901i \(0.553515\pi\)
\(338\) 0 0
\(339\) −0.196152 0.732051i −0.0106535 0.0397595i
\(340\) 0 0
\(341\) −2.86603 + 10.6962i −0.155204 + 0.579229i
\(342\) 0 0
\(343\) −15.5885 + 10.0000i −0.841698 + 0.539949i
\(344\) 0 0
\(345\) 1.79423 1.03590i 0.0965980 0.0557709i
\(346\) 0 0
\(347\) −23.5263 + 6.30385i −1.26296 + 0.338408i −0.827329 0.561718i \(-0.810140\pi\)
−0.435628 + 0.900127i \(0.643474\pi\)
\(348\) 0 0
\(349\) 6.12436 6.12436i 0.327829 0.327829i −0.523931 0.851761i \(-0.675535\pi\)
0.851761 + 0.523931i \(0.175535\pi\)
\(350\) 0 0
\(351\) 15.6603 0.835883
\(352\) 0 0
\(353\) 13.8923 24.0622i 0.739413 1.28070i −0.213347 0.976976i \(-0.568437\pi\)
0.952760 0.303724i \(-0.0982301\pi\)
\(354\) 0 0
\(355\) 0.464102 + 0.124356i 0.0246320 + 0.00660011i
\(356\) 0 0
\(357\) −3.86603 7.96410i −0.204612 0.421505i
\(358\) 0 0
\(359\) −3.86603 + 2.23205i −0.204041 + 0.117803i −0.598539 0.801094i \(-0.704252\pi\)
0.394498 + 0.918897i \(0.370919\pi\)
\(360\) 0 0
\(361\) −8.83013 5.09808i −0.464744 0.268320i
\(362\) 0 0
\(363\) −0.803848 0.803848i −0.0421911 0.0421911i
\(364\) 0 0
\(365\) −4.56218 + 4.56218i −0.238795 + 0.238795i
\(366\) 0 0
\(367\) 3.06218 5.30385i 0.159844 0.276859i −0.774968 0.632000i \(-0.782234\pi\)
0.934812 + 0.355142i \(0.115567\pi\)
\(368\) 0 0
\(369\) 6.73205 + 11.6603i 0.350457 + 0.607009i
\(370\) 0 0
\(371\) 8.99038 + 6.08846i 0.466757 + 0.316097i
\(372\) 0 0
\(373\) −0.232051 + 0.866025i −0.0120151 + 0.0448411i −0.971673 0.236329i \(-0.924056\pi\)
0.959658 + 0.281170i \(0.0907224\pi\)
\(374\) 0 0
\(375\) 3.69615 + 2.13397i 0.190868 + 0.110198i
\(376\) 0 0
\(377\) 2.00000i 0.103005i
\(378\) 0 0
\(379\) −0.124356 0.124356i −0.00638772 0.00638772i 0.703906 0.710293i \(-0.251438\pi\)
−0.710293 + 0.703906i \(0.751438\pi\)
\(380\) 0 0
\(381\) −1.26795 4.73205i −0.0649590 0.242430i
\(382\) 0 0
\(383\) −12.5981 21.8205i −0.643732 1.11498i −0.984593 0.174862i \(-0.944052\pi\)
0.340861 0.940114i \(-0.389281\pi\)
\(384\) 0 0
\(385\) −5.32051 + 4.60770i −0.271158 + 0.234830i
\(386\) 0 0
\(387\) −24.1244 6.46410i −1.22631 0.328589i
\(388\) 0 0
\(389\) −22.3564 + 5.99038i −1.13351 + 0.303724i −0.776341 0.630313i \(-0.782926\pi\)
−0.357174 + 0.934038i \(0.616260\pi\)
\(390\) 0 0
\(391\) 28.8564i 1.45933i
\(392\) 0 0
\(393\) 4.07180i 0.205395i
\(394\) 0 0
\(395\) −14.4282 + 3.86603i −0.725962 + 0.194521i
\(396\) 0 0
\(397\) −25.6244 6.86603i −1.28605 0.344596i −0.449891 0.893084i \(-0.648537\pi\)
−0.836159 + 0.548488i \(0.815204\pi\)
\(398\) 0 0
\(399\) −3.07180 + 2.66025i −0.153782 + 0.133179i
\(400\) 0 0
\(401\) 7.50000 + 12.9904i 0.374532 + 0.648709i 0.990257 0.139253i \(-0.0444700\pi\)
−0.615725 + 0.787961i \(0.711137\pi\)
\(402\) 0 0
\(403\) −5.09808 19.0263i −0.253953 0.947766i
\(404\) 0 0
\(405\) −4.22243 4.22243i −0.209814 0.209814i
\(406\) 0 0
\(407\) 3.48334i 0.172663i
\(408\) 0 0
\(409\) 7.50000 + 4.33013i 0.370851 + 0.214111i 0.673830 0.738886i \(-0.264648\pi\)
−0.302979 + 0.952997i \(0.597981\pi\)
\(410\) 0 0
\(411\) 2.35641 8.79423i 0.116233 0.433787i
\(412\) 0 0
\(413\) −25.6962 17.4019i −1.26442 0.856293i
\(414\) 0 0
\(415\) 0.973721 + 1.68653i 0.0477981 + 0.0827887i
\(416\) 0 0
\(417\) −4.36603 + 7.56218i −0.213805 + 0.370321i
\(418\) 0 0
\(419\) 19.0000 19.0000i 0.928211 0.928211i −0.0693796 0.997590i \(-0.522102\pi\)
0.997590 + 0.0693796i \(0.0221020\pi\)
\(420\) 0 0
\(421\) 8.66025 + 8.66025i 0.422075 + 0.422075i 0.885918 0.463843i \(-0.153530\pi\)
−0.463843 + 0.885918i \(0.653530\pi\)
\(422\) 0 0
\(423\) 10.0981 + 5.83013i 0.490985 + 0.283470i
\(424\) 0 0
\(425\) −23.4904 + 13.5622i −1.13945 + 0.657862i
\(426\) 0 0
\(427\) −8.33013 17.1603i −0.403123 0.830443i
\(428\) 0 0
\(429\) −7.83013 2.09808i −0.378042 0.101296i
\(430\) 0 0
\(431\) 15.3301 26.5526i 0.738426 1.27899i −0.214777 0.976663i \(-0.568903\pi\)
0.953204 0.302329i \(-0.0977640\pi\)
\(432\) 0 0
\(433\) −33.1769 −1.59438 −0.797190 0.603728i \(-0.793681\pi\)
−0.797190 + 0.603728i \(0.793681\pi\)
\(434\) 0 0
\(435\) −0.124356 + 0.124356i −0.00596240 + 0.00596240i
\(436\) 0 0
\(437\) 12.7942 3.42820i 0.612031 0.163993i
\(438\) 0 0
\(439\) 6.52628 3.76795i 0.311482 0.179834i −0.336107 0.941824i \(-0.609110\pi\)
0.647590 + 0.761989i \(0.275777\pi\)
\(440\) 0 0
\(441\) 7.09808 + 17.7583i 0.338004 + 0.845635i
\(442\) 0 0
\(443\) −2.79423 + 10.4282i −0.132758 + 0.495459i −0.999997 0.00243278i \(-0.999226\pi\)
0.867239 + 0.497892i \(0.165892\pi\)
\(444\) 0 0
\(445\) −1.20577 4.50000i −0.0571590 0.213320i
\(446\) 0 0
\(447\) 4.07180 0.192589
\(448\) 0 0
\(449\) −23.3205 −1.10056 −0.550281 0.834979i \(-0.685480\pi\)
−0.550281 + 0.834979i \(0.685480\pi\)
\(450\) 0 0
\(451\) −3.78461 14.1244i −0.178210 0.665090i
\(452\) 0 0
\(453\) −1.52628 + 5.69615i −0.0717109 + 0.267629i
\(454\) 0 0
\(455\) 4.09808 11.8301i 0.192121 0.554605i
\(456\) 0 0
\(457\) −16.2846 + 9.40192i −0.761762 + 0.439803i −0.829928 0.557871i \(-0.811619\pi\)
0.0681661 + 0.997674i \(0.478285\pi\)
\(458\) 0 0
\(459\) −18.5263 + 4.96410i −0.864733 + 0.231704i
\(460\) 0 0
\(461\) 18.6603 18.6603i 0.869095 0.869095i −0.123278 0.992372i \(-0.539341\pi\)
0.992372 + 0.123278i \(0.0393405\pi\)
\(462\) 0 0
\(463\) −2.14359 −0.0996212 −0.0498106 0.998759i \(-0.515862\pi\)
−0.0498106 + 0.998759i \(0.515862\pi\)
\(464\) 0 0
\(465\) 0.866025 1.50000i 0.0401610 0.0695608i
\(466\) 0 0
\(467\) −25.9904 6.96410i −1.20269 0.322260i −0.398801 0.917038i \(-0.630574\pi\)
−0.803890 + 0.594777i \(0.797240\pi\)
\(468\) 0 0
\(469\) 7.62436 11.2583i 0.352060 0.519861i
\(470\) 0 0
\(471\) −8.47372 + 4.89230i −0.390448 + 0.225426i
\(472\) 0 0
\(473\) 23.4904 + 13.5622i 1.08009 + 0.623590i
\(474\) 0 0
\(475\) 8.80385 + 8.80385i 0.403948 + 0.403948i
\(476\) 0 0
\(477\) 7.92820 7.92820i 0.363007 0.363007i
\(478\) 0 0
\(479\) 7.79423 13.5000i 0.356127 0.616831i −0.631183 0.775634i \(-0.717430\pi\)
0.987310 + 0.158803i \(0.0507636\pi\)
\(480\) 0 0
\(481\) −3.09808 5.36603i −0.141260 0.244670i
\(482\) 0 0
\(483\) −0.437822 + 6.09808i −0.0199216 + 0.277472i
\(484\) 0 0
\(485\) −0.679492 + 2.53590i −0.0308541 + 0.115149i
\(486\) 0 0
\(487\) 10.6699 + 6.16025i 0.483498 + 0.279148i 0.721873 0.692025i \(-0.243281\pi\)
−0.238375 + 0.971173i \(0.576615\pi\)
\(488\) 0 0
\(489\) 6.46410i 0.292317i
\(490\) 0 0
\(491\) 3.58846 + 3.58846i 0.161945 + 0.161945i 0.783428 0.621483i \(-0.213469\pi\)
−0.621483 + 0.783428i \(0.713469\pi\)
\(492\) 0 0
\(493\) −0.633975 2.36603i −0.0285528 0.106560i
\(494\) 0 0
\(495\) 3.63397 + 6.29423i 0.163335 + 0.282905i
\(496\) 0 0
\(497\) −1.07180 + 0.928203i −0.0480767 + 0.0416356i
\(498\) 0 0
\(499\) 24.9904 + 6.69615i 1.11872 + 0.299761i 0.770367 0.637601i \(-0.220073\pi\)
0.348356 + 0.937362i \(0.386740\pi\)
\(500\) 0 0
\(501\) 10.9282 2.92820i 0.488236 0.130822i
\(502\) 0 0
\(503\) 31.8564i 1.42041i −0.703996 0.710203i \(-0.748603\pi\)
0.703996 0.710203i \(-0.251397\pi\)
\(504\) 0 0
\(505\) 17.5359i 0.780337i
\(506\) 0 0
\(507\) 7.42820 1.99038i 0.329898 0.0883959i
\(508\) 0 0
\(509\) −9.42820 2.52628i −0.417898 0.111975i 0.0437420 0.999043i \(-0.486072\pi\)
−0.461640 + 0.887067i \(0.652739\pi\)
\(510\) 0 0
\(511\) −3.59808 18.6962i −0.159170 0.827069i
\(512\) 0 0
\(513\) 4.40192 + 7.62436i 0.194350 + 0.336624i
\(514\) 0 0
\(515\) 1.50000 + 5.59808i 0.0660979 + 0.246681i
\(516\) 0 0
\(517\) −8.95448 8.95448i −0.393818 0.393818i
\(518\) 0 0
\(519\) 1.19615i 0.0525053i
\(520\) 0 0
\(521\) 13.3756 + 7.72243i 0.585998 + 0.338326i 0.763513 0.645792i \(-0.223473\pi\)
−0.177516 + 0.984118i \(0.556806\pi\)
\(522\) 0 0
\(523\) −8.65064 + 32.2846i −0.378266 + 1.41171i 0.470248 + 0.882534i \(0.344164\pi\)
−0.848514 + 0.529173i \(0.822502\pi\)
\(524\) 0 0
\(525\) −5.16987 + 2.50962i −0.225632 + 0.109529i
\(526\) 0 0
\(527\) 12.0622 + 20.8923i 0.525437 + 0.910083i
\(528\) 0 0
\(529\) −1.53590 + 2.66025i −0.0667782 + 0.115663i
\(530\) 0 0
\(531\) −22.6603 + 22.6603i −0.983371 + 0.983371i
\(532\) 0 0
\(533\) 18.3923 + 18.3923i 0.796659 + 0.796659i
\(534\) 0 0
\(535\) −2.59808 1.50000i −0.112325 0.0648507i
\(536\) 0 0
\(537\) −4.16025 + 2.40192i −0.179528 + 0.103651i
\(538\) 0 0
\(539\) −2.45448 20.6244i −0.105722 0.888354i
\(540\) 0 0
\(541\) −9.23205 2.47372i −0.396917 0.106354i 0.0548389 0.998495i \(-0.482535\pi\)
−0.451756 + 0.892142i \(0.649202\pi\)
\(542\) 0 0
\(543\) −4.90192 + 8.49038i −0.210362 + 0.364357i
\(544\) 0 0
\(545\) 1.98076 0.0848465
\(546\) 0 0
\(547\) 23.0526 23.0526i 0.985656 0.985656i −0.0142423 0.999899i \(-0.504534\pi\)
0.999899 + 0.0142423i \(0.00453363\pi\)
\(548\) 0 0
\(549\) −19.0263 + 5.09808i −0.812022 + 0.217581i
\(550\) 0 0
\(551\) −0.973721 + 0.562178i −0.0414819 + 0.0239496i
\(552\) 0 0
\(553\) 14.4282 41.6506i 0.613550 1.77117i
\(554\) 0 0
\(555\) 0.141016 0.526279i 0.00598580 0.0223393i
\(556\) 0 0
\(557\) −1.76795 6.59808i −0.0749104 0.279569i 0.918303 0.395879i \(-0.129560\pi\)
−0.993213 + 0.116310i \(0.962893\pi\)
\(558\) 0 0
\(559\) −48.2487 −2.04070
\(560\) 0 0
\(561\) 9.92820 0.419169
\(562\) 0 0
\(563\) −0.650635 2.42820i −0.0274210 0.102337i 0.950859 0.309624i \(-0.100203\pi\)
−0.978280 + 0.207287i \(0.933536\pi\)
\(564\) 0 0
\(565\) −0.339746 + 1.26795i −0.0142932 + 0.0533430i
\(566\) 0 0
\(567\) 17.3038 3.33013i 0.726693 0.139852i
\(568\) 0 0
\(569\) 5.08846 2.93782i 0.213319 0.123160i −0.389534 0.921012i \(-0.627364\pi\)
0.602853 + 0.797852i \(0.294031\pi\)
\(570\) 0 0
\(571\) −26.7224 + 7.16025i −1.11830 + 0.299647i −0.770195 0.637809i \(-0.779841\pi\)
−0.348104 + 0.937456i \(0.613174\pi\)
\(572\) 0 0
\(573\) −3.16987 + 3.16987i −0.132423 + 0.132423i
\(574\) 0 0
\(575\) 18.7321 0.781181
\(576\) 0 0
\(577\) −6.62436 + 11.4737i −0.275776 + 0.477657i −0.970330 0.241782i \(-0.922268\pi\)
0.694555 + 0.719440i \(0.255601\pi\)
\(578\) 0 0
\(579\) 11.5000 + 3.08142i 0.477924 + 0.128059i
\(580\) 0 0
\(581\) −5.73205 0.411543i −0.237806 0.0170737i
\(582\) 0 0
\(583\) −10.5455 + 6.08846i −0.436751 + 0.252158i
\(584\) 0 0
\(585\) −11.1962 6.46410i −0.462904 0.267258i
\(586\) 0 0
\(587\) −21.9282 21.9282i −0.905074 0.905074i 0.0907957 0.995870i \(-0.471059\pi\)
−0.995870 + 0.0907957i \(0.971059\pi\)
\(588\) 0 0
\(589\) 7.83013 7.83013i 0.322635 0.322635i
\(590\) 0 0
\(591\) 6.09808 10.5622i 0.250841 0.434470i
\(592\) 0 0
\(593\) 5.69615 + 9.86603i 0.233913 + 0.405149i 0.958956 0.283554i \(-0.0915136\pi\)
−0.725043 + 0.688703i \(0.758180\pi\)
\(594\) 0 0
\(595\) −1.09808 + 15.2942i −0.0450167 + 0.627002i
\(596\) 0 0
\(597\) 1.59808 5.96410i 0.0654049 0.244094i
\(598\) 0 0
\(599\) 16.6699 + 9.62436i 0.681113 + 0.393241i 0.800274 0.599634i \(-0.204687\pi\)
−0.119162 + 0.992875i \(0.538021\pi\)
\(600\) 0 0
\(601\) 10.0000i 0.407909i −0.978980 0.203954i \(-0.934621\pi\)
0.978980 0.203954i \(-0.0653794\pi\)
\(602\) 0 0
\(603\) −9.92820 9.92820i −0.404308 0.404308i
\(604\) 0 0
\(605\) 0.509619 + 1.90192i 0.0207190 + 0.0773242i
\(606\) 0 0
\(607\) 8.52628 + 14.7679i 0.346071 + 0.599413i 0.985548 0.169398i \(-0.0541823\pi\)
−0.639477 + 0.768810i \(0.720849\pi\)
\(608\) 0 0
\(609\) −0.0980762 0.509619i −0.00397425 0.0206508i
\(610\) 0 0
\(611\) 21.7583 + 5.83013i 0.880248 + 0.235862i
\(612\) 0 0
\(613\) −9.23205 + 2.47372i −0.372879 + 0.0999126i −0.440392 0.897806i \(-0.645160\pi\)
0.0675126 + 0.997718i \(0.478494\pi\)
\(614\) 0 0
\(615\) 2.28719i 0.0922283i
\(616\) 0 0
\(617\) 0.535898i 0.0215745i −0.999942 0.0107872i \(-0.996566\pi\)
0.999942 0.0107872i \(-0.00343375\pi\)
\(618\) 0 0
\(619\) 19.0622 5.10770i 0.766174 0.205296i 0.145493 0.989359i \(-0.453523\pi\)
0.620680 + 0.784064i \(0.286856\pi\)
\(620\) 0 0
\(621\) 12.7942 + 3.42820i 0.513415 + 0.137569i
\(622\) 0 0
\(623\) 12.9904 + 4.50000i 0.520449 + 0.180289i
\(624\) 0 0
\(625\) 6.79423 + 11.7679i 0.271769 + 0.470718i
\(626\) 0 0
\(627\) −1.17949 4.40192i −0.0471044 0.175796i
\(628\) 0 0
\(629\) 5.36603 + 5.36603i 0.213957 + 0.213957i
\(630\) 0 0
\(631\) 32.2487i 1.28380i 0.766788 + 0.641900i \(0.221854\pi\)
−0.766788 + 0.641900i \(0.778146\pi\)
\(632\) 0 0
\(633\) 10.0981 + 5.83013i 0.401362 + 0.231727i
\(634\) 0 0
\(635\) −2.19615 + 8.19615i −0.0871517 + 0.325254i
\(636\) 0 0
\(637\) 22.1244 + 29.5885i 0.876599 + 1.17234i
\(638\) 0 0
\(639\) 0.732051 + 1.26795i 0.0289595 + 0.0501593i
\(640\) 0 0
\(641\) 5.57180 9.65064i 0.220073 0.381177i −0.734757 0.678330i \(-0.762704\pi\)
0.954830 + 0.297153i \(0.0960372\pi\)
\(642\) 0 0
\(643\) 5.39230 5.39230i 0.212652 0.212652i −0.592741 0.805393i \(-0.701954\pi\)
0.805393 + 0.592741i \(0.201954\pi\)
\(644\) 0 0
\(645\) −3.00000 3.00000i −0.118125 0.118125i
\(646\) 0 0
\(647\) 30.8660 + 17.8205i 1.21347 + 0.700596i 0.963513 0.267661i \(-0.0862507\pi\)
0.249955 + 0.968257i \(0.419584\pi\)
\(648\) 0 0
\(649\) 30.1410 17.4019i 1.18314 0.683085i
\(650\) 0 0
\(651\) 2.23205 + 4.59808i 0.0874810 + 0.180213i
\(652\) 0 0
\(653\) 32.5526 + 8.72243i 1.27388 + 0.341335i 0.831516 0.555501i \(-0.187473\pi\)
0.442364 + 0.896836i \(0.354140\pi\)
\(654\) 0 0
\(655\) −3.52628 + 6.10770i −0.137783 + 0.238647i
\(656\) 0 0
\(657\) −19.6603 −0.767020
\(658\) 0 0
\(659\) −18.8564 + 18.8564i −0.734541 + 0.734541i −0.971516 0.236975i \(-0.923844\pi\)
0.236975 + 0.971516i \(0.423844\pi\)
\(660\) 0 0
\(661\) 22.1603 5.93782i 0.861934 0.230955i 0.199337 0.979931i \(-0.436121\pi\)
0.662597 + 0.748976i \(0.269454\pi\)
\(662\) 0 0
\(663\) −15.2942 + 8.83013i −0.593979 + 0.342934i
\(664\) 0 0
\(665\) 6.91154 1.33013i 0.268018 0.0515801i
\(666\) 0 0
\(667\) −0.437822 + 1.63397i −0.0169525 + 0.0632677i
\(668\) 0 0
\(669\) −1.32051 4.92820i −0.0510538 0.190535i
\(670\) 0 0
\(671\) 21.3923 0.825841
\(672\) 0 0
\(673\) 40.7846 1.57213 0.786066 0.618143i \(-0.212115\pi\)
0.786066 + 0.618143i \(0.212115\pi\)
\(674\) 0 0
\(675\) 3.22243 + 12.0263i 0.124031 + 0.462892i
\(676\) 0 0
\(677\) 11.4474 42.7224i 0.439961 1.64196i −0.288947 0.957345i \(-0.593305\pi\)
0.728908 0.684611i \(-0.240028\pi\)
\(678\) 0 0
\(679\) −5.07180 5.85641i −0.194638 0.224748i
\(680\) 0 0
\(681\) −5.17949 + 2.99038i −0.198479 + 0.114592i
\(682\) 0 0
\(683\) 45.5788 12.2128i 1.74403 0.467310i 0.760691 0.649114i \(-0.224860\pi\)
0.983335 + 0.181804i \(0.0581936\pi\)
\(684\) 0 0
\(685\) −11.1506 + 11.1506i −0.426044 + 0.426044i
\(686\) 0 0
\(687\) −7.14359 −0.272545
\(688\) 0 0
\(689\) 10.8301 18.7583i 0.412595 0.714635i
\(690\) 0 0
\(691\) 22.9904 + 6.16025i 0.874595 + 0.234347i 0.668074 0.744095i \(-0.267119\pi\)
0.206521 + 0.978442i \(0.433786\pi\)
\(692\) 0 0
\(693\) −21.3923 1.53590i −0.812626 0.0583440i
\(694\) 0 0
\(695\) 13.0981 7.56218i 0.496838 0.286850i
\(696\) 0 0
\(697\) −27.5885 15.9282i −1.04499 0.603324i
\(698\) 0 0
\(699\) −0.294229 0.294229i −0.0111287 0.0111287i
\(700\) 0 0
\(701\) −13.3923 + 13.3923i −0.505820 + 0.505820i −0.913241 0.407420i \(-0.866428\pi\)
0.407420 + 0.913241i \(0.366428\pi\)
\(702\) 0 0
\(703\) 1.74167 3.01666i 0.0656883 0.113776i
\(704\) 0 0
\(705\) 0.990381 + 1.71539i 0.0372999 + 0.0646053i
\(706\) 0 0
\(707\) −42.8468 29.0167i −1.61142 1.09128i
\(708\) 0 0
\(709\) −12.2321 + 45.6506i −0.459384 + 1.71445i 0.215484 + 0.976507i \(0.430867\pi\)
−0.674868 + 0.737938i \(0.735800\pi\)
\(710\) 0 0
\(711\) −39.4186 22.7583i −1.47831 0.853504i
\(712\) 0 0
\(713\) 16.6603i 0.623931i
\(714\) 0 0
\(715\) 9.92820 + 9.92820i 0.371294 + 0.371294i
\(716\) 0 0
\(717\) 1.14359 + 4.26795i 0.0427083 + 0.159389i
\(718\) 0 0
\(719\) 0.205771 + 0.356406i 0.00767398 + 0.0132917i 0.869837 0.493339i \(-0.164224\pi\)
−0.862163 + 0.506631i \(0.830891\pi\)
\(720\) 0 0
\(721\) −16.1603 5.59808i −0.601839 0.208483i
\(722\) 0 0
\(723\) −6.96410 1.86603i −0.258998 0.0693982i
\(724\) 0 0
\(725\) −1.53590 + 0.411543i −0.0570418 + 0.0152843i
\(726\) 0 0
\(727\) 41.3205i 1.53249i −0.642547 0.766246i \(-0.722122\pi\)
0.642547 0.766246i \(-0.277878\pi\)
\(728\) 0 0
\(729\) 13.5885i 0.503276i
\(730\) 0 0
\(731\) 57.0788 15.2942i 2.11114 0.565677i
\(732\) 0 0
\(733\) 32.8923 + 8.81347i 1.21490 + 0.325533i 0.808685 0.588242i \(-0.200180\pi\)
0.406220 + 0.913775i \(0.366847\pi\)
\(734\) 0 0
\(735\) −0.464102 + 3.21539i −0.0171186 + 0.118601i
\(736\) 0 0
\(737\) 7.62436 + 13.2058i 0.280847 + 0.486441i
\(738\) 0 0
\(739\) 10.3109 + 38.4808i 0.379292 + 1.41554i 0.846971 + 0.531639i \(0.178424\pi\)
−0.467679 + 0.883899i \(0.654910\pi\)
\(740\) 0 0
\(741\) 5.73205 + 5.73205i 0.210572 + 0.210572i
\(742\) 0 0
\(743\) 11.0718i 0.406185i −0.979160 0.203092i \(-0.934901\pi\)
0.979160 0.203092i \(-0.0650992\pi\)
\(744\) 0 0
\(745\) −6.10770 3.52628i −0.223769 0.129193i
\(746\) 0 0
\(747\) −1.53590 + 5.73205i −0.0561956 + 0.209725i
\(748\) 0 0
\(749\) 7.96410 3.86603i 0.291002 0.141261i
\(750\) 0 0
\(751\) 6.52628 + 11.3038i 0.238147 + 0.412483i 0.960183 0.279373i \(-0.0901266\pi\)
−0.722035 + 0.691856i \(0.756793\pi\)
\(752\) 0 0
\(753\) −6.43782 + 11.1506i −0.234607 + 0.406352i
\(754\) 0 0
\(755\) 7.22243 7.22243i 0.262851 0.262851i
\(756\) 0 0
\(757\) −18.6603 18.6603i −0.678218 0.678218i 0.281378 0.959597i \(-0.409208\pi\)
−0.959597 + 0.281378i \(0.909208\pi\)
\(758\) 0 0
\(759\) −5.93782 3.42820i −0.215529 0.124436i
\(760\) 0 0
\(761\) −11.7679 + 6.79423i −0.426588 + 0.246291i −0.697892 0.716203i \(-0.745878\pi\)
0.271304 + 0.962494i \(0.412545\pi\)
\(762\) 0 0
\(763\) −3.27757 + 4.83975i −0.118656 + 0.175211i
\(764\) 0 0
\(765\) 15.2942 + 4.09808i 0.552964 + 0.148166i
\(766\) 0 0
\(767\) −30.9545 + 53.6147i −1.11770 + 1.93592i
\(768\) 0 0
\(769\) 9.85641 0.355431 0.177716 0.984082i \(-0.443129\pi\)
0.177716 + 0.984082i \(0.443129\pi\)
\(770\) 0 0
\(771\) −7.09808 + 7.09808i −0.255631 + 0.255631i
\(772\) 0 0
\(773\) 10.9641 2.93782i 0.394351 0.105666i −0.0561936 0.998420i \(-0.517896\pi\)
0.450545 + 0.892754i \(0.351230\pi\)
\(774\) 0 0
\(775\) 13.5622 7.83013i 0.487168 0.281266i
\(776\) 0 0
\(777\) 1.05256 + 1.21539i 0.0377603 + 0.0436019i
\(778\) 0 0
\(779\) −3.78461 + 14.1244i −0.135598 + 0.506058i
\(780\) 0 0
\(781\) −0.411543 1.53590i −0.0147262 0.0549588i
\(782\) 0 0
\(783\) −1.12436 −0.0401812
\(784\) 0 0
\(785\) 16.9474 0.604880
\(786\) 0 0
\(787\) −3.52628 13.1603i −0.125698 0.469112i 0.874165 0.485628i \(-0.161409\pi\)
−0.999864 + 0.0165161i \(0.994743\pi\)
\(788\) 0 0
\(789\) −0.617314 + 2.30385i −0.0219770 + 0.0820191i
\(790\) 0 0
\(791\) −2.53590 2.92820i −0.0901662 0.104115i
\(792\) 0 0
\(793\) −32.9545 + 19.0263i −1.17025 + 0.675643i
\(794\) 0 0
\(795\) 1.83975 0.492958i 0.0652491 0.0174834i
\(796\) 0 0
\(797\) −13.3397 + 13.3397i −0.472518 + 0.472518i −0.902729 0.430211i \(-0.858439\pi\)
0.430211 + 0.902729i \(0.358439\pi\)
\(798\) 0 0
\(799\) −27.5885 −0.976009
\(800\) 0 0
\(801\) 7.09808 12.2942i 0.250798 0.434395i
\(802\) 0 0
\(803\) 20.6244 + 5.52628i 0.727818 + 0.195018i
\(804\) 0 0
\(805\) 5.93782 8.76795i 0.209281 0.309030i
\(806\) 0 0
\(807\) 4.54552 2.62436i 0.160010 0.0923817i
\(808\) 0 0
\(809\) 29.4282 + 16.9904i 1.03464 + 0.597350i 0.918311 0.395861i \(-0.129554\pi\)
0.116330 + 0.993211i \(0.462887\pi\)
\(810\) 0 0
\(811\) −24.3205 24.3205i −0.854009 0.854009i 0.136616 0.990624i \(-0.456377\pi\)
−0.990624 + 0.136616i \(0.956377\pi\)
\(812\) 0 0
\(813\) −4.43782 + 4.43782i −0.155641 + 0.155641i
\(814\) 0 0
\(815\) 5.59808 9.69615i 0.196092 0.339641i
\(816\) 0 0
\(817\) −13.5622 23.4904i −0.474481 0.821824i
\(818\) 0 0
\(819\) 34.3205 16.6603i 1.19926 0.582156i
\(820\) 0 0
\(821\) −0.160254 + 0.598076i −0.00559290 + 0.0208730i −0.968666 0.248367i \(-0.920106\pi\)
0.963073 + 0.269240i \(0.0867726\pi\)
\(822\) 0 0
\(823\) −14.9378 8.62436i −0.520700 0.300626i 0.216521 0.976278i \(-0.430529\pi\)
−0.737221 + 0.675652i \(0.763862\pi\)
\(824\) 0 0
\(825\) 6.44486i 0.224381i
\(826\) 0 0
\(827\) 3.78461 + 3.78461i 0.131604 + 0.131604i 0.769840 0.638237i \(-0.220336\pi\)
−0.638237 + 0.769840i \(0.720336\pi\)
\(828\) 0 0
\(829\) 0.820508 + 3.06218i 0.0284974 + 0.106354i 0.978710 0.205250i \(-0.0658006\pi\)
−0.950212 + 0.311603i \(0.899134\pi\)
\(830\) 0 0
\(831\) 1.20577 + 2.08846i 0.0418277 + 0.0724478i
\(832\) 0 0
\(833\) −35.5526 27.9904i −1.23182 0.969809i
\(834\) 0 0
\(835\) −18.9282 5.07180i −0.655037 0.175517i
\(836\) 0 0
\(837\) 10.6962 2.86603i 0.369713 0.0990643i
\(838\) 0 0
\(839\) 17.7128i 0.611514i 0.952110 + 0.305757i \(0.0989096\pi\)
−0.952110 + 0.305757i \(0.901090\pi\)
\(840\) 0 0
\(841\) 28.8564i 0.995048i
\(842\) 0 0
\(843\) −0.464102 + 0.124356i −0.0159845 + 0.00428304i
\(844\) 0 0
\(845\) −12.8660 3.44744i −0.442605 0.118596i
\(846\) 0 0
\(847\) −5.49038 1.90192i −0.188652 0.0653509i
\(848\) 0 0
\(849\) −3.89230 6.74167i −0.133584 0.231374i
\(850\) 0 0
\(851\) −1.35641 5.06218i −0.0464970 0.173529i
\(852\) 0 0
\(853\) −11.8756 11.8756i −0.406614 0.406614i 0.473942 0.880556i \(-0.342831\pi\)
−0.880556 + 0.473942i \(0.842831\pi\)
\(854\) 0 0
\(855\) 7.26795i 0.248559i
\(856\) 0 0
\(857\) −11.8923 6.86603i −0.406233 0.234539i 0.282937 0.959139i \(-0.408691\pi\)
−0.689170 + 0.724600i \(0.742025\pi\)
\(858\) 0 0
\(859\) 3.65064 13.6244i 0.124558 0.464857i −0.875265 0.483643i \(-0.839313\pi\)
0.999824 + 0.0187858i \(0.00598005\pi\)
\(860\) 0 0
\(861\) −5.58846 3.78461i −0.190454 0.128979i
\(862\) 0 0
\(863\) −16.3301 28.2846i −0.555884 0.962819i −0.997834 0.0657797i \(-0.979047\pi\)
0.441950 0.897040i \(-0.354287\pi\)
\(864\) 0 0
\(865\) −1.03590 + 1.79423i −0.0352216 + 0.0610056i
\(866\) 0 0
\(867\) 9.07180 9.07180i 0.308094 0.308094i
\(868\) 0 0
\(869\) 34.9545 + 34.9545i 1.18575 + 1.18575i
\(870\) 0 0
\(871\) −23.4904 13.5622i −0.795941 0.459537i
\(872\) 0 0
\(873\) −6.92820 + 4.00000i −0.234484 + 0.135379i
\(874\) 0 0
\(875\) 21.7583 + 1.56218i 0.735566 + 0.0528112i
\(876\) 0 0
\(877\) −30.5526 8.18653i −1.03169 0.276440i −0.297022 0.954871i \(-0.595994\pi\)
−0.734664 + 0.678431i \(0.762660\pi\)
\(878\) 0 0
\(879\) 2.90192 5.02628i 0.0978795 0.169532i
\(880\) 0 0
\(881\) 50.0000 1.68454 0.842271 0.539054i \(-0.181218\pi\)
0.842271 + 0.539054i \(0.181218\pi\)
\(882\) 0 0
\(883\) 5.00000 5.00000i 0.168263 0.168263i −0.617952 0.786216i \(-0.712037\pi\)
0.786216 + 0.617952i \(0.212037\pi\)
\(884\) 0 0
\(885\) −5.25833 + 1.40897i −0.176757 + 0.0473619i
\(886\) 0 0
\(887\) −39.7750 + 22.9641i −1.33551 + 0.771059i −0.986139 0.165924i \(-0.946939\pi\)
−0.349375 + 0.936983i \(0.613606\pi\)
\(888\) 0 0
\(889\) −16.3923 18.9282i −0.549780 0.634832i
\(890\) 0 0
\(891\) −5.11474 + 19.0885i −0.171350 + 0.639487i
\(892\) 0 0
\(893\) 3.27757 + 12.2321i 0.109680 + 0.409330i
\(894\) 0 0
\(895\) 8.32051 0.278124
\(896\) 0 0
\(897\) 12.1962 0.407218
\(898\) 0 0
\(899\) 0.366025 + 1.36603i 0.0122076 + 0.0455595i
\(900\) 0 0
\(901\) −6.86603 + 25.6244i −0.228740 + 0.853671i
\(902\) 0 0
\(903\) 12.2942 2.36603i 0.409126 0.0787364i
\(904\) 0 0
\(905\) 14.7058 8.49038i 0.488836 0.282230i
\(906\) 0 0
\(907\) 26.7224 7.16025i 0.887304 0.237752i 0.213748 0.976889i \(-0.431433\pi\)
0.673556 + 0.739136i \(0.264766\pi\)
\(908\) 0 0
\(909\) −37.7846 + 37.7846i −1.25324 + 1.25324i
\(910\) 0 0
\(911\) −7.32051 −0.242539 −0.121270 0.992620i \(-0.538697\pi\)
−0.121270 + 0.992620i \(0.538697\pi\)
\(912\) 0 0
\(913\) 3.22243 5.58142i 0.106647 0.184718i
\(914\) 0 0
\(915\) −3.23205 0.866025i −0.106848 0.0286299i
\(916\) 0 0
\(917\) −9.08846 18.7224i −0.300127 0.618269i
\(918\) 0 0
\(919\) −15.8660 + 9.16025i −0.523372 + 0.302169i −0.738313 0.674458i \(-0.764377\pi\)
0.214941 + 0.976627i \(0.431044\pi\)
\(920\) 0 0
\(921\) −5.70577 3.29423i −0.188012 0.108549i
\(922\) 0 0
\(923\) 2.00000 + 2.00000i 0.0658308 + 0.0658308i
\(924\) 0 0
\(925\) 3.48334 3.48334i 0.114531 0.114531i
\(926\) 0 0
\(927\) −8.83013 + 15.2942i −0.290019 + 0.502328i
\(928\) 0 0
\(929\) −25.0167 43.3301i −0.820770 1.42162i −0.905110 0.425178i \(-0.860211\pi\)
0.0843396 0.996437i \(-0.473122\pi\)
\(930\) 0 0
\(931\) −8.18653 + 19.0885i −0.268303 + 0.625599i
\(932\) 0 0
\(933\) −0.866025 + 3.23205i −0.0283524 + 0.105813i
\(934\) 0 0
\(935\) −14.8923 8.59808i −0.487030 0.281187i
\(936\) 0 0
\(937\) 29.0718i 0.949734i 0.880058 + 0.474867i \(0.157504\pi\)
−0.880058 + 0.474867i \(0.842496\pi\)
\(938\) 0 0
\(939\) 7.90192 + 7.90192i 0.257870 + 0.257870i
\(940\) 0 0
\(941\) 6.30385 + 23.5263i 0.205500 + 0.766935i 0.989297 + 0.145918i \(0.0466135\pi\)
−0.783797 + 0.621017i \(0.786720\pi\)
\(942\) 0 0
\(943\) 11.0000 + 19.0526i 0.358209 + 0.620437i
\(944\) 0 0
\(945\) 6.65064 + 2.30385i 0.216345 + 0.0749442i
\(946\) 0 0
\(947\) −5.40192 1.44744i −0.175539 0.0470355i 0.169979 0.985448i \(-0.445630\pi\)
−0.345518 + 0.938412i \(0.612297\pi\)
\(948\) 0 0
\(949\) −36.6865 + 9.83013i −1.19090 + 0.319099i
\(950\) 0 0
\(951\) 7.58846i 0.246073i
\(952\) 0 0
\(953\) 16.5359i 0.535650i −0.963468 0.267825i \(-0.913695\pi\)
0.963468 0.267825i \(-0.0863050\pi\)
\(954\) 0 0
\(955\) 7.50000 2.00962i 0.242694 0.0650297i
\(956\) 0 0
\(957\) 0.562178 + 0.150635i 0.0181726 + 0.00486934i
\(958\) 0 0
\(959\) −8.79423 45.6962i −0.283980 1.47561i
\(960\) 0 0
\(961\) 8.53590 + 14.7846i 0.275352 + 0.476923i
\(962\) 0 0
\(963\) −2.36603 8.83013i −0.0762441 0.284547i
\(964\) 0 0
\(965\) −14.5814 14.5814i −0.469392 0.469392i
\(966\) 0 0
\(967\) 60.2487i 1.93747i −0.248102 0.968734i \(-0.579807\pi\)
0.248102 0.968734i \(-0.420193\pi\)
\(968\) 0 0
\(969\) −8.59808 4.96410i −0.276210 0.159470i
\(970\) 0 0
\(971\) −14.0429 + 52.4090i −0.450659 + 1.68188i 0.249885 + 0.968275i \(0.419607\pi\)
−0.700545 + 0.713608i \(0.747060\pi\)
\(972\) 0 0
\(973\) −3.19615 + 44.5167i −0.102464 + 1.42714i
\(974\) 0 0
\(975\) 5.73205 + 9.92820i 0.183573 + 0.317957i
\(976\) 0 0
\(977\) 8.57180 14.8468i 0.274236 0.474991i −0.695706 0.718327i \(-0.744908\pi\)
0.969942 + 0.243336i \(0.0782417\pi\)
\(978\) 0 0
\(979\) −10.9019 + 10.9019i −0.348427 + 0.348427i
\(980\) 0 0
\(981\) 4.26795 + 4.26795i 0.136265 + 0.136265i
\(982\) 0 0
\(983\) 17.1340 + 9.89230i 0.546489 + 0.315516i 0.747705 0.664031i \(-0.231156\pi\)
−0.201216 + 0.979547i \(0.564489\pi\)
\(984\) 0 0
\(985\) −18.2942 + 10.5622i −0.582903 + 0.336539i
\(986\) 0 0
\(987\) −5.83013 0.418584i −0.185575 0.0133237i
\(988\) 0 0
\(989\) −39.4186 10.5622i −1.25344 0.335858i
\(990\) 0 0
\(991\) −4.20577 + 7.28461i −0.133601 + 0.231403i −0.925062 0.379816i \(-0.875987\pi\)
0.791461 + 0.611219i \(0.209321\pi\)
\(992\) 0 0
\(993\) −10.5167 −0.333736
\(994\) 0 0
\(995\) −7.56218 + 7.56218i −0.239737 + 0.239737i
\(996\) 0 0
\(997\) −1.50000 + 0.401924i −0.0475055 + 0.0127291i −0.282494 0.959269i \(-0.591162\pi\)
0.234988 + 0.971998i \(0.424495\pi\)
\(998\) 0 0
\(999\) 3.01666 1.74167i 0.0954429 0.0551040i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.2.ba.b.305.1 4
4.3 odd 2 112.2.w.a.53.1 4
7.2 even 3 448.2.ba.a.177.1 4
8.3 odd 2 896.2.ba.d.865.1 4
8.5 even 2 896.2.ba.a.865.1 4
16.3 odd 4 112.2.w.b.109.1 yes 4
16.5 even 4 896.2.ba.c.417.1 4
16.11 odd 4 896.2.ba.b.417.1 4
16.13 even 4 448.2.ba.a.81.1 4
28.3 even 6 784.2.m.d.197.2 4
28.11 odd 6 784.2.m.e.197.2 4
28.19 even 6 784.2.x.h.373.1 4
28.23 odd 6 112.2.w.b.37.1 yes 4
28.27 even 2 784.2.x.a.165.1 4
56.37 even 6 896.2.ba.c.737.1 4
56.51 odd 6 896.2.ba.b.737.1 4
112.3 even 12 784.2.m.d.589.2 4
112.19 even 12 784.2.x.a.765.1 4
112.37 even 12 896.2.ba.a.289.1 4
112.51 odd 12 112.2.w.a.93.1 yes 4
112.67 odd 12 784.2.m.e.589.2 4
112.83 even 4 784.2.x.h.557.1 4
112.93 even 12 inner 448.2.ba.b.401.1 4
112.107 odd 12 896.2.ba.d.289.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.w.a.53.1 4 4.3 odd 2
112.2.w.a.93.1 yes 4 112.51 odd 12
112.2.w.b.37.1 yes 4 28.23 odd 6
112.2.w.b.109.1 yes 4 16.3 odd 4
448.2.ba.a.81.1 4 16.13 even 4
448.2.ba.a.177.1 4 7.2 even 3
448.2.ba.b.305.1 4 1.1 even 1 trivial
448.2.ba.b.401.1 4 112.93 even 12 inner
784.2.m.d.197.2 4 28.3 even 6
784.2.m.d.589.2 4 112.3 even 12
784.2.m.e.197.2 4 28.11 odd 6
784.2.m.e.589.2 4 112.67 odd 12
784.2.x.a.165.1 4 28.27 even 2
784.2.x.a.765.1 4 112.19 even 12
784.2.x.h.373.1 4 28.19 even 6
784.2.x.h.557.1 4 112.83 even 4
896.2.ba.a.289.1 4 112.37 even 12
896.2.ba.a.865.1 4 8.5 even 2
896.2.ba.b.417.1 4 16.11 odd 4
896.2.ba.b.737.1 4 56.51 odd 6
896.2.ba.c.417.1 4 16.5 even 4
896.2.ba.c.737.1 4 56.37 even 6
896.2.ba.d.289.1 4 112.107 odd 12
896.2.ba.d.865.1 4 8.3 odd 2