Properties

Label 448.2.ba.b.177.1
Level $448$
Weight $2$
Character 448.177
Analytic conductor $3.577$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,2,Mod(81,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 9, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.81"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 448.ba (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.57729801055\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 177.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 448.177
Dual form 448.2.ba.b.81.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.86603 + 0.500000i) q^{3} +(-3.23205 + 0.866025i) q^{5} +(-1.73205 + 2.00000i) q^{7} +(0.633975 + 0.366025i) q^{9} +(-1.13397 + 4.23205i) q^{11} +(0.267949 - 0.267949i) q^{13} -6.46410 q^{15} +(0.232051 + 0.401924i) q^{17} +(1.13397 + 4.23205i) q^{19} +(-4.23205 + 2.86603i) q^{21} +(2.13397 + 1.23205i) q^{23} +(5.36603 - 3.09808i) q^{25} +(-3.09808 - 3.09808i) q^{27} +(-3.73205 + 3.73205i) q^{29} +(0.133975 + 0.232051i) q^{31} +(-4.23205 + 7.33013i) q^{33} +(3.86603 - 7.96410i) q^{35} +(10.6962 - 2.86603i) q^{37} +(0.633975 - 0.366025i) q^{39} -8.92820i q^{41} +(0.464102 + 0.464102i) q^{43} +(-2.36603 - 0.633975i) q^{45} +(3.86603 - 6.69615i) q^{47} +(-1.00000 - 6.92820i) q^{49} +(0.232051 + 0.866025i) q^{51} +(-2.96410 + 11.0622i) q^{53} -14.6603i q^{55} +8.46410i q^{57} +(-2.66987 + 9.96410i) q^{59} +(-0.0358984 - 0.133975i) q^{61} +(-1.83013 + 0.633975i) q^{63} +(-0.633975 + 1.09808i) q^{65} +(7.33013 + 1.96410i) q^{67} +(3.36603 + 3.36603i) q^{69} +7.46410i q^{71} +(-2.76795 + 1.59808i) q^{73} +(11.5622 - 3.09808i) q^{75} +(-6.50000 - 9.59808i) q^{77} +(0.330127 - 0.571797i) q^{79} +(-5.33013 - 9.23205i) q^{81} +(-8.46410 + 8.46410i) q^{83} +(-1.09808 - 1.09808i) q^{85} +(-8.83013 + 5.09808i) q^{87} +(4.50000 + 2.59808i) q^{89} +(0.0717968 + 1.00000i) q^{91} +(0.133975 + 0.500000i) q^{93} +(-7.33013 - 12.6962i) q^{95} +10.9282 q^{97} +(-2.26795 + 2.26795i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 6 q^{5} + 6 q^{9} - 8 q^{11} + 8 q^{13} - 12 q^{15} - 6 q^{17} + 8 q^{19} - 10 q^{21} + 12 q^{23} + 18 q^{25} - 2 q^{27} - 8 q^{29} + 4 q^{31} - 10 q^{33} + 12 q^{35} + 22 q^{37} + 6 q^{39}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.86603 + 0.500000i 1.07735 + 0.288675i 0.753510 0.657437i \(-0.228359\pi\)
0.323840 + 0.946112i \(0.395026\pi\)
\(4\) 0 0
\(5\) −3.23205 + 0.866025i −1.44542 + 0.387298i −0.894427 0.447214i \(-0.852416\pi\)
−0.550990 + 0.834512i \(0.685750\pi\)
\(6\) 0 0
\(7\) −1.73205 + 2.00000i −0.654654 + 0.755929i
\(8\) 0 0
\(9\) 0.633975 + 0.366025i 0.211325 + 0.122008i
\(10\) 0 0
\(11\) −1.13397 + 4.23205i −0.341906 + 1.27601i 0.554279 + 0.832331i \(0.312994\pi\)
−0.896185 + 0.443680i \(0.853673\pi\)
\(12\) 0 0
\(13\) 0.267949 0.267949i 0.0743157 0.0743157i −0.668972 0.743288i \(-0.733265\pi\)
0.743288 + 0.668972i \(0.233265\pi\)
\(14\) 0 0
\(15\) −6.46410 −1.66902
\(16\) 0 0
\(17\) 0.232051 + 0.401924i 0.0562806 + 0.0974808i 0.892793 0.450467i \(-0.148743\pi\)
−0.836512 + 0.547948i \(0.815409\pi\)
\(18\) 0 0
\(19\) 1.13397 + 4.23205i 0.260152 + 0.970899i 0.965152 + 0.261692i \(0.0842803\pi\)
−0.705000 + 0.709207i \(0.749053\pi\)
\(20\) 0 0
\(21\) −4.23205 + 2.86603i −0.923509 + 0.625418i
\(22\) 0 0
\(23\) 2.13397 + 1.23205i 0.444964 + 0.256900i 0.705701 0.708510i \(-0.250632\pi\)
−0.260737 + 0.965410i \(0.583965\pi\)
\(24\) 0 0
\(25\) 5.36603 3.09808i 1.07321 0.619615i
\(26\) 0 0
\(27\) −3.09808 3.09808i −0.596225 0.596225i
\(28\) 0 0
\(29\) −3.73205 + 3.73205i −0.693024 + 0.693024i −0.962896 0.269872i \(-0.913019\pi\)
0.269872 + 0.962896i \(0.413019\pi\)
\(30\) 0 0
\(31\) 0.133975 + 0.232051i 0.0240625 + 0.0416776i 0.877806 0.479016i \(-0.159007\pi\)
−0.853743 + 0.520694i \(0.825673\pi\)
\(32\) 0 0
\(33\) −4.23205 + 7.33013i −0.736705 + 1.27601i
\(34\) 0 0
\(35\) 3.86603 7.96410i 0.653478 1.34618i
\(36\) 0 0
\(37\) 10.6962 2.86603i 1.75844 0.471172i 0.772043 0.635571i \(-0.219235\pi\)
0.986394 + 0.164399i \(0.0525685\pi\)
\(38\) 0 0
\(39\) 0.633975 0.366025i 0.101517 0.0586110i
\(40\) 0 0
\(41\) 8.92820i 1.39435i −0.716900 0.697176i \(-0.754440\pi\)
0.716900 0.697176i \(-0.245560\pi\)
\(42\) 0 0
\(43\) 0.464102 + 0.464102i 0.0707748 + 0.0707748i 0.741608 0.670833i \(-0.234063\pi\)
−0.670833 + 0.741608i \(0.734063\pi\)
\(44\) 0 0
\(45\) −2.36603 0.633975i −0.352706 0.0945074i
\(46\) 0 0
\(47\) 3.86603 6.69615i 0.563918 0.976734i −0.433232 0.901283i \(-0.642627\pi\)
0.997149 0.0754516i \(-0.0240398\pi\)
\(48\) 0 0
\(49\) −1.00000 6.92820i −0.142857 0.989743i
\(50\) 0 0
\(51\) 0.232051 + 0.866025i 0.0324936 + 0.121268i
\(52\) 0 0
\(53\) −2.96410 + 11.0622i −0.407151 + 1.51951i 0.392904 + 0.919580i \(0.371471\pi\)
−0.800054 + 0.599927i \(0.795196\pi\)
\(54\) 0 0
\(55\) 14.6603i 1.97679i
\(56\) 0 0
\(57\) 8.46410i 1.12110i
\(58\) 0 0
\(59\) −2.66987 + 9.96410i −0.347588 + 1.29722i 0.541972 + 0.840397i \(0.317678\pi\)
−0.889560 + 0.456819i \(0.848989\pi\)
\(60\) 0 0
\(61\) −0.0358984 0.133975i −0.00459632 0.0171537i 0.963590 0.267386i \(-0.0861598\pi\)
−0.968186 + 0.250232i \(0.919493\pi\)
\(62\) 0 0
\(63\) −1.83013 + 0.633975i −0.230574 + 0.0798733i
\(64\) 0 0
\(65\) −0.633975 + 1.09808i −0.0786349 + 0.136200i
\(66\) 0 0
\(67\) 7.33013 + 1.96410i 0.895518 + 0.239953i 0.677090 0.735900i \(-0.263241\pi\)
0.218427 + 0.975853i \(0.429907\pi\)
\(68\) 0 0
\(69\) 3.36603 + 3.36603i 0.405222 + 0.405222i
\(70\) 0 0
\(71\) 7.46410i 0.885826i 0.896565 + 0.442913i \(0.146055\pi\)
−0.896565 + 0.442913i \(0.853945\pi\)
\(72\) 0 0
\(73\) −2.76795 + 1.59808i −0.323964 + 0.187041i −0.653158 0.757222i \(-0.726556\pi\)
0.329194 + 0.944262i \(0.393223\pi\)
\(74\) 0 0
\(75\) 11.5622 3.09808i 1.33509 0.357735i
\(76\) 0 0
\(77\) −6.50000 9.59808i −0.740744 1.09380i
\(78\) 0 0
\(79\) 0.330127 0.571797i 0.0371422 0.0643322i −0.846857 0.531821i \(-0.821508\pi\)
0.883999 + 0.467489i \(0.154841\pi\)
\(80\) 0 0
\(81\) −5.33013 9.23205i −0.592236 1.02578i
\(82\) 0 0
\(83\) −8.46410 + 8.46410i −0.929056 + 0.929056i −0.997645 0.0685891i \(-0.978150\pi\)
0.0685891 + 0.997645i \(0.478150\pi\)
\(84\) 0 0
\(85\) −1.09808 1.09808i −0.119103 0.119103i
\(86\) 0 0
\(87\) −8.83013 + 5.09808i −0.946689 + 0.546571i
\(88\) 0 0
\(89\) 4.50000 + 2.59808i 0.476999 + 0.275396i 0.719165 0.694839i \(-0.244525\pi\)
−0.242166 + 0.970235i \(0.577858\pi\)
\(90\) 0 0
\(91\) 0.0717968 + 1.00000i 0.00752635 + 0.104828i
\(92\) 0 0
\(93\) 0.133975 + 0.500000i 0.0138925 + 0.0518476i
\(94\) 0 0
\(95\) −7.33013 12.6962i −0.752055 1.30260i
\(96\) 0 0
\(97\) 10.9282 1.10959 0.554795 0.831987i \(-0.312797\pi\)
0.554795 + 0.831987i \(0.312797\pi\)
\(98\) 0 0
\(99\) −2.26795 + 2.26795i −0.227937 + 0.227937i
\(100\) 0 0
\(101\) 1.89230 7.06218i 0.188291 0.702713i −0.805611 0.592445i \(-0.798163\pi\)
0.993902 0.110268i \(-0.0351708\pi\)
\(102\) 0 0
\(103\) −0.401924 0.232051i −0.0396027 0.0228646i 0.480068 0.877231i \(-0.340612\pi\)
−0.519671 + 0.854367i \(0.673945\pi\)
\(104\) 0 0
\(105\) 11.1962 12.9282i 1.09263 1.26166i
\(106\) 0 0
\(107\) −0.866025 + 0.232051i −0.0837218 + 0.0224332i −0.300437 0.953802i \(-0.597132\pi\)
0.216715 + 0.976235i \(0.430466\pi\)
\(108\) 0 0
\(109\) 14.4282 + 3.86603i 1.38197 + 0.370298i 0.871837 0.489797i \(-0.162929\pi\)
0.510134 + 0.860095i \(0.329596\pi\)
\(110\) 0 0
\(111\) 21.3923 2.03047
\(112\) 0 0
\(113\) 5.46410 0.514019 0.257010 0.966409i \(-0.417263\pi\)
0.257010 + 0.966409i \(0.417263\pi\)
\(114\) 0 0
\(115\) −7.96410 2.13397i −0.742656 0.198994i
\(116\) 0 0
\(117\) 0.267949 0.0717968i 0.0247719 0.00663761i
\(118\) 0 0
\(119\) −1.20577 0.232051i −0.110533 0.0212721i
\(120\) 0 0
\(121\) −7.09808 4.09808i −0.645280 0.372552i
\(122\) 0 0
\(123\) 4.46410 16.6603i 0.402514 1.50220i
\(124\) 0 0
\(125\) −2.83013 + 2.83013i −0.253134 + 0.253134i
\(126\) 0 0
\(127\) −2.53590 −0.225025 −0.112512 0.993650i \(-0.535890\pi\)
−0.112512 + 0.993650i \(0.535890\pi\)
\(128\) 0 0
\(129\) 0.633975 + 1.09808i 0.0558184 + 0.0966802i
\(130\) 0 0
\(131\) −2.40192 8.96410i −0.209857 0.783197i −0.987914 0.155003i \(-0.950461\pi\)
0.778057 0.628194i \(-0.216206\pi\)
\(132\) 0 0
\(133\) −10.4282 5.06218i −0.904240 0.438946i
\(134\) 0 0
\(135\) 12.6962 + 7.33013i 1.09271 + 0.630877i
\(136\) 0 0
\(137\) −11.7679 + 6.79423i −1.00540 + 0.580470i −0.909843 0.414953i \(-0.863798\pi\)
−0.0955611 + 0.995424i \(0.530465\pi\)
\(138\) 0 0
\(139\) −1.92820 1.92820i −0.163548 0.163548i 0.620588 0.784136i \(-0.286894\pi\)
−0.784136 + 0.620588i \(0.786894\pi\)
\(140\) 0 0
\(141\) 10.5622 10.5622i 0.889496 0.889496i
\(142\) 0 0
\(143\) 0.830127 + 1.43782i 0.0694187 + 0.120237i
\(144\) 0 0
\(145\) 8.83013 15.2942i 0.733302 1.27012i
\(146\) 0 0
\(147\) 1.59808 13.4282i 0.131807 1.10754i
\(148\) 0 0
\(149\) 8.96410 2.40192i 0.734368 0.196773i 0.127794 0.991801i \(-0.459210\pi\)
0.606573 + 0.795027i \(0.292544\pi\)
\(150\) 0 0
\(151\) 8.13397 4.69615i 0.661933 0.382167i −0.131080 0.991372i \(-0.541844\pi\)
0.793013 + 0.609204i \(0.208511\pi\)
\(152\) 0 0
\(153\) 0.339746i 0.0274668i
\(154\) 0 0
\(155\) −0.633975 0.633975i −0.0509221 0.0509221i
\(156\) 0 0
\(157\) −15.8923 4.25833i −1.26834 0.339852i −0.438948 0.898513i \(-0.644649\pi\)
−0.829396 + 0.558661i \(0.811315\pi\)
\(158\) 0 0
\(159\) −11.0622 + 19.1603i −0.877288 + 1.51951i
\(160\) 0 0
\(161\) −6.16025 + 2.13397i −0.485496 + 0.168181i
\(162\) 0 0
\(163\) −0.0621778 0.232051i −0.00487014 0.0181756i 0.963448 0.267895i \(-0.0863282\pi\)
−0.968318 + 0.249720i \(0.919661\pi\)
\(164\) 0 0
\(165\) 7.33013 27.3564i 0.570650 2.12969i
\(166\) 0 0
\(167\) 5.85641i 0.453182i 0.973990 + 0.226591i \(0.0727581\pi\)
−0.973990 + 0.226591i \(0.927242\pi\)
\(168\) 0 0
\(169\) 12.8564i 0.988954i
\(170\) 0 0
\(171\) −0.830127 + 3.09808i −0.0634814 + 0.236916i
\(172\) 0 0
\(173\) 1.23205 + 4.59808i 0.0936711 + 0.349585i 0.996815 0.0797535i \(-0.0254133\pi\)
−0.903144 + 0.429339i \(0.858747\pi\)
\(174\) 0 0
\(175\) −3.09808 + 16.0981i −0.234193 + 1.21690i
\(176\) 0 0
\(177\) −9.96410 + 17.2583i −0.748948 + 1.29722i
\(178\) 0 0
\(179\) 7.59808 + 2.03590i 0.567907 + 0.152170i 0.531336 0.847161i \(-0.321690\pi\)
0.0365704 + 0.999331i \(0.488357\pi\)
\(180\) 0 0
\(181\) −7.39230 7.39230i −0.549466 0.549466i 0.376821 0.926286i \(-0.377017\pi\)
−0.926286 + 0.376821i \(0.877017\pi\)
\(182\) 0 0
\(183\) 0.267949i 0.0198074i
\(184\) 0 0
\(185\) −32.0885 + 18.5263i −2.35919 + 1.36208i
\(186\) 0 0
\(187\) −1.96410 + 0.526279i −0.143629 + 0.0384854i
\(188\) 0 0
\(189\) 11.5622 0.830127i 0.841025 0.0603829i
\(190\) 0 0
\(191\) −4.33013 + 7.50000i −0.313317 + 0.542681i −0.979078 0.203484i \(-0.934774\pi\)
0.665761 + 0.746165i \(0.268107\pi\)
\(192\) 0 0
\(193\) 11.5000 + 19.9186i 0.827788 + 1.43377i 0.899770 + 0.436365i \(0.143734\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) 0 0
\(195\) −1.73205 + 1.73205i −0.124035 + 0.124035i
\(196\) 0 0
\(197\) 0.660254 + 0.660254i 0.0470412 + 0.0470412i 0.730236 0.683195i \(-0.239410\pi\)
−0.683195 + 0.730236i \(0.739410\pi\)
\(198\) 0 0
\(199\) −1.66987 + 0.964102i −0.118374 + 0.0683434i −0.558018 0.829829i \(-0.688438\pi\)
0.439644 + 0.898172i \(0.355105\pi\)
\(200\) 0 0
\(201\) 12.6962 + 7.33013i 0.895518 + 0.517027i
\(202\) 0 0
\(203\) −1.00000 13.9282i −0.0701862 0.977568i
\(204\) 0 0
\(205\) 7.73205 + 28.8564i 0.540030 + 2.01542i
\(206\) 0 0
\(207\) 0.901924 + 1.56218i 0.0626880 + 0.108579i
\(208\) 0 0
\(209\) −19.1962 −1.32783
\(210\) 0 0
\(211\) 2.07180 2.07180i 0.142628 0.142628i −0.632187 0.774816i \(-0.717843\pi\)
0.774816 + 0.632187i \(0.217843\pi\)
\(212\) 0 0
\(213\) −3.73205 + 13.9282i −0.255716 + 0.954345i
\(214\) 0 0
\(215\) −1.90192 1.09808i −0.129710 0.0748882i
\(216\) 0 0
\(217\) −0.696152 0.133975i −0.0472579 0.00909479i
\(218\) 0 0
\(219\) −5.96410 + 1.59808i −0.403017 + 0.107988i
\(220\) 0 0
\(221\) 0.169873 + 0.0455173i 0.0114269 + 0.00306183i
\(222\) 0 0
\(223\) 17.8564 1.19575 0.597877 0.801588i \(-0.296011\pi\)
0.597877 + 0.801588i \(0.296011\pi\)
\(224\) 0 0
\(225\) 4.53590 0.302393
\(226\) 0 0
\(227\) −22.9904 6.16025i −1.52593 0.408870i −0.604238 0.796804i \(-0.706522\pi\)
−0.921687 + 0.387934i \(0.873189\pi\)
\(228\) 0 0
\(229\) −17.4282 + 4.66987i −1.15169 + 0.308594i −0.783641 0.621213i \(-0.786640\pi\)
−0.368047 + 0.929807i \(0.619973\pi\)
\(230\) 0 0
\(231\) −7.33013 21.1603i −0.482287 1.39224i
\(232\) 0 0
\(233\) 9.69615 + 5.59808i 0.635216 + 0.366742i 0.782769 0.622312i \(-0.213806\pi\)
−0.147553 + 0.989054i \(0.547140\pi\)
\(234\) 0 0
\(235\) −6.69615 + 24.9904i −0.436809 + 1.63019i
\(236\) 0 0
\(237\) 0.901924 0.901924i 0.0585862 0.0585862i
\(238\) 0 0
\(239\) 15.4641 1.00029 0.500145 0.865942i \(-0.333280\pi\)
0.500145 + 0.865942i \(0.333280\pi\)
\(240\) 0 0
\(241\) −0.0358984 0.0621778i −0.00231242 0.00400523i 0.864867 0.502001i \(-0.167403\pi\)
−0.867179 + 0.497996i \(0.834069\pi\)
\(242\) 0 0
\(243\) −1.92820 7.19615i −0.123694 0.461633i
\(244\) 0 0
\(245\) 9.23205 + 21.5263i 0.589814 + 1.37526i
\(246\) 0 0
\(247\) 1.43782 + 0.830127i 0.0914864 + 0.0528197i
\(248\) 0 0
\(249\) −20.0263 + 11.5622i −1.26911 + 0.732723i
\(250\) 0 0
\(251\) −13.5885 13.5885i −0.857696 0.857696i 0.133370 0.991066i \(-0.457420\pi\)
−0.991066 + 0.133370i \(0.957420\pi\)
\(252\) 0 0
\(253\) −7.63397 + 7.63397i −0.479944 + 0.479944i
\(254\) 0 0
\(255\) −1.50000 2.59808i −0.0939336 0.162698i
\(256\) 0 0
\(257\) −0.696152 + 1.20577i −0.0434248 + 0.0752140i −0.886921 0.461921i \(-0.847160\pi\)
0.843496 + 0.537135i \(0.180494\pi\)
\(258\) 0 0
\(259\) −12.7942 + 26.3564i −0.794995 + 1.63771i
\(260\) 0 0
\(261\) −3.73205 + 1.00000i −0.231008 + 0.0618984i
\(262\) 0 0
\(263\) −21.9904 + 12.6962i −1.35598 + 0.782878i −0.989080 0.147380i \(-0.952916\pi\)
−0.366905 + 0.930258i \(0.619583\pi\)
\(264\) 0 0
\(265\) 38.3205i 2.35401i
\(266\) 0 0
\(267\) 7.09808 + 7.09808i 0.434395 + 0.434395i
\(268\) 0 0
\(269\) 21.6244 + 5.79423i 1.31846 + 0.353280i 0.848401 0.529354i \(-0.177566\pi\)
0.470059 + 0.882635i \(0.344232\pi\)
\(270\) 0 0
\(271\) −6.06218 + 10.5000i −0.368251 + 0.637830i −0.989292 0.145948i \(-0.953377\pi\)
0.621041 + 0.783778i \(0.286710\pi\)
\(272\) 0 0
\(273\) −0.366025 + 1.90192i −0.0221529 + 0.115110i
\(274\) 0 0
\(275\) 7.02628 + 26.2224i 0.423701 + 1.58127i
\(276\) 0 0
\(277\) 4.50000 16.7942i 0.270379 1.00907i −0.688496 0.725240i \(-0.741729\pi\)
0.958875 0.283828i \(-0.0916044\pi\)
\(278\) 0 0
\(279\) 0.196152i 0.0117433i
\(280\) 0 0
\(281\) 12.9282i 0.771232i −0.922659 0.385616i \(-0.873989\pi\)
0.922659 0.385616i \(-0.126011\pi\)
\(282\) 0 0
\(283\) 4.52628 16.8923i 0.269059 1.00414i −0.690659 0.723180i \(-0.742680\pi\)
0.959719 0.280963i \(-0.0906538\pi\)
\(284\) 0 0
\(285\) −7.33013 27.3564i −0.434199 1.62045i
\(286\) 0 0
\(287\) 17.8564 + 15.4641i 1.05403 + 0.912817i
\(288\) 0 0
\(289\) 8.39230 14.5359i 0.493665 0.855053i
\(290\) 0 0
\(291\) 20.3923 + 5.46410i 1.19542 + 0.320311i
\(292\) 0 0
\(293\) 5.92820 + 5.92820i 0.346329 + 0.346329i 0.858740 0.512411i \(-0.171248\pi\)
−0.512411 + 0.858740i \(0.671248\pi\)
\(294\) 0 0
\(295\) 34.5167i 2.00964i
\(296\) 0 0
\(297\) 16.6244 9.59808i 0.964643 0.556937i
\(298\) 0 0
\(299\) 0.901924 0.241670i 0.0521596 0.0139761i
\(300\) 0 0
\(301\) −1.73205 + 0.124356i −0.0998337 + 0.00716774i
\(302\) 0 0
\(303\) 7.06218 12.2321i 0.405712 0.702713i
\(304\) 0 0
\(305\) 0.232051 + 0.401924i 0.0132872 + 0.0230141i
\(306\) 0 0
\(307\) −9.00000 + 9.00000i −0.513657 + 0.513657i −0.915645 0.401988i \(-0.868319\pi\)
0.401988 + 0.915645i \(0.368319\pi\)
\(308\) 0 0
\(309\) −0.633975 0.633975i −0.0360656 0.0360656i
\(310\) 0 0
\(311\) 0.401924 0.232051i 0.0227910 0.0131584i −0.488561 0.872530i \(-0.662478\pi\)
0.511352 + 0.859371i \(0.329145\pi\)
\(312\) 0 0
\(313\) 8.30385 + 4.79423i 0.469361 + 0.270986i 0.715972 0.698129i \(-0.245984\pi\)
−0.246611 + 0.969115i \(0.579317\pi\)
\(314\) 0 0
\(315\) 5.36603 3.63397i 0.302341 0.204751i
\(316\) 0 0
\(317\) −3.16025 11.7942i −0.177498 0.662430i −0.996113 0.0880875i \(-0.971924\pi\)
0.818615 0.574342i \(-0.194742\pi\)
\(318\) 0 0
\(319\) −11.5622 20.0263i −0.647358 1.12126i
\(320\) 0 0
\(321\) −1.73205 −0.0966736
\(322\) 0 0
\(323\) −1.43782 + 1.43782i −0.0800026 + 0.0800026i
\(324\) 0 0
\(325\) 0.607695 2.26795i 0.0337089 0.125803i
\(326\) 0 0
\(327\) 24.9904 + 14.4282i 1.38197 + 0.797881i
\(328\) 0 0
\(329\) 6.69615 + 19.3301i 0.369171 + 1.06570i
\(330\) 0 0
\(331\) 17.2583 4.62436i 0.948604 0.254178i 0.248834 0.968546i \(-0.419953\pi\)
0.699770 + 0.714369i \(0.253286\pi\)
\(332\) 0 0
\(333\) 7.83013 + 2.09808i 0.429088 + 0.114974i
\(334\) 0 0
\(335\) −25.3923 −1.38733
\(336\) 0 0
\(337\) −33.8564 −1.84428 −0.922138 0.386861i \(-0.873559\pi\)
−0.922138 + 0.386861i \(0.873559\pi\)
\(338\) 0 0
\(339\) 10.1962 + 2.73205i 0.553779 + 0.148385i
\(340\) 0 0
\(341\) −1.13397 + 0.303848i −0.0614082 + 0.0164543i
\(342\) 0 0
\(343\) 15.5885 + 10.0000i 0.841698 + 0.539949i
\(344\) 0 0
\(345\) −13.7942 7.96410i −0.742656 0.428773i
\(346\) 0 0
\(347\) −4.47372 + 16.6962i −0.240162 + 0.896296i 0.735592 + 0.677425i \(0.236904\pi\)
−0.975754 + 0.218871i \(0.929762\pi\)
\(348\) 0 0
\(349\) −18.1244 + 18.1244i −0.970175 + 0.970175i −0.999568 0.0293934i \(-0.990642\pi\)
0.0293934 + 0.999568i \(0.490642\pi\)
\(350\) 0 0
\(351\) −1.66025 −0.0886178
\(352\) 0 0
\(353\) −6.89230 11.9378i −0.366840 0.635386i 0.622229 0.782835i \(-0.286227\pi\)
−0.989070 + 0.147449i \(0.952894\pi\)
\(354\) 0 0
\(355\) −6.46410 24.1244i −0.343079 1.28039i
\(356\) 0 0
\(357\) −2.13397 1.03590i −0.112942 0.0548256i
\(358\) 0 0
\(359\) −2.13397 1.23205i −0.112627 0.0650252i 0.442628 0.896705i \(-0.354046\pi\)
−0.555255 + 0.831680i \(0.687379\pi\)
\(360\) 0 0
\(361\) −0.169873 + 0.0980762i −0.00894068 + 0.00516191i
\(362\) 0 0
\(363\) −11.1962 11.1962i −0.587646 0.587646i
\(364\) 0 0
\(365\) 7.56218 7.56218i 0.395822 0.395822i
\(366\) 0 0
\(367\) −9.06218 15.6962i −0.473042 0.819332i 0.526482 0.850186i \(-0.323511\pi\)
−0.999524 + 0.0308537i \(0.990177\pi\)
\(368\) 0 0
\(369\) 3.26795 5.66025i 0.170123 0.294661i
\(370\) 0 0
\(371\) −16.9904 25.0885i −0.882097 1.30253i
\(372\) 0 0
\(373\) 3.23205 0.866025i 0.167349 0.0448411i −0.174171 0.984715i \(-0.555725\pi\)
0.341521 + 0.939874i \(0.389058\pi\)
\(374\) 0 0
\(375\) −6.69615 + 3.86603i −0.345788 + 0.199641i
\(376\) 0 0
\(377\) 2.00000i 0.103005i
\(378\) 0 0
\(379\) 24.1244 + 24.1244i 1.23918 + 1.23918i 0.960335 + 0.278850i \(0.0899533\pi\)
0.278850 + 0.960335i \(0.410047\pi\)
\(380\) 0 0
\(381\) −4.73205 1.26795i −0.242430 0.0649590i
\(382\) 0 0
\(383\) −7.40192 + 12.8205i −0.378221 + 0.655097i −0.990803 0.135309i \(-0.956797\pi\)
0.612583 + 0.790406i \(0.290131\pi\)
\(384\) 0 0
\(385\) 29.3205 + 25.3923i 1.49431 + 1.29411i
\(386\) 0 0
\(387\) 0.124356 + 0.464102i 0.00632135 + 0.0235916i
\(388\) 0 0
\(389\) 5.35641 19.9904i 0.271581 1.01355i −0.686518 0.727113i \(-0.740862\pi\)
0.958098 0.286440i \(-0.0924717\pi\)
\(390\) 0 0
\(391\) 1.14359i 0.0578340i
\(392\) 0 0
\(393\) 17.9282i 0.904358i
\(394\) 0 0
\(395\) −0.571797 + 2.13397i −0.0287702 + 0.107372i
\(396\) 0 0
\(397\) −1.37564 5.13397i −0.0690416 0.257667i 0.922775 0.385340i \(-0.125916\pi\)
−0.991816 + 0.127673i \(0.959249\pi\)
\(398\) 0 0
\(399\) −16.9282 14.6603i −0.847470 0.733931i
\(400\) 0 0
\(401\) 7.50000 12.9904i 0.374532 0.648709i −0.615725 0.787961i \(-0.711137\pi\)
0.990257 + 0.139253i \(0.0444700\pi\)
\(402\) 0 0
\(403\) 0.0980762 + 0.0262794i 0.00488552 + 0.00130907i
\(404\) 0 0
\(405\) 25.2224 + 25.2224i 1.25331 + 1.25331i
\(406\) 0 0
\(407\) 48.5167i 2.40488i
\(408\) 0 0
\(409\) 7.50000 4.33013i 0.370851 0.214111i −0.302979 0.952997i \(-0.597981\pi\)
0.673830 + 0.738886i \(0.264648\pi\)
\(410\) 0 0
\(411\) −25.3564 + 6.79423i −1.25074 + 0.335135i
\(412\) 0 0
\(413\) −15.3038 22.5981i −0.753053 1.11198i
\(414\) 0 0
\(415\) 20.0263 34.6865i 0.983051 1.70269i
\(416\) 0 0
\(417\) −2.63397 4.56218i −0.128986 0.223411i
\(418\) 0 0
\(419\) 19.0000 19.0000i 0.928211 0.928211i −0.0693796 0.997590i \(-0.522102\pi\)
0.997590 + 0.0693796i \(0.0221020\pi\)
\(420\) 0 0
\(421\) −8.66025 8.66025i −0.422075 0.422075i 0.463843 0.885918i \(-0.346470\pi\)
−0.885918 + 0.463843i \(0.846470\pi\)
\(422\) 0 0
\(423\) 4.90192 2.83013i 0.238340 0.137605i
\(424\) 0 0
\(425\) 2.49038 + 1.43782i 0.120801 + 0.0697446i
\(426\) 0 0
\(427\) 0.330127 + 0.160254i 0.0159760 + 0.00775524i
\(428\) 0 0
\(429\) 0.830127 + 3.09808i 0.0400789 + 0.149577i
\(430\) 0 0
\(431\) 6.66987 + 11.5526i 0.321276 + 0.556467i 0.980752 0.195259i \(-0.0625548\pi\)
−0.659475 + 0.751726i \(0.729221\pi\)
\(432\) 0 0
\(433\) 29.1769 1.40215 0.701077 0.713086i \(-0.252703\pi\)
0.701077 + 0.713086i \(0.252703\pi\)
\(434\) 0 0
\(435\) 24.1244 24.1244i 1.15667 1.15667i
\(436\) 0 0
\(437\) −2.79423 + 10.4282i −0.133666 + 0.498849i
\(438\) 0 0
\(439\) −12.5263 7.23205i −0.597847 0.345167i 0.170347 0.985384i \(-0.445511\pi\)
−0.768194 + 0.640217i \(0.778844\pi\)
\(440\) 0 0
\(441\) 1.90192 4.75833i 0.0905678 0.226587i
\(442\) 0 0
\(443\) 12.7942 3.42820i 0.607872 0.162879i 0.0582637 0.998301i \(-0.481444\pi\)
0.549608 + 0.835422i \(0.314777\pi\)
\(444\) 0 0
\(445\) −16.7942 4.50000i −0.796123 0.213320i
\(446\) 0 0
\(447\) 17.9282 0.847975
\(448\) 0 0
\(449\) 11.3205 0.534248 0.267124 0.963662i \(-0.413927\pi\)
0.267124 + 0.963662i \(0.413927\pi\)
\(450\) 0 0
\(451\) 37.7846 + 10.1244i 1.77921 + 0.476737i
\(452\) 0 0
\(453\) 17.5263 4.69615i 0.823456 0.220644i
\(454\) 0 0
\(455\) −1.09808 3.16987i −0.0514786 0.148606i
\(456\) 0 0
\(457\) 25.2846 + 14.5981i 1.18276 + 0.682869i 0.956652 0.291232i \(-0.0940652\pi\)
0.226112 + 0.974101i \(0.427399\pi\)
\(458\) 0 0
\(459\) 0.526279 1.96410i 0.0245646 0.0916764i
\(460\) 0 0
\(461\) 1.33975 1.33975i 0.0623982 0.0623982i −0.675219 0.737617i \(-0.735951\pi\)
0.737617 + 0.675219i \(0.235951\pi\)
\(462\) 0 0
\(463\) −29.8564 −1.38754 −0.693772 0.720194i \(-0.744053\pi\)
−0.693772 + 0.720194i \(0.744053\pi\)
\(464\) 0 0
\(465\) −0.866025 1.50000i −0.0401610 0.0695608i
\(466\) 0 0
\(467\) −0.00961894 0.0358984i −0.000445112 0.00166118i 0.965703 0.259650i \(-0.0836070\pi\)
−0.966148 + 0.257988i \(0.916940\pi\)
\(468\) 0 0
\(469\) −16.6244 + 11.2583i −0.767641 + 0.519861i
\(470\) 0 0
\(471\) −27.5263 15.8923i −1.26834 0.732279i
\(472\) 0 0
\(473\) −2.49038 + 1.43782i −0.114508 + 0.0661111i
\(474\) 0 0
\(475\) 19.1962 + 19.1962i 0.880780 + 0.880780i
\(476\) 0 0
\(477\) −5.92820 + 5.92820i −0.271434 + 0.271434i
\(478\) 0 0
\(479\) −7.79423 13.5000i −0.356127 0.616831i 0.631183 0.775634i \(-0.282570\pi\)
−0.987310 + 0.158803i \(0.949236\pi\)
\(480\) 0 0
\(481\) 2.09808 3.63397i 0.0956640 0.165695i
\(482\) 0 0
\(483\) −12.5622 + 0.901924i −0.571599 + 0.0410390i
\(484\) 0 0
\(485\) −35.3205 + 9.46410i −1.60382 + 0.429743i
\(486\) 0 0
\(487\) 19.3301 11.1603i 0.875932 0.505719i 0.00661681 0.999978i \(-0.497894\pi\)
0.869315 + 0.494259i \(0.164560\pi\)
\(488\) 0 0
\(489\) 0.464102i 0.0209874i
\(490\) 0 0
\(491\) −27.5885 27.5885i −1.24505 1.24505i −0.957880 0.287170i \(-0.907286\pi\)
−0.287170 0.957880i \(-0.592714\pi\)
\(492\) 0 0
\(493\) −2.36603 0.633975i −0.106560 0.0285528i
\(494\) 0 0
\(495\) 5.36603 9.29423i 0.241185 0.417745i
\(496\) 0 0
\(497\) −14.9282 12.9282i −0.669621 0.579909i
\(498\) 0 0
\(499\) −0.990381 3.69615i −0.0443355 0.165463i 0.940209 0.340599i \(-0.110630\pi\)
−0.984544 + 0.175137i \(0.943963\pi\)
\(500\) 0 0
\(501\) −2.92820 + 10.9282i −0.130822 + 0.488236i
\(502\) 0 0
\(503\) 4.14359i 0.184754i −0.995724 0.0923769i \(-0.970554\pi\)
0.995724 0.0923769i \(-0.0294464\pi\)
\(504\) 0 0
\(505\) 24.4641i 1.08864i
\(506\) 0 0
\(507\) −6.42820 + 23.9904i −0.285487 + 1.06545i
\(508\) 0 0
\(509\) 4.42820 + 16.5263i 0.196277 + 0.732514i 0.991933 + 0.126766i \(0.0404597\pi\)
−0.795656 + 0.605749i \(0.792874\pi\)
\(510\) 0 0
\(511\) 1.59808 8.30385i 0.0706947 0.367341i
\(512\) 0 0
\(513\) 9.59808 16.6244i 0.423765 0.733983i
\(514\) 0 0
\(515\) 1.50000 + 0.401924i 0.0660979 + 0.0177109i
\(516\) 0 0
\(517\) 23.9545 + 23.9545i 1.05352 + 1.05352i
\(518\) 0 0
\(519\) 9.19615i 0.403666i
\(520\) 0 0
\(521\) 37.6244 21.7224i 1.64835 0.951677i 0.670626 0.741796i \(-0.266026\pi\)
0.977727 0.209881i \(-0.0673078\pi\)
\(522\) 0 0
\(523\) 34.6506 9.28461i 1.51517 0.405988i 0.597019 0.802227i \(-0.296352\pi\)
0.918147 + 0.396239i \(0.129685\pi\)
\(524\) 0 0
\(525\) −13.8301 + 28.4904i −0.603596 + 1.24342i
\(526\) 0 0
\(527\) −0.0621778 + 0.107695i −0.00270851 + 0.00469127i
\(528\) 0 0
\(529\) −8.46410 14.6603i −0.368004 0.637402i
\(530\) 0 0
\(531\) −5.33975 + 5.33975i −0.231725 + 0.231725i
\(532\) 0 0
\(533\) −2.39230 2.39230i −0.103622 0.103622i
\(534\) 0 0
\(535\) 2.59808 1.50000i 0.112325 0.0648507i
\(536\) 0 0
\(537\) 13.1603 + 7.59808i 0.567907 + 0.327881i
\(538\) 0 0
\(539\) 30.4545 + 3.62436i 1.31177 + 0.156112i
\(540\) 0 0
\(541\) −5.76795 21.5263i −0.247984 0.925487i −0.971860 0.235558i \(-0.924308\pi\)
0.723877 0.689929i \(-0.242358\pi\)
\(542\) 0 0
\(543\) −10.0981 17.4904i −0.433350 0.750584i
\(544\) 0 0
\(545\) −49.9808 −2.14094
\(546\) 0 0
\(547\) −15.0526 + 15.0526i −0.643601 + 0.643601i −0.951439 0.307838i \(-0.900395\pi\)
0.307838 + 0.951439i \(0.400395\pi\)
\(548\) 0 0
\(549\) 0.0262794 0.0980762i 0.00112158 0.00418579i
\(550\) 0 0
\(551\) −20.0263 11.5622i −0.853148 0.492565i
\(552\) 0 0
\(553\) 0.571797 + 1.65064i 0.0243153 + 0.0701921i
\(554\) 0 0
\(555\) −69.1410 + 18.5263i −2.93487 + 0.786397i
\(556\) 0 0
\(557\) −5.23205 1.40192i −0.221689 0.0594014i 0.146265 0.989245i \(-0.453275\pi\)
−0.367954 + 0.929844i \(0.619942\pi\)
\(558\) 0 0
\(559\) 0.248711 0.0105194
\(560\) 0 0
\(561\) −3.92820 −0.165849
\(562\) 0 0
\(563\) 42.6506 + 11.4282i 1.79751 + 0.481641i 0.993585 0.113089i \(-0.0360746\pi\)
0.803925 + 0.594731i \(0.202741\pi\)
\(564\) 0 0
\(565\) −17.6603 + 4.73205i −0.742972 + 0.199079i
\(566\) 0 0
\(567\) 27.6962 + 5.33013i 1.16313 + 0.223844i
\(568\) 0 0
\(569\) −26.0885 15.0622i −1.09369 0.631439i −0.159130 0.987258i \(-0.550869\pi\)
−0.934555 + 0.355818i \(0.884202\pi\)
\(570\) 0 0
\(571\) 2.72243 10.1603i 0.113930 0.425193i −0.885274 0.465069i \(-0.846030\pi\)
0.999205 + 0.0398756i \(0.0126962\pi\)
\(572\) 0 0
\(573\) −11.8301 + 11.8301i −0.494211 + 0.494211i
\(574\) 0 0
\(575\) 15.2679 0.636717
\(576\) 0 0
\(577\) 17.6244 + 30.5263i 0.733712 + 1.27083i 0.955286 + 0.295682i \(0.0955470\pi\)
−0.221575 + 0.975143i \(0.571120\pi\)
\(578\) 0 0
\(579\) 11.5000 + 42.9186i 0.477924 + 1.78364i
\(580\) 0 0
\(581\) −2.26795 31.5885i −0.0940904 1.31051i
\(582\) 0 0
\(583\) −43.4545 25.0885i −1.79970 1.03906i
\(584\) 0 0
\(585\) −0.803848 + 0.464102i −0.0332350 + 0.0191882i
\(586\) 0 0
\(587\) −8.07180 8.07180i −0.333159 0.333159i 0.520626 0.853785i \(-0.325699\pi\)
−0.853785 + 0.520626i \(0.825699\pi\)
\(588\) 0 0
\(589\) −0.830127 + 0.830127i −0.0342048 + 0.0342048i
\(590\) 0 0
\(591\) 0.901924 + 1.56218i 0.0371002 + 0.0642594i
\(592\) 0 0
\(593\) −4.69615 + 8.13397i −0.192848 + 0.334022i −0.946193 0.323603i \(-0.895106\pi\)
0.753345 + 0.657625i \(0.228439\pi\)
\(594\) 0 0
\(595\) 4.09808 0.294229i 0.168005 0.0120622i
\(596\) 0 0
\(597\) −3.59808 + 0.964102i −0.147259 + 0.0394581i
\(598\) 0 0
\(599\) 25.3301 14.6244i 1.03496 0.597535i 0.116559 0.993184i \(-0.462814\pi\)
0.918402 + 0.395649i \(0.129480\pi\)
\(600\) 0 0
\(601\) 10.0000i 0.407909i −0.978980 0.203954i \(-0.934621\pi\)
0.978980 0.203954i \(-0.0653794\pi\)
\(602\) 0 0
\(603\) 3.92820 + 3.92820i 0.159969 + 0.159969i
\(604\) 0 0
\(605\) 26.4904 + 7.09808i 1.07699 + 0.288578i
\(606\) 0 0
\(607\) −10.5263 + 18.2321i −0.427249 + 0.740016i −0.996627 0.0820591i \(-0.973850\pi\)
0.569379 + 0.822075i \(0.307184\pi\)
\(608\) 0 0
\(609\) 5.09808 26.4904i 0.206584 1.07344i
\(610\) 0 0
\(611\) −0.758330 2.83013i −0.0306788 0.114495i
\(612\) 0 0
\(613\) −5.76795 + 21.5263i −0.232965 + 0.869438i 0.746090 + 0.665845i \(0.231929\pi\)
−0.979056 + 0.203593i \(0.934738\pi\)
\(614\) 0 0
\(615\) 57.7128i 2.32721i
\(616\) 0 0
\(617\) 7.46410i 0.300493i −0.988649 0.150247i \(-0.951993\pi\)
0.988649 0.150247i \(-0.0480068\pi\)
\(618\) 0 0
\(619\) 6.93782 25.8923i 0.278855 1.04070i −0.674359 0.738403i \(-0.735580\pi\)
0.953214 0.302296i \(-0.0977532\pi\)
\(620\) 0 0
\(621\) −2.79423 10.4282i −0.112129 0.418469i
\(622\) 0 0
\(623\) −12.9904 + 4.50000i −0.520449 + 0.180289i
\(624\) 0 0
\(625\) −8.79423 + 15.2321i −0.351769 + 0.609282i
\(626\) 0 0
\(627\) −35.8205 9.59808i −1.43053 0.383310i
\(628\) 0 0
\(629\) 3.63397 + 3.63397i 0.144896 + 0.144896i
\(630\) 0 0
\(631\) 16.2487i 0.646851i −0.946254 0.323425i \(-0.895165\pi\)
0.946254 0.323425i \(-0.104835\pi\)
\(632\) 0 0
\(633\) 4.90192 2.83013i 0.194834 0.112487i
\(634\) 0 0
\(635\) 8.19615 2.19615i 0.325254 0.0871517i
\(636\) 0 0
\(637\) −2.12436 1.58846i −0.0841700 0.0629370i
\(638\) 0 0
\(639\) −2.73205 + 4.73205i −0.108078 + 0.187197i
\(640\) 0 0
\(641\) 19.4282 + 33.6506i 0.767368 + 1.32912i 0.938986 + 0.343957i \(0.111767\pi\)
−0.171618 + 0.985164i \(0.554899\pi\)
\(642\) 0 0
\(643\) −15.3923 + 15.3923i −0.607013 + 0.607013i −0.942164 0.335151i \(-0.891213\pi\)
0.335151 + 0.942164i \(0.391213\pi\)
\(644\) 0 0
\(645\) −3.00000 3.00000i −0.118125 0.118125i
\(646\) 0 0
\(647\) 29.1340 16.8205i 1.14537 0.661282i 0.197619 0.980279i \(-0.436679\pi\)
0.947756 + 0.318997i \(0.103346\pi\)
\(648\) 0 0
\(649\) −39.1410 22.5981i −1.53642 0.887052i
\(650\) 0 0
\(651\) −1.23205 0.598076i −0.0482879 0.0234405i
\(652\) 0 0
\(653\) −5.55256 20.7224i −0.217288 0.810931i −0.985348 0.170554i \(-0.945444\pi\)
0.768060 0.640378i \(-0.221222\pi\)
\(654\) 0 0
\(655\) 15.5263 + 26.8923i 0.606662 + 1.05077i
\(656\) 0 0
\(657\) −2.33975 −0.0912822
\(658\) 0 0
\(659\) 8.85641 8.85641i 0.344997 0.344997i −0.513245 0.858242i \(-0.671557\pi\)
0.858242 + 0.513245i \(0.171557\pi\)
\(660\) 0 0
\(661\) 4.83975 18.0622i 0.188244 0.702537i −0.805668 0.592367i \(-0.798194\pi\)
0.993913 0.110170i \(-0.0351397\pi\)
\(662\) 0 0
\(663\) 0.294229 + 0.169873i 0.0114269 + 0.00659732i
\(664\) 0 0
\(665\) 38.0885 + 7.33013i 1.47701 + 0.284250i
\(666\) 0 0
\(667\) −12.5622 + 3.36603i −0.486409 + 0.130333i
\(668\) 0 0
\(669\) 33.3205 + 8.92820i 1.28825 + 0.345184i
\(670\) 0 0
\(671\) 0.607695 0.0234598
\(672\) 0 0
\(673\) −0.784610 −0.0302445 −0.0151222 0.999886i \(-0.504814\pi\)
−0.0151222 + 0.999886i \(0.504814\pi\)
\(674\) 0 0
\(675\) −26.2224 7.02628i −1.00930 0.270442i
\(676\) 0 0
\(677\) 49.5526 13.2776i 1.90446 0.510298i 0.908800 0.417233i \(-0.137000\pi\)
0.995660 0.0930654i \(-0.0296666\pi\)
\(678\) 0 0
\(679\) −18.9282 + 21.8564i −0.726398 + 0.838772i
\(680\) 0 0
\(681\) −39.8205 22.9904i −1.52593 0.880993i
\(682\) 0 0
\(683\) −11.5788 + 43.2128i −0.443052 + 1.65349i 0.277977 + 0.960588i \(0.410336\pi\)
−0.721029 + 0.692905i \(0.756331\pi\)
\(684\) 0 0
\(685\) 32.1506 32.1506i 1.22841 1.22841i
\(686\) 0 0
\(687\) −34.8564 −1.32985
\(688\) 0 0
\(689\) 2.16987 + 3.75833i 0.0826656 + 0.143181i
\(690\) 0 0
\(691\) −2.99038 11.1603i −0.113759 0.424556i 0.885432 0.464770i \(-0.153863\pi\)
−0.999191 + 0.0402135i \(0.987196\pi\)
\(692\) 0 0
\(693\) −0.607695 8.46410i −0.0230844 0.321525i
\(694\) 0 0
\(695\) 7.90192 + 4.56218i 0.299737 + 0.173053i
\(696\) 0 0
\(697\) 3.58846 2.07180i 0.135923 0.0784749i
\(698\) 0 0
\(699\) 15.2942 + 15.2942i 0.578481 + 0.578481i
\(700\) 0 0
\(701\) 7.39230 7.39230i 0.279204 0.279204i −0.553588 0.832791i \(-0.686742\pi\)
0.832791 + 0.553588i \(0.186742\pi\)
\(702\) 0 0
\(703\) 24.2583 + 42.0167i 0.914920 + 1.58469i
\(704\) 0 0
\(705\) −24.9904 + 43.2846i −0.941192 + 1.63019i
\(706\) 0 0
\(707\) 10.8468 + 16.0167i 0.407935 + 0.602369i
\(708\) 0 0
\(709\) −8.76795 + 2.34936i −0.329287 + 0.0882323i −0.419675 0.907674i \(-0.637856\pi\)
0.0903879 + 0.995907i \(0.471189\pi\)
\(710\) 0 0
\(711\) 0.418584 0.241670i 0.0156981 0.00906332i
\(712\) 0 0
\(713\) 0.660254i 0.0247267i
\(714\) 0 0
\(715\) −3.92820 3.92820i −0.146906 0.146906i
\(716\) 0 0
\(717\) 28.8564 + 7.73205i 1.07766 + 0.288759i
\(718\) 0 0
\(719\) 15.7942 27.3564i 0.589025 1.02022i −0.405335 0.914168i \(-0.632845\pi\)
0.994360 0.106054i \(-0.0338215\pi\)
\(720\) 0 0
\(721\) 1.16025 0.401924i 0.0432101 0.0149684i
\(722\) 0 0
\(723\) −0.0358984 0.133975i −0.00133508 0.00498257i
\(724\) 0 0
\(725\) −8.46410 + 31.5885i −0.314349 + 1.17317i
\(726\) 0 0
\(727\) 6.67949i 0.247729i −0.992299 0.123864i \(-0.960471\pi\)
0.992299 0.123864i \(-0.0395288\pi\)
\(728\) 0 0
\(729\) 17.5885i 0.651424i
\(730\) 0 0
\(731\) −0.0788383 + 0.294229i −0.00291594 + 0.0108824i
\(732\) 0 0
\(733\) 12.1077 + 45.1865i 0.447208 + 1.66900i 0.710040 + 0.704161i \(0.248677\pi\)
−0.262832 + 0.964842i \(0.584657\pi\)
\(734\) 0 0
\(735\) 6.46410 + 44.7846i 0.238432 + 1.65191i
\(736\) 0 0
\(737\) −16.6244 + 28.7942i −0.612366 + 1.06065i
\(738\) 0 0
\(739\) −50.3109 13.4808i −1.85072 0.495898i −0.851138 0.524942i \(-0.824087\pi\)
−0.999578 + 0.0290444i \(0.990754\pi\)
\(740\) 0 0
\(741\) 2.26795 + 2.26795i 0.0833152 + 0.0833152i
\(742\) 0 0
\(743\) 24.9282i 0.914527i −0.889331 0.457264i \(-0.848830\pi\)
0.889331 0.457264i \(-0.151170\pi\)
\(744\) 0 0
\(745\) −26.8923 + 15.5263i −0.985258 + 0.568839i
\(746\) 0 0
\(747\) −8.46410 + 2.26795i −0.309685 + 0.0829799i
\(748\) 0 0
\(749\) 1.03590 2.13397i 0.0378509 0.0779737i
\(750\) 0 0
\(751\) −12.5263 + 21.6962i −0.457090 + 0.791704i −0.998806 0.0488582i \(-0.984442\pi\)
0.541715 + 0.840562i \(0.317775\pi\)
\(752\) 0 0
\(753\) −18.5622 32.1506i −0.676443 1.17163i
\(754\) 0 0
\(755\) −22.2224 + 22.2224i −0.808757 + 0.808757i
\(756\) 0 0
\(757\) −1.33975 1.33975i −0.0486939 0.0486939i 0.682341 0.731034i \(-0.260962\pi\)
−0.731034 + 0.682341i \(0.760962\pi\)
\(758\) 0 0
\(759\) −18.0622 + 10.4282i −0.655616 + 0.378520i
\(760\) 0 0
\(761\) −15.2321 8.79423i −0.552161 0.318791i 0.197832 0.980236i \(-0.436610\pi\)
−0.749993 + 0.661445i \(0.769943\pi\)
\(762\) 0 0
\(763\) −32.7224 + 22.1603i −1.18463 + 0.802255i
\(764\) 0 0
\(765\) −0.294229 1.09808i −0.0106379 0.0397010i
\(766\) 0 0
\(767\) 1.95448 + 3.38526i 0.0705723 + 0.122235i
\(768\) 0 0
\(769\) −17.8564 −0.643918 −0.321959 0.946754i \(-0.604341\pi\)
−0.321959 + 0.946754i \(0.604341\pi\)
\(770\) 0 0
\(771\) −1.90192 + 1.90192i −0.0684961 + 0.0684961i
\(772\) 0 0
\(773\) 4.03590 15.0622i 0.145161 0.541749i −0.854587 0.519308i \(-0.826190\pi\)
0.999748 0.0224406i \(-0.00714368\pi\)
\(774\) 0 0
\(775\) 1.43782 + 0.830127i 0.0516481 + 0.0298190i
\(776\) 0 0
\(777\) −37.0526 + 42.7846i −1.32925 + 1.53489i
\(778\) 0 0
\(779\) 37.7846 10.1244i 1.35377 0.362743i
\(780\) 0 0
\(781\) −31.5885 8.46410i −1.13032 0.302869i
\(782\) 0 0
\(783\) 23.1244 0.826397
\(784\) 0 0
\(785\) 55.0526 1.96491
\(786\) 0 0
\(787\) 15.5263 + 4.16025i 0.553452 + 0.148297i 0.524696 0.851289i \(-0.324179\pi\)
0.0287557 + 0.999586i \(0.490846\pi\)
\(788\) 0 0
\(789\) −47.3827 + 12.6962i −1.68687 + 0.451995i
\(790\) 0 0
\(791\) −9.46410 + 10.9282i −0.336505 + 0.388562i
\(792\) 0 0
\(793\) −0.0455173 0.0262794i −0.00161637 0.000933210i
\(794\) 0 0
\(795\) 19.1603 71.5070i 0.679544 2.53609i
\(796\) 0 0
\(797\) −30.6603 + 30.6603i −1.08604 + 1.08604i −0.0901101 + 0.995932i \(0.528722\pi\)
−0.995932 + 0.0901101i \(0.971278\pi\)
\(798\) 0 0
\(799\) 3.58846 0.126950
\(800\) 0 0
\(801\) 1.90192 + 3.29423i 0.0672012 + 0.116396i
\(802\) 0 0
\(803\) −3.62436 13.5263i −0.127901 0.477332i
\(804\) 0 0
\(805\) 18.0622 12.2321i 0.636608 0.431123i
\(806\) 0 0
\(807\) 37.4545 + 21.6244i 1.31846 + 0.761213i
\(808\) 0 0
\(809\) 15.5718 8.99038i 0.547475 0.316085i −0.200628 0.979668i \(-0.564298\pi\)
0.748103 + 0.663583i \(0.230965\pi\)
\(810\) 0 0
\(811\) 10.3205 + 10.3205i 0.362402 + 0.362402i 0.864697 0.502295i \(-0.167511\pi\)
−0.502295 + 0.864697i \(0.667511\pi\)
\(812\) 0 0
\(813\) −16.5622 + 16.5622i −0.580861 + 0.580861i
\(814\) 0 0
\(815\) 0.401924 + 0.696152i 0.0140788 + 0.0243852i
\(816\) 0 0
\(817\) −1.43782 + 2.49038i −0.0503030 + 0.0871274i
\(818\) 0 0
\(819\) −0.320508 + 0.660254i −0.0111995 + 0.0230711i
\(820\) 0 0
\(821\) 17.1603 4.59808i 0.598897 0.160474i 0.0533808 0.998574i \(-0.483000\pi\)
0.545516 + 0.838100i \(0.316334\pi\)
\(822\) 0 0
\(823\) −27.0622 + 15.6244i −0.943328 + 0.544631i −0.891002 0.453999i \(-0.849997\pi\)
−0.0523262 + 0.998630i \(0.516664\pi\)
\(824\) 0 0
\(825\) 52.4449i 1.82590i
\(826\) 0 0
\(827\) −37.7846 37.7846i −1.31390 1.31390i −0.918516 0.395383i \(-0.870612\pi\)
−0.395383 0.918516i \(-0.629388\pi\)
\(828\) 0 0
\(829\) −33.8205 9.06218i −1.17463 0.314742i −0.381838 0.924229i \(-0.624709\pi\)
−0.792796 + 0.609487i \(0.791376\pi\)
\(830\) 0 0
\(831\) 16.7942 29.0885i 0.582585 1.00907i
\(832\) 0 0
\(833\) 2.55256 2.00962i 0.0884409 0.0696292i
\(834\) 0 0
\(835\) −5.07180 18.9282i −0.175517 0.655037i
\(836\) 0 0
\(837\) 0.303848 1.13397i 0.0105025 0.0391959i
\(838\) 0 0
\(839\) 37.7128i 1.30199i −0.759082 0.650995i \(-0.774352\pi\)
0.759082 0.650995i \(-0.225648\pi\)
\(840\) 0 0
\(841\) 1.14359i 0.0394343i
\(842\) 0 0
\(843\) 6.46410 24.1244i 0.222635 0.830887i
\(844\) 0 0
\(845\) −11.1340 41.5526i −0.383020 1.42945i
\(846\) 0 0
\(847\) 20.4904 7.09808i 0.704058 0.243893i
\(848\) 0 0
\(849\) 16.8923 29.2583i 0.579742 1.00414i
\(850\) 0 0
\(851\) 26.3564 + 7.06218i 0.903486 + 0.242088i
\(852\) 0 0
\(853\) −36.1244 36.1244i −1.23687 1.23687i −0.961272 0.275603i \(-0.911123\pi\)
−0.275603 0.961272i \(-0.588877\pi\)
\(854\) 0 0
\(855\) 10.7321i 0.367028i
\(856\) 0 0
\(857\) 8.89230 5.13397i 0.303755 0.175373i −0.340373 0.940290i \(-0.610553\pi\)
0.644129 + 0.764917i \(0.277220\pi\)
\(858\) 0 0
\(859\) −39.6506 + 10.6244i −1.35286 + 0.362498i −0.861191 0.508282i \(-0.830281\pi\)
−0.491672 + 0.870781i \(0.663614\pi\)
\(860\) 0 0
\(861\) 25.5885 + 37.7846i 0.872052 + 1.28770i
\(862\) 0 0
\(863\) −7.66987 + 13.2846i −0.261086 + 0.452213i −0.966531 0.256551i \(-0.917414\pi\)
0.705445 + 0.708765i \(0.250747\pi\)
\(864\) 0 0
\(865\) −7.96410 13.7942i −0.270788 0.469018i
\(866\) 0 0
\(867\) 22.9282 22.9282i 0.778683 0.778683i
\(868\) 0 0
\(869\) 2.04552 + 2.04552i 0.0693894 + 0.0693894i
\(870\) 0 0
\(871\) 2.49038 1.43782i 0.0843833 0.0487187i
\(872\) 0 0
\(873\) 6.92820 + 4.00000i 0.234484 + 0.135379i
\(874\) 0 0
\(875\) −0.758330 10.5622i −0.0256362 0.357067i
\(876\) 0 0
\(877\) 7.55256 + 28.1865i 0.255032 + 0.951792i 0.968073 + 0.250669i \(0.0806507\pi\)
−0.713041 + 0.701122i \(0.752683\pi\)
\(878\) 0 0
\(879\) 8.09808 + 14.0263i 0.273141 + 0.473095i
\(880\) 0 0
\(881\) 50.0000 1.68454 0.842271 0.539054i \(-0.181218\pi\)
0.842271 + 0.539054i \(0.181218\pi\)
\(882\) 0 0
\(883\) 5.00000 5.00000i 0.168263 0.168263i −0.617952 0.786216i \(-0.712037\pi\)
0.786216 + 0.617952i \(0.212037\pi\)
\(884\) 0 0
\(885\) 17.2583 64.4090i 0.580132 2.16508i
\(886\) 0 0
\(887\) 27.7750 + 16.0359i 0.932593 + 0.538433i 0.887631 0.460556i \(-0.152350\pi\)
0.0449622 + 0.998989i \(0.485683\pi\)
\(888\) 0 0
\(889\) 4.39230 5.07180i 0.147313 0.170103i
\(890\) 0 0
\(891\) 45.1147 12.0885i 1.51140 0.404979i
\(892\) 0 0
\(893\) 32.7224 + 8.76795i 1.09501 + 0.293408i
\(894\) 0 0
\(895\) −26.3205 −0.879798
\(896\) 0 0
\(897\) 1.80385 0.0602287
\(898\) 0 0
\(899\) −1.36603 0.366025i −0.0455595 0.0122076i
\(900\) 0 0
\(901\) −5.13397 + 1.37564i −0.171037 + 0.0458294i
\(902\) 0 0
\(903\) −3.29423 0.633975i −0.109625 0.0210974i
\(904\) 0 0
\(905\) 30.2942 + 17.4904i 1.00701 + 0.581400i
\(906\) 0 0
\(907\) −2.72243 + 10.1603i −0.0903969 + 0.337366i −0.996281 0.0861591i \(-0.972541\pi\)
0.905885 + 0.423525i \(0.139207\pi\)
\(908\) 0 0
\(909\) 3.78461 3.78461i 0.125528 0.125528i
\(910\) 0 0
\(911\) 27.3205 0.905169 0.452584 0.891722i \(-0.350502\pi\)
0.452584 + 0.891722i \(0.350502\pi\)
\(912\) 0 0
\(913\) −26.2224 45.4186i −0.867836 1.50314i
\(914\) 0 0
\(915\) 0.232051 + 0.866025i 0.00767136 + 0.0286299i
\(916\) 0 0
\(917\) 22.0885 + 10.7224i 0.729425 + 0.354086i
\(918\) 0 0
\(919\) −14.1340 8.16025i −0.466237 0.269182i 0.248426 0.968651i \(-0.420087\pi\)
−0.714663 + 0.699469i \(0.753420\pi\)
\(920\) 0 0
\(921\) −21.2942 + 12.2942i −0.701669 + 0.405109i
\(922\) 0 0
\(923\) 2.00000 + 2.00000i 0.0658308 + 0.0658308i
\(924\) 0 0
\(925\) 48.5167 48.5167i 1.59522 1.59522i
\(926\) 0 0
\(927\) −0.169873 0.294229i −0.00557936 0.00966374i
\(928\) 0 0
\(929\) 20.0167 34.6699i 0.656725 1.13748i −0.324733 0.945806i \(-0.605274\pi\)
0.981458 0.191676i \(-0.0613922\pi\)
\(930\) 0 0
\(931\) 28.1865 12.0885i 0.923776 0.396183i
\(932\) 0 0
\(933\) 0.866025 0.232051i 0.0283524 0.00759700i
\(934\) 0 0
\(935\) 5.89230 3.40192i 0.192699 0.111255i
\(936\) 0 0
\(937\) 42.9282i 1.40240i 0.712963 + 0.701202i \(0.247353\pi\)
−0.712963 + 0.701202i \(0.752647\pi\)
\(938\) 0 0
\(939\) 13.0981 + 13.0981i 0.427440 + 0.427440i
\(940\) 0 0
\(941\) 16.6962 + 4.47372i 0.544279 + 0.145839i 0.520474 0.853877i \(-0.325755\pi\)
0.0238050 + 0.999717i \(0.492422\pi\)
\(942\) 0 0
\(943\) 11.0000 19.0526i 0.358209 0.620437i
\(944\) 0 0
\(945\) −36.6506 + 12.6962i −1.19225 + 0.413006i
\(946\) 0 0
\(947\) −10.5981 39.5526i −0.344391 1.28529i −0.893322 0.449418i \(-0.851632\pi\)
0.548931 0.835868i \(-0.315035\pi\)
\(948\) 0 0
\(949\) −0.313467 + 1.16987i −0.0101756 + 0.0379757i
\(950\) 0 0
\(951\) 23.5885i 0.764908i
\(952\) 0 0
\(953\) 23.4641i 0.760077i −0.924971 0.380038i \(-0.875911\pi\)
0.924971 0.380038i \(-0.124089\pi\)
\(954\) 0 0
\(955\) 7.50000 27.9904i 0.242694 0.905747i
\(956\) 0 0
\(957\) −11.5622 43.1506i −0.373752 1.39486i
\(958\) 0 0
\(959\) 6.79423 35.3038i 0.219397 1.14002i
\(960\) 0 0
\(961\) 15.4641 26.7846i 0.498842 0.864020i
\(962\) 0 0
\(963\) −0.633975 0.169873i −0.0204295 0.00547408i
\(964\) 0 0
\(965\) −54.4186 54.4186i −1.75180 1.75180i
\(966\) 0 0
\(967\) 11.7513i 0.377896i −0.981987 0.188948i \(-0.939492\pi\)
0.981987 0.188948i \(-0.0605078\pi\)
\(968\) 0 0
\(969\) −3.40192 + 1.96410i −0.109286 + 0.0630960i
\(970\) 0 0
\(971\) 50.0429 13.4090i 1.60595 0.430314i 0.659121 0.752037i \(-0.270929\pi\)
0.946834 + 0.321723i \(0.104262\pi\)
\(972\) 0 0
\(973\) 7.19615 0.516660i 0.230698 0.0165634i
\(974\) 0 0
\(975\) 2.26795 3.92820i 0.0726325 0.125803i
\(976\) 0 0
\(977\) 22.4282 + 38.8468i 0.717542 + 1.24282i 0.961971 + 0.273152i \(0.0880661\pi\)
−0.244429 + 0.969667i \(0.578601\pi\)
\(978\) 0 0
\(979\) −16.0981 + 16.0981i −0.514497 + 0.514497i
\(980\) 0 0
\(981\) 7.73205 + 7.73205i 0.246865 + 0.246865i
\(982\) 0 0
\(983\) 18.8660 10.8923i 0.601733 0.347411i −0.167990 0.985789i \(-0.553728\pi\)
0.769723 + 0.638378i \(0.220394\pi\)
\(984\) 0 0
\(985\) −2.70577 1.56218i −0.0862130 0.0497751i
\(986\) 0 0
\(987\) 2.83013 + 39.4186i 0.0900839 + 1.25471i
\(988\) 0 0
\(989\) 0.418584 + 1.56218i 0.0133102 + 0.0496744i
\(990\) 0 0
\(991\) −19.7942 34.2846i −0.628784 1.08909i −0.987796 0.155753i \(-0.950219\pi\)
0.359012 0.933333i \(-0.383114\pi\)
\(992\) 0 0
\(993\) 34.5167 1.09535
\(994\) 0 0
\(995\) 4.56218 4.56218i 0.144631 0.144631i
\(996\) 0 0
\(997\) −1.50000 + 5.59808i −0.0475055 + 0.177293i −0.985602 0.169080i \(-0.945920\pi\)
0.938097 + 0.346373i \(0.112587\pi\)
\(998\) 0 0
\(999\) −42.0167 24.2583i −1.32935 0.767500i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.2.ba.b.177.1 4
4.3 odd 2 112.2.w.a.37.1 4
7.4 even 3 448.2.ba.a.305.1 4
8.3 odd 2 896.2.ba.d.737.1 4
8.5 even 2 896.2.ba.a.737.1 4
16.3 odd 4 112.2.w.b.93.1 yes 4
16.5 even 4 896.2.ba.c.289.1 4
16.11 odd 4 896.2.ba.b.289.1 4
16.13 even 4 448.2.ba.a.401.1 4
28.3 even 6 784.2.x.h.165.1 4
28.11 odd 6 112.2.w.b.53.1 yes 4
28.19 even 6 784.2.m.d.197.1 4
28.23 odd 6 784.2.m.e.197.1 4
28.27 even 2 784.2.x.a.373.1 4
56.11 odd 6 896.2.ba.b.865.1 4
56.53 even 6 896.2.ba.c.865.1 4
112.3 even 12 784.2.x.a.557.1 4
112.11 odd 12 896.2.ba.d.417.1 4
112.19 even 12 784.2.m.d.589.1 4
112.51 odd 12 784.2.m.e.589.1 4
112.53 even 12 896.2.ba.a.417.1 4
112.67 odd 12 112.2.w.a.109.1 yes 4
112.83 even 4 784.2.x.h.765.1 4
112.109 even 12 inner 448.2.ba.b.81.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.w.a.37.1 4 4.3 odd 2
112.2.w.a.109.1 yes 4 112.67 odd 12
112.2.w.b.53.1 yes 4 28.11 odd 6
112.2.w.b.93.1 yes 4 16.3 odd 4
448.2.ba.a.305.1 4 7.4 even 3
448.2.ba.a.401.1 4 16.13 even 4
448.2.ba.b.81.1 4 112.109 even 12 inner
448.2.ba.b.177.1 4 1.1 even 1 trivial
784.2.m.d.197.1 4 28.19 even 6
784.2.m.d.589.1 4 112.19 even 12
784.2.m.e.197.1 4 28.23 odd 6
784.2.m.e.589.1 4 112.51 odd 12
784.2.x.a.373.1 4 28.27 even 2
784.2.x.a.557.1 4 112.3 even 12
784.2.x.h.165.1 4 28.3 even 6
784.2.x.h.765.1 4 112.83 even 4
896.2.ba.a.417.1 4 112.53 even 12
896.2.ba.a.737.1 4 8.5 even 2
896.2.ba.b.289.1 4 16.11 odd 4
896.2.ba.b.865.1 4 56.11 odd 6
896.2.ba.c.289.1 4 16.5 even 4
896.2.ba.c.865.1 4 56.53 even 6
896.2.ba.d.417.1 4 112.11 odd 12
896.2.ba.d.737.1 4 8.3 odd 2