# Properties

 Label 448.2.a.g.1.1 Level $448$ Weight $2$ Character 448.1 Self dual yes Analytic conductor $3.577$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [448,2,Mod(1,448)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(448, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("448.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$448 = 2^{6} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 448.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$3.57729801055$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 14) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 448.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+2.00000 q^{3} +1.00000 q^{7} +1.00000 q^{9} +O(q^{10})$$ $$q+2.00000 q^{3} +1.00000 q^{7} +1.00000 q^{9} +4.00000 q^{13} +6.00000 q^{17} -2.00000 q^{19} +2.00000 q^{21} -5.00000 q^{25} -4.00000 q^{27} +6.00000 q^{29} -4.00000 q^{31} -2.00000 q^{37} +8.00000 q^{39} +6.00000 q^{41} -8.00000 q^{43} -12.0000 q^{47} +1.00000 q^{49} +12.0000 q^{51} -6.00000 q^{53} -4.00000 q^{57} +6.00000 q^{59} -8.00000 q^{61} +1.00000 q^{63} +4.00000 q^{67} +2.00000 q^{73} -10.0000 q^{75} +8.00000 q^{79} -11.0000 q^{81} +6.00000 q^{83} +12.0000 q^{87} -6.00000 q^{89} +4.00000 q^{91} -8.00000 q^{93} -10.0000 q^{97} +O(q^{100})$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 2.00000 1.15470 0.577350 0.816497i $$-0.304087\pi$$
0.577350 + 0.816497i $$0.304087\pi$$
$$4$$ 0 0
$$5$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$6$$ 0 0
$$7$$ 1.00000 0.377964
$$8$$ 0 0
$$9$$ 1.00000 0.333333
$$10$$ 0 0
$$11$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$12$$ 0 0
$$13$$ 4.00000 1.10940 0.554700 0.832050i $$-0.312833\pi$$
0.554700 + 0.832050i $$0.312833\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ 6.00000 1.45521 0.727607 0.685994i $$-0.240633\pi$$
0.727607 + 0.685994i $$0.240633\pi$$
$$18$$ 0 0
$$19$$ −2.00000 −0.458831 −0.229416 0.973329i $$-0.573682\pi$$
−0.229416 + 0.973329i $$0.573682\pi$$
$$20$$ 0 0
$$21$$ 2.00000 0.436436
$$22$$ 0 0
$$23$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$24$$ 0 0
$$25$$ −5.00000 −1.00000
$$26$$ 0 0
$$27$$ −4.00000 −0.769800
$$28$$ 0 0
$$29$$ 6.00000 1.11417 0.557086 0.830455i $$-0.311919\pi$$
0.557086 + 0.830455i $$0.311919\pi$$
$$30$$ 0 0
$$31$$ −4.00000 −0.718421 −0.359211 0.933257i $$-0.616954\pi$$
−0.359211 + 0.933257i $$0.616954\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ −2.00000 −0.328798 −0.164399 0.986394i $$-0.552568\pi$$
−0.164399 + 0.986394i $$0.552568\pi$$
$$38$$ 0 0
$$39$$ 8.00000 1.28103
$$40$$ 0 0
$$41$$ 6.00000 0.937043 0.468521 0.883452i $$-0.344787\pi$$
0.468521 + 0.883452i $$0.344787\pi$$
$$42$$ 0 0
$$43$$ −8.00000 −1.21999 −0.609994 0.792406i $$-0.708828\pi$$
−0.609994 + 0.792406i $$0.708828\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ −12.0000 −1.75038 −0.875190 0.483779i $$-0.839264\pi$$
−0.875190 + 0.483779i $$0.839264\pi$$
$$48$$ 0 0
$$49$$ 1.00000 0.142857
$$50$$ 0 0
$$51$$ 12.0000 1.68034
$$52$$ 0 0
$$53$$ −6.00000 −0.824163 −0.412082 0.911147i $$-0.635198\pi$$
−0.412082 + 0.911147i $$0.635198\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ −4.00000 −0.529813
$$58$$ 0 0
$$59$$ 6.00000 0.781133 0.390567 0.920575i $$-0.372279\pi$$
0.390567 + 0.920575i $$0.372279\pi$$
$$60$$ 0 0
$$61$$ −8.00000 −1.02430 −0.512148 0.858898i $$-0.671150\pi$$
−0.512148 + 0.858898i $$0.671150\pi$$
$$62$$ 0 0
$$63$$ 1.00000 0.125988
$$64$$ 0 0
$$65$$ 0 0
$$66$$ 0 0
$$67$$ 4.00000 0.488678 0.244339 0.969690i $$-0.421429\pi$$
0.244339 + 0.969690i $$0.421429\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$72$$ 0 0
$$73$$ 2.00000 0.234082 0.117041 0.993127i $$-0.462659\pi$$
0.117041 + 0.993127i $$0.462659\pi$$
$$74$$ 0 0
$$75$$ −10.0000 −1.15470
$$76$$ 0 0
$$77$$ 0 0
$$78$$ 0 0
$$79$$ 8.00000 0.900070 0.450035 0.893011i $$-0.351411\pi$$
0.450035 + 0.893011i $$0.351411\pi$$
$$80$$ 0 0
$$81$$ −11.0000 −1.22222
$$82$$ 0 0
$$83$$ 6.00000 0.658586 0.329293 0.944228i $$-0.393190\pi$$
0.329293 + 0.944228i $$0.393190\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 0 0
$$87$$ 12.0000 1.28654
$$88$$ 0 0
$$89$$ −6.00000 −0.635999 −0.317999 0.948091i $$-0.603011\pi$$
−0.317999 + 0.948091i $$0.603011\pi$$
$$90$$ 0 0
$$91$$ 4.00000 0.419314
$$92$$ 0 0
$$93$$ −8.00000 −0.829561
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ −10.0000 −1.01535 −0.507673 0.861550i $$-0.669494\pi$$
−0.507673 + 0.861550i $$0.669494\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0 0
$$101$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$102$$ 0 0
$$103$$ −4.00000 −0.394132 −0.197066 0.980390i $$-0.563141\pi$$
−0.197066 + 0.980390i $$0.563141\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ −12.0000 −1.16008 −0.580042 0.814587i $$-0.696964\pi$$
−0.580042 + 0.814587i $$0.696964\pi$$
$$108$$ 0 0
$$109$$ −2.00000 −0.191565 −0.0957826 0.995402i $$-0.530535\pi$$
−0.0957826 + 0.995402i $$0.530535\pi$$
$$110$$ 0 0
$$111$$ −4.00000 −0.379663
$$112$$ 0 0
$$113$$ 6.00000 0.564433 0.282216 0.959351i $$-0.408930\pi$$
0.282216 + 0.959351i $$0.408930\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 0 0
$$117$$ 4.00000 0.369800
$$118$$ 0 0
$$119$$ 6.00000 0.550019
$$120$$ 0 0
$$121$$ −11.0000 −1.00000
$$122$$ 0 0
$$123$$ 12.0000 1.08200
$$124$$ 0 0
$$125$$ 0 0
$$126$$ 0 0
$$127$$ −16.0000 −1.41977 −0.709885 0.704317i $$-0.751253\pi$$
−0.709885 + 0.704317i $$0.751253\pi$$
$$128$$ 0 0
$$129$$ −16.0000 −1.40872
$$130$$ 0 0
$$131$$ −18.0000 −1.57267 −0.786334 0.617802i $$-0.788023\pi$$
−0.786334 + 0.617802i $$0.788023\pi$$
$$132$$ 0 0
$$133$$ −2.00000 −0.173422
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ 18.0000 1.53784 0.768922 0.639343i $$-0.220793\pi$$
0.768922 + 0.639343i $$0.220793\pi$$
$$138$$ 0 0
$$139$$ −14.0000 −1.18746 −0.593732 0.804663i $$-0.702346\pi$$
−0.593732 + 0.804663i $$0.702346\pi$$
$$140$$ 0 0
$$141$$ −24.0000 −2.02116
$$142$$ 0 0
$$143$$ 0 0
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 0 0
$$147$$ 2.00000 0.164957
$$148$$ 0 0
$$149$$ 18.0000 1.47462 0.737309 0.675556i $$-0.236096\pi$$
0.737309 + 0.675556i $$0.236096\pi$$
$$150$$ 0 0
$$151$$ 8.00000 0.651031 0.325515 0.945537i $$-0.394462\pi$$
0.325515 + 0.945537i $$0.394462\pi$$
$$152$$ 0 0
$$153$$ 6.00000 0.485071
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ 4.00000 0.319235 0.159617 0.987179i $$-0.448974\pi$$
0.159617 + 0.987179i $$0.448974\pi$$
$$158$$ 0 0
$$159$$ −12.0000 −0.951662
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ 16.0000 1.25322 0.626608 0.779334i $$-0.284443\pi$$
0.626608 + 0.779334i $$0.284443\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ −12.0000 −0.928588 −0.464294 0.885681i $$-0.653692\pi$$
−0.464294 + 0.885681i $$0.653692\pi$$
$$168$$ 0 0
$$169$$ 3.00000 0.230769
$$170$$ 0 0
$$171$$ −2.00000 −0.152944
$$172$$ 0 0
$$173$$ 12.0000 0.912343 0.456172 0.889892i $$-0.349220\pi$$
0.456172 + 0.889892i $$0.349220\pi$$
$$174$$ 0 0
$$175$$ −5.00000 −0.377964
$$176$$ 0 0
$$177$$ 12.0000 0.901975
$$178$$ 0 0
$$179$$ 12.0000 0.896922 0.448461 0.893802i $$-0.351972\pi$$
0.448461 + 0.893802i $$0.351972\pi$$
$$180$$ 0 0
$$181$$ −20.0000 −1.48659 −0.743294 0.668965i $$-0.766738\pi$$
−0.743294 + 0.668965i $$0.766738\pi$$
$$182$$ 0 0
$$183$$ −16.0000 −1.18275
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ 0 0
$$188$$ 0 0
$$189$$ −4.00000 −0.290957
$$190$$ 0 0
$$191$$ 24.0000 1.73658 0.868290 0.496058i $$-0.165220\pi$$
0.868290 + 0.496058i $$0.165220\pi$$
$$192$$ 0 0
$$193$$ 14.0000 1.00774 0.503871 0.863779i $$-0.331909\pi$$
0.503871 + 0.863779i $$0.331909\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 18.0000 1.28245 0.641223 0.767354i $$-0.278427\pi$$
0.641223 + 0.767354i $$0.278427\pi$$
$$198$$ 0 0
$$199$$ 20.0000 1.41776 0.708881 0.705328i $$-0.249200\pi$$
0.708881 + 0.705328i $$0.249200\pi$$
$$200$$ 0 0
$$201$$ 8.00000 0.564276
$$202$$ 0 0
$$203$$ 6.00000 0.421117
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ 0 0
$$210$$ 0 0
$$211$$ 4.00000 0.275371 0.137686 0.990476i $$-0.456034\pi$$
0.137686 + 0.990476i $$0.456034\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ −4.00000 −0.271538
$$218$$ 0 0
$$219$$ 4.00000 0.270295
$$220$$ 0 0
$$221$$ 24.0000 1.61441
$$222$$ 0 0
$$223$$ 8.00000 0.535720 0.267860 0.963458i $$-0.413684\pi$$
0.267860 + 0.963458i $$0.413684\pi$$
$$224$$ 0 0
$$225$$ −5.00000 −0.333333
$$226$$ 0 0
$$227$$ −18.0000 −1.19470 −0.597351 0.801980i $$-0.703780\pi$$
−0.597351 + 0.801980i $$0.703780\pi$$
$$228$$ 0 0
$$229$$ 4.00000 0.264327 0.132164 0.991228i $$-0.457808\pi$$
0.132164 + 0.991228i $$0.457808\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ −6.00000 −0.393073 −0.196537 0.980497i $$-0.562969\pi$$
−0.196537 + 0.980497i $$0.562969\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ 16.0000 1.03931
$$238$$ 0 0
$$239$$ 24.0000 1.55243 0.776215 0.630468i $$-0.217137\pi$$
0.776215 + 0.630468i $$0.217137\pi$$
$$240$$ 0 0
$$241$$ −10.0000 −0.644157 −0.322078 0.946713i $$-0.604381\pi$$
−0.322078 + 0.946713i $$0.604381\pi$$
$$242$$ 0 0
$$243$$ −10.0000 −0.641500
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ −8.00000 −0.509028
$$248$$ 0 0
$$249$$ 12.0000 0.760469
$$250$$ 0 0
$$251$$ 18.0000 1.13615 0.568075 0.822977i $$-0.307688\pi$$
0.568075 + 0.822977i $$0.307688\pi$$
$$252$$ 0 0
$$253$$ 0 0
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ 18.0000 1.12281 0.561405 0.827541i $$-0.310261\pi$$
0.561405 + 0.827541i $$0.310261\pi$$
$$258$$ 0 0
$$259$$ −2.00000 −0.124274
$$260$$ 0 0
$$261$$ 6.00000 0.371391
$$262$$ 0 0
$$263$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ −12.0000 −0.734388
$$268$$ 0 0
$$269$$ 12.0000 0.731653 0.365826 0.930683i $$-0.380786\pi$$
0.365826 + 0.930683i $$0.380786\pi$$
$$270$$ 0 0
$$271$$ −16.0000 −0.971931 −0.485965 0.873978i $$-0.661532\pi$$
−0.485965 + 0.873978i $$0.661532\pi$$
$$272$$ 0 0
$$273$$ 8.00000 0.484182
$$274$$ 0 0
$$275$$ 0 0
$$276$$ 0 0
$$277$$ 10.0000 0.600842 0.300421 0.953807i $$-0.402873\pi$$
0.300421 + 0.953807i $$0.402873\pi$$
$$278$$ 0 0
$$279$$ −4.00000 −0.239474
$$280$$ 0 0
$$281$$ −6.00000 −0.357930 −0.178965 0.983855i $$-0.557275\pi$$
−0.178965 + 0.983855i $$0.557275\pi$$
$$282$$ 0 0
$$283$$ 22.0000 1.30776 0.653882 0.756596i $$-0.273139\pi$$
0.653882 + 0.756596i $$0.273139\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 6.00000 0.354169
$$288$$ 0 0
$$289$$ 19.0000 1.11765
$$290$$ 0 0
$$291$$ −20.0000 −1.17242
$$292$$ 0 0
$$293$$ −24.0000 −1.40209 −0.701047 0.713115i $$-0.747284\pi$$
−0.701047 + 0.713115i $$0.747284\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ 0 0
$$300$$ 0 0
$$301$$ −8.00000 −0.461112
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ 0 0
$$306$$ 0 0
$$307$$ −2.00000 −0.114146 −0.0570730 0.998370i $$-0.518177\pi$$
−0.0570730 + 0.998370i $$0.518177\pi$$
$$308$$ 0 0
$$309$$ −8.00000 −0.455104
$$310$$ 0 0
$$311$$ −24.0000 −1.36092 −0.680458 0.732787i $$-0.738219\pi$$
−0.680458 + 0.732787i $$0.738219\pi$$
$$312$$ 0 0
$$313$$ −10.0000 −0.565233 −0.282617 0.959233i $$-0.591202\pi$$
−0.282617 + 0.959233i $$0.591202\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ −6.00000 −0.336994 −0.168497 0.985702i $$-0.553891\pi$$
−0.168497 + 0.985702i $$0.553891\pi$$
$$318$$ 0 0
$$319$$ 0 0
$$320$$ 0 0
$$321$$ −24.0000 −1.33955
$$322$$ 0 0
$$323$$ −12.0000 −0.667698
$$324$$ 0 0
$$325$$ −20.0000 −1.10940
$$326$$ 0 0
$$327$$ −4.00000 −0.221201
$$328$$ 0 0
$$329$$ −12.0000 −0.661581
$$330$$ 0 0
$$331$$ −8.00000 −0.439720 −0.219860 0.975531i $$-0.570560\pi$$
−0.219860 + 0.975531i $$0.570560\pi$$
$$332$$ 0 0
$$333$$ −2.00000 −0.109599
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 0 0
$$337$$ 14.0000 0.762629 0.381314 0.924445i $$-0.375472\pi$$
0.381314 + 0.924445i $$0.375472\pi$$
$$338$$ 0 0
$$339$$ 12.0000 0.651751
$$340$$ 0 0
$$341$$ 0 0
$$342$$ 0 0
$$343$$ 1.00000 0.0539949
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ 24.0000 1.28839 0.644194 0.764862i $$-0.277193\pi$$
0.644194 + 0.764862i $$0.277193\pi$$
$$348$$ 0 0
$$349$$ 28.0000 1.49881 0.749403 0.662114i $$-0.230341\pi$$
0.749403 + 0.662114i $$0.230341\pi$$
$$350$$ 0 0
$$351$$ −16.0000 −0.854017
$$352$$ 0 0
$$353$$ 18.0000 0.958043 0.479022 0.877803i $$-0.340992\pi$$
0.479022 + 0.877803i $$0.340992\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ 12.0000 0.635107
$$358$$ 0 0
$$359$$ −24.0000 −1.26667 −0.633336 0.773877i $$-0.718315\pi$$
−0.633336 + 0.773877i $$0.718315\pi$$
$$360$$ 0 0
$$361$$ −15.0000 −0.789474
$$362$$ 0 0
$$363$$ −22.0000 −1.15470
$$364$$ 0 0
$$365$$ 0 0
$$366$$ 0 0
$$367$$ 8.00000 0.417597 0.208798 0.977959i $$-0.433045\pi$$
0.208798 + 0.977959i $$0.433045\pi$$
$$368$$ 0 0
$$369$$ 6.00000 0.312348
$$370$$ 0 0
$$371$$ −6.00000 −0.311504
$$372$$ 0 0
$$373$$ −14.0000 −0.724893 −0.362446 0.932005i $$-0.618058\pi$$
−0.362446 + 0.932005i $$0.618058\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 24.0000 1.23606
$$378$$ 0 0
$$379$$ 16.0000 0.821865 0.410932 0.911666i $$-0.365203\pi$$
0.410932 + 0.911666i $$0.365203\pi$$
$$380$$ 0 0
$$381$$ −32.0000 −1.63941
$$382$$ 0 0
$$383$$ 36.0000 1.83951 0.919757 0.392488i $$-0.128386\pi$$
0.919757 + 0.392488i $$0.128386\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ −8.00000 −0.406663
$$388$$ 0 0
$$389$$ −18.0000 −0.912636 −0.456318 0.889817i $$-0.650832\pi$$
−0.456318 + 0.889817i $$0.650832\pi$$
$$390$$ 0 0
$$391$$ 0 0
$$392$$ 0 0
$$393$$ −36.0000 −1.81596
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0 0
$$397$$ −20.0000 −1.00377 −0.501886 0.864934i $$-0.667360\pi$$
−0.501886 + 0.864934i $$0.667360\pi$$
$$398$$ 0 0
$$399$$ −4.00000 −0.200250
$$400$$ 0 0
$$401$$ −18.0000 −0.898877 −0.449439 0.893311i $$-0.648376\pi$$
−0.449439 + 0.893311i $$0.648376\pi$$
$$402$$ 0 0
$$403$$ −16.0000 −0.797017
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 0 0
$$408$$ 0 0
$$409$$ 14.0000 0.692255 0.346128 0.938187i $$-0.387496\pi$$
0.346128 + 0.938187i $$0.387496\pi$$
$$410$$ 0 0
$$411$$ 36.0000 1.77575
$$412$$ 0 0
$$413$$ 6.00000 0.295241
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ −28.0000 −1.37117
$$418$$ 0 0
$$419$$ −6.00000 −0.293119 −0.146560 0.989202i $$-0.546820\pi$$
−0.146560 + 0.989202i $$0.546820\pi$$
$$420$$ 0 0
$$421$$ 10.0000 0.487370 0.243685 0.969854i $$-0.421644\pi$$
0.243685 + 0.969854i $$0.421644\pi$$
$$422$$ 0 0
$$423$$ −12.0000 −0.583460
$$424$$ 0 0
$$425$$ −30.0000 −1.45521
$$426$$ 0 0
$$427$$ −8.00000 −0.387147
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 24.0000 1.15604 0.578020 0.816023i $$-0.303826\pi$$
0.578020 + 0.816023i $$0.303826\pi$$
$$432$$ 0 0
$$433$$ −34.0000 −1.63394 −0.816968 0.576683i $$-0.804347\pi$$
−0.816968 + 0.576683i $$0.804347\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 0 0
$$438$$ 0 0
$$439$$ 8.00000 0.381819 0.190910 0.981608i $$-0.438856\pi$$
0.190910 + 0.981608i $$0.438856\pi$$
$$440$$ 0 0
$$441$$ 1.00000 0.0476190
$$442$$ 0 0
$$443$$ 12.0000 0.570137 0.285069 0.958507i $$-0.407984\pi$$
0.285069 + 0.958507i $$0.407984\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 0 0
$$447$$ 36.0000 1.70274
$$448$$ 0 0
$$449$$ 18.0000 0.849473 0.424736 0.905317i $$-0.360367\pi$$
0.424736 + 0.905317i $$0.360367\pi$$
$$450$$ 0 0
$$451$$ 0 0
$$452$$ 0 0
$$453$$ 16.0000 0.751746
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ −10.0000 −0.467780 −0.233890 0.972263i $$-0.575146\pi$$
−0.233890 + 0.972263i $$0.575146\pi$$
$$458$$ 0 0
$$459$$ −24.0000 −1.12022
$$460$$ 0 0
$$461$$ −12.0000 −0.558896 −0.279448 0.960161i $$-0.590151\pi$$
−0.279448 + 0.960161i $$0.590151\pi$$
$$462$$ 0 0
$$463$$ 32.0000 1.48717 0.743583 0.668644i $$-0.233125\pi$$
0.743583 + 0.668644i $$0.233125\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ 6.00000 0.277647 0.138823 0.990317i $$-0.455668\pi$$
0.138823 + 0.990317i $$0.455668\pi$$
$$468$$ 0 0
$$469$$ 4.00000 0.184703
$$470$$ 0 0
$$471$$ 8.00000 0.368621
$$472$$ 0 0
$$473$$ 0 0
$$474$$ 0 0
$$475$$ 10.0000 0.458831
$$476$$ 0 0
$$477$$ −6.00000 −0.274721
$$478$$ 0 0
$$479$$ −36.0000 −1.64488 −0.822441 0.568850i $$-0.807388\pi$$
−0.822441 + 0.568850i $$0.807388\pi$$
$$480$$ 0 0
$$481$$ −8.00000 −0.364769
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ 0 0
$$486$$ 0 0
$$487$$ −16.0000 −0.725029 −0.362515 0.931978i $$-0.618082\pi$$
−0.362515 + 0.931978i $$0.618082\pi$$
$$488$$ 0 0
$$489$$ 32.0000 1.44709
$$490$$ 0 0
$$491$$ 12.0000 0.541552 0.270776 0.962642i $$-0.412720\pi$$
0.270776 + 0.962642i $$0.412720\pi$$
$$492$$ 0 0
$$493$$ 36.0000 1.62136
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ 4.00000 0.179065 0.0895323 0.995984i $$-0.471463\pi$$
0.0895323 + 0.995984i $$0.471463\pi$$
$$500$$ 0 0
$$501$$ −24.0000 −1.07224
$$502$$ 0 0
$$503$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ 6.00000 0.266469
$$508$$ 0 0
$$509$$ −36.0000 −1.59567 −0.797836 0.602875i $$-0.794022\pi$$
−0.797836 + 0.602875i $$0.794022\pi$$
$$510$$ 0 0
$$511$$ 2.00000 0.0884748
$$512$$ 0 0
$$513$$ 8.00000 0.353209
$$514$$ 0 0
$$515$$ 0 0
$$516$$ 0 0
$$517$$ 0 0
$$518$$ 0 0
$$519$$ 24.0000 1.05348
$$520$$ 0 0
$$521$$ 6.00000 0.262865 0.131432 0.991325i $$-0.458042\pi$$
0.131432 + 0.991325i $$0.458042\pi$$
$$522$$ 0 0
$$523$$ −2.00000 −0.0874539 −0.0437269 0.999044i $$-0.513923\pi$$
−0.0437269 + 0.999044i $$0.513923\pi$$
$$524$$ 0 0
$$525$$ −10.0000 −0.436436
$$526$$ 0 0
$$527$$ −24.0000 −1.04546
$$528$$ 0 0
$$529$$ −23.0000 −1.00000
$$530$$ 0 0
$$531$$ 6.00000 0.260378
$$532$$ 0 0
$$533$$ 24.0000 1.03956
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ 24.0000 1.03568
$$538$$ 0 0
$$539$$ 0 0
$$540$$ 0 0
$$541$$ −38.0000 −1.63375 −0.816874 0.576816i $$-0.804295\pi$$
−0.816874 + 0.576816i $$0.804295\pi$$
$$542$$ 0 0
$$543$$ −40.0000 −1.71656
$$544$$ 0 0
$$545$$ 0 0
$$546$$ 0 0
$$547$$ −8.00000 −0.342055 −0.171028 0.985266i $$-0.554709\pi$$
−0.171028 + 0.985266i $$0.554709\pi$$
$$548$$ 0 0
$$549$$ −8.00000 −0.341432
$$550$$ 0 0
$$551$$ −12.0000 −0.511217
$$552$$ 0 0
$$553$$ 8.00000 0.340195
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ −6.00000 −0.254228 −0.127114 0.991888i $$-0.540571\pi$$
−0.127114 + 0.991888i $$0.540571\pi$$
$$558$$ 0 0
$$559$$ −32.0000 −1.35346
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ −30.0000 −1.26435 −0.632175 0.774826i $$-0.717837\pi$$
−0.632175 + 0.774826i $$0.717837\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0 0
$$567$$ −11.0000 −0.461957
$$568$$ 0 0
$$569$$ 6.00000 0.251533 0.125767 0.992060i $$-0.459861\pi$$
0.125767 + 0.992060i $$0.459861\pi$$
$$570$$ 0 0
$$571$$ −32.0000 −1.33916 −0.669579 0.742741i $$-0.733526\pi$$
−0.669579 + 0.742741i $$0.733526\pi$$
$$572$$ 0 0
$$573$$ 48.0000 2.00523
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0 0
$$577$$ 2.00000 0.0832611 0.0416305 0.999133i $$-0.486745\pi$$
0.0416305 + 0.999133i $$0.486745\pi$$
$$578$$ 0 0
$$579$$ 28.0000 1.16364
$$580$$ 0 0
$$581$$ 6.00000 0.248922
$$582$$ 0 0
$$583$$ 0 0
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 42.0000 1.73353 0.866763 0.498721i $$-0.166197\pi$$
0.866763 + 0.498721i $$0.166197\pi$$
$$588$$ 0 0
$$589$$ 8.00000 0.329634
$$590$$ 0 0
$$591$$ 36.0000 1.48084
$$592$$ 0 0
$$593$$ −6.00000 −0.246390 −0.123195 0.992382i $$-0.539314\pi$$
−0.123195 + 0.992382i $$0.539314\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 40.0000 1.63709
$$598$$ 0 0
$$599$$ −24.0000 −0.980613 −0.490307 0.871550i $$-0.663115\pi$$
−0.490307 + 0.871550i $$0.663115\pi$$
$$600$$ 0 0
$$601$$ 26.0000 1.06056 0.530281 0.847822i $$-0.322086\pi$$
0.530281 + 0.847822i $$0.322086\pi$$
$$602$$ 0 0
$$603$$ 4.00000 0.162893
$$604$$ 0 0
$$605$$ 0 0
$$606$$ 0 0
$$607$$ 32.0000 1.29884 0.649420 0.760430i $$-0.275012\pi$$
0.649420 + 0.760430i $$0.275012\pi$$
$$608$$ 0 0
$$609$$ 12.0000 0.486265
$$610$$ 0 0
$$611$$ −48.0000 −1.94187
$$612$$ 0 0
$$613$$ −2.00000 −0.0807792 −0.0403896 0.999184i $$-0.512860\pi$$
−0.0403896 + 0.999184i $$0.512860\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ 6.00000 0.241551 0.120775 0.992680i $$-0.461462\pi$$
0.120775 + 0.992680i $$0.461462\pi$$
$$618$$ 0 0
$$619$$ −26.0000 −1.04503 −0.522514 0.852631i $$-0.675006\pi$$
−0.522514 + 0.852631i $$0.675006\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ −6.00000 −0.240385
$$624$$ 0 0
$$625$$ 25.0000 1.00000
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ −12.0000 −0.478471
$$630$$ 0 0
$$631$$ −16.0000 −0.636950 −0.318475 0.947931i $$-0.603171\pi$$
−0.318475 + 0.947931i $$0.603171\pi$$
$$632$$ 0 0
$$633$$ 8.00000 0.317971
$$634$$ 0 0
$$635$$ 0 0
$$636$$ 0 0
$$637$$ 4.00000 0.158486
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ −18.0000 −0.710957 −0.355479 0.934684i $$-0.615682\pi$$
−0.355479 + 0.934684i $$0.615682\pi$$
$$642$$ 0 0
$$643$$ −14.0000 −0.552106 −0.276053 0.961142i $$-0.589027\pi$$
−0.276053 + 0.961142i $$0.589027\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ −12.0000 −0.471769 −0.235884 0.971781i $$-0.575799\pi$$
−0.235884 + 0.971781i $$0.575799\pi$$
$$648$$ 0 0
$$649$$ 0 0
$$650$$ 0 0
$$651$$ −8.00000 −0.313545
$$652$$ 0 0
$$653$$ −18.0000 −0.704394 −0.352197 0.935926i $$-0.614565\pi$$
−0.352197 + 0.935926i $$0.614565\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ 2.00000 0.0780274
$$658$$ 0 0
$$659$$ 24.0000 0.934907 0.467454 0.884018i $$-0.345171\pi$$
0.467454 + 0.884018i $$0.345171\pi$$
$$660$$ 0 0
$$661$$ 40.0000 1.55582 0.777910 0.628376i $$-0.216280\pi$$
0.777910 + 0.628376i $$0.216280\pi$$
$$662$$ 0 0
$$663$$ 48.0000 1.86417
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 0 0
$$668$$ 0 0
$$669$$ 16.0000 0.618596
$$670$$ 0 0
$$671$$ 0 0
$$672$$ 0 0
$$673$$ 26.0000 1.00223 0.501113 0.865382i $$-0.332924\pi$$
0.501113 + 0.865382i $$0.332924\pi$$
$$674$$ 0 0
$$675$$ 20.0000 0.769800
$$676$$ 0 0
$$677$$ 12.0000 0.461197 0.230599 0.973049i $$-0.425932\pi$$
0.230599 + 0.973049i $$0.425932\pi$$
$$678$$ 0 0
$$679$$ −10.0000 −0.383765
$$680$$ 0 0
$$681$$ −36.0000 −1.37952
$$682$$ 0 0
$$683$$ 12.0000 0.459167 0.229584 0.973289i $$-0.426264\pi$$
0.229584 + 0.973289i $$0.426264\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ 0 0
$$687$$ 8.00000 0.305219
$$688$$ 0 0
$$689$$ −24.0000 −0.914327
$$690$$ 0 0
$$691$$ 46.0000 1.74992 0.874961 0.484193i $$-0.160887\pi$$
0.874961 + 0.484193i $$0.160887\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ 36.0000 1.36360
$$698$$ 0 0
$$699$$ −12.0000 −0.453882
$$700$$ 0 0
$$701$$ −18.0000 −0.679851 −0.339925 0.940452i $$-0.610402\pi$$
−0.339925 + 0.940452i $$0.610402\pi$$
$$702$$ 0 0
$$703$$ 4.00000 0.150863
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 0 0
$$708$$ 0 0
$$709$$ 46.0000 1.72757 0.863783 0.503864i $$-0.168089\pi$$
0.863783 + 0.503864i $$0.168089\pi$$
$$710$$ 0 0
$$711$$ 8.00000 0.300023
$$712$$ 0 0
$$713$$ 0 0
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 48.0000 1.79259
$$718$$ 0 0
$$719$$ 12.0000 0.447524 0.223762 0.974644i $$-0.428166\pi$$
0.223762 + 0.974644i $$0.428166\pi$$
$$720$$ 0 0
$$721$$ −4.00000 −0.148968
$$722$$ 0 0
$$723$$ −20.0000 −0.743808
$$724$$ 0 0
$$725$$ −30.0000 −1.11417
$$726$$ 0 0
$$727$$ 44.0000 1.63187 0.815935 0.578144i $$-0.196223\pi$$
0.815935 + 0.578144i $$0.196223\pi$$
$$728$$ 0 0
$$729$$ 13.0000 0.481481
$$730$$ 0 0
$$731$$ −48.0000 −1.77534
$$732$$ 0 0
$$733$$ 40.0000 1.47743 0.738717 0.674016i $$-0.235432\pi$$
0.738717 + 0.674016i $$0.235432\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 0 0
$$738$$ 0 0
$$739$$ 16.0000 0.588570 0.294285 0.955718i $$-0.404919\pi$$
0.294285 + 0.955718i $$0.404919\pi$$
$$740$$ 0 0
$$741$$ −16.0000 −0.587775
$$742$$ 0 0
$$743$$ 24.0000 0.880475 0.440237 0.897881i $$-0.354894\pi$$
0.440237 + 0.897881i $$0.354894\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ 6.00000 0.219529
$$748$$ 0 0
$$749$$ −12.0000 −0.438470
$$750$$ 0 0
$$751$$ −40.0000 −1.45962 −0.729810 0.683650i $$-0.760392\pi$$
−0.729810 + 0.683650i $$0.760392\pi$$
$$752$$ 0 0
$$753$$ 36.0000 1.31191
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ −2.00000 −0.0726912 −0.0363456 0.999339i $$-0.511572\pi$$
−0.0363456 + 0.999339i $$0.511572\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ −18.0000 −0.652499 −0.326250 0.945284i $$-0.605785\pi$$
−0.326250 + 0.945284i $$0.605785\pi$$
$$762$$ 0 0
$$763$$ −2.00000 −0.0724049
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 24.0000 0.866590
$$768$$ 0 0
$$769$$ 14.0000 0.504853 0.252426 0.967616i $$-0.418771\pi$$
0.252426 + 0.967616i $$0.418771\pi$$
$$770$$ 0 0
$$771$$ 36.0000 1.29651
$$772$$ 0 0
$$773$$ −24.0000 −0.863220 −0.431610 0.902060i $$-0.642054\pi$$
−0.431610 + 0.902060i $$0.642054\pi$$
$$774$$ 0 0
$$775$$ 20.0000 0.718421
$$776$$ 0 0
$$777$$ −4.00000 −0.143499
$$778$$ 0 0
$$779$$ −12.0000 −0.429945
$$780$$ 0 0
$$781$$ 0 0
$$782$$ 0 0
$$783$$ −24.0000 −0.857690
$$784$$ 0 0
$$785$$ 0 0
$$786$$ 0 0
$$787$$ 22.0000 0.784215 0.392108 0.919919i $$-0.371746\pi$$
0.392108 + 0.919919i $$0.371746\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 6.00000 0.213335
$$792$$ 0 0
$$793$$ −32.0000 −1.13635
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ 12.0000 0.425062 0.212531 0.977154i $$-0.431829\pi$$
0.212531 + 0.977154i $$0.431829\pi$$
$$798$$ 0 0
$$799$$ −72.0000 −2.54718
$$800$$ 0 0
$$801$$ −6.00000 −0.212000
$$802$$ 0 0
$$803$$ 0 0
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 24.0000 0.844840
$$808$$ 0 0
$$809$$ 6.00000 0.210949 0.105474 0.994422i $$-0.466364\pi$$
0.105474 + 0.994422i $$0.466364\pi$$
$$810$$ 0 0
$$811$$ −2.00000 −0.0702295 −0.0351147 0.999383i $$-0.511180\pi$$
−0.0351147 + 0.999383i $$0.511180\pi$$
$$812$$ 0 0
$$813$$ −32.0000 −1.12229
$$814$$ 0 0
$$815$$ 0 0
$$816$$ 0 0
$$817$$ 16.0000 0.559769
$$818$$ 0 0
$$819$$ 4.00000 0.139771
$$820$$ 0 0
$$821$$ −6.00000 −0.209401 −0.104701 0.994504i $$-0.533388\pi$$
−0.104701 + 0.994504i $$0.533388\pi$$
$$822$$ 0 0
$$823$$ −40.0000 −1.39431 −0.697156 0.716919i $$-0.745552\pi$$
−0.697156 + 0.716919i $$0.745552\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ 36.0000 1.25184 0.625921 0.779886i $$-0.284723\pi$$
0.625921 + 0.779886i $$0.284723\pi$$
$$828$$ 0 0
$$829$$ −56.0000 −1.94496 −0.972480 0.232986i $$-0.925151\pi$$
−0.972480 + 0.232986i $$0.925151\pi$$
$$830$$ 0 0
$$831$$ 20.0000 0.693792
$$832$$ 0 0
$$833$$ 6.00000 0.207888
$$834$$ 0 0
$$835$$ 0 0
$$836$$ 0 0
$$837$$ 16.0000 0.553041
$$838$$ 0 0
$$839$$ 12.0000 0.414286 0.207143 0.978311i $$-0.433583\pi$$
0.207143 + 0.978311i $$0.433583\pi$$
$$840$$ 0 0
$$841$$ 7.00000 0.241379
$$842$$ 0 0
$$843$$ −12.0000 −0.413302
$$844$$ 0 0
$$845$$ 0 0
$$846$$ 0 0
$$847$$ −11.0000 −0.377964
$$848$$ 0 0
$$849$$ 44.0000 1.51008
$$850$$ 0 0
$$851$$ 0 0
$$852$$ 0 0
$$853$$ −44.0000 −1.50653 −0.753266 0.657716i $$-0.771523\pi$$
−0.753266 + 0.657716i $$0.771523\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ −18.0000 −0.614868 −0.307434 0.951569i $$-0.599470\pi$$
−0.307434 + 0.951569i $$0.599470\pi$$
$$858$$ 0 0
$$859$$ −14.0000 −0.477674 −0.238837 0.971060i $$-0.576766\pi$$
−0.238837 + 0.971060i $$0.576766\pi$$
$$860$$ 0 0
$$861$$ 12.0000 0.408959
$$862$$ 0 0
$$863$$ −24.0000 −0.816970 −0.408485 0.912765i $$-0.633943\pi$$
−0.408485 + 0.912765i $$0.633943\pi$$
$$864$$ 0 0
$$865$$ 0 0
$$866$$ 0 0
$$867$$ 38.0000 1.29055
$$868$$ 0 0
$$869$$ 0 0
$$870$$ 0 0
$$871$$ 16.0000 0.542139
$$872$$ 0 0
$$873$$ −10.0000 −0.338449
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ 22.0000 0.742887 0.371444 0.928456i $$-0.378863\pi$$
0.371444 + 0.928456i $$0.378863\pi$$
$$878$$ 0 0
$$879$$ −48.0000 −1.61900
$$880$$ 0 0
$$881$$ −54.0000 −1.81931 −0.909653 0.415369i $$-0.863653\pi$$
−0.909653 + 0.415369i $$0.863653\pi$$
$$882$$ 0 0
$$883$$ −20.0000 −0.673054 −0.336527 0.941674i $$-0.609252\pi$$
−0.336527 + 0.941674i $$0.609252\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ −36.0000 −1.20876 −0.604381 0.796696i $$-0.706579\pi$$
−0.604381 + 0.796696i $$0.706579\pi$$
$$888$$ 0 0
$$889$$ −16.0000 −0.536623
$$890$$ 0 0
$$891$$ 0 0
$$892$$ 0 0
$$893$$ 24.0000 0.803129
$$894$$ 0 0
$$895$$ 0 0
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ −24.0000 −0.800445
$$900$$ 0 0
$$901$$ −36.0000 −1.19933
$$902$$ 0 0
$$903$$ −16.0000 −0.532447
$$904$$ 0 0
$$905$$ 0 0
$$906$$ 0 0
$$907$$ −44.0000 −1.46100 −0.730498 0.682915i $$-0.760712\pi$$
−0.730498 + 0.682915i $$0.760712\pi$$
$$908$$ 0 0
$$909$$ 0 0
$$910$$ 0 0
$$911$$ 48.0000 1.59031 0.795155 0.606406i $$-0.207389\pi$$
0.795155 + 0.606406i $$0.207389\pi$$
$$912$$ 0 0
$$913$$ 0 0
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ −18.0000 −0.594412
$$918$$ 0 0
$$919$$ 56.0000 1.84727 0.923635 0.383274i $$-0.125203\pi$$
0.923635 + 0.383274i $$0.125203\pi$$
$$920$$ 0 0
$$921$$ −4.00000 −0.131804
$$922$$ 0 0
$$923$$ 0 0
$$924$$ 0 0
$$925$$ 10.0000 0.328798
$$926$$ 0 0
$$927$$ −4.00000 −0.131377
$$928$$ 0 0
$$929$$ 6.00000 0.196854 0.0984268 0.995144i $$-0.468619\pi$$
0.0984268 + 0.995144i $$0.468619\pi$$
$$930$$ 0 0
$$931$$ −2.00000 −0.0655474
$$932$$ 0 0
$$933$$ −48.0000 −1.57145
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ 2.00000 0.0653372 0.0326686 0.999466i $$-0.489599\pi$$
0.0326686 + 0.999466i $$0.489599\pi$$
$$938$$ 0 0
$$939$$ −20.0000 −0.652675
$$940$$ 0 0
$$941$$ 24.0000 0.782378 0.391189 0.920310i $$-0.372064\pi$$
0.391189 + 0.920310i $$0.372064\pi$$
$$942$$ 0 0
$$943$$ 0 0
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ −24.0000 −0.779895 −0.389948 0.920837i $$-0.627507\pi$$
−0.389948 + 0.920837i $$0.627507\pi$$
$$948$$ 0 0
$$949$$ 8.00000 0.259691
$$950$$ 0 0
$$951$$ −12.0000 −0.389127
$$952$$ 0 0
$$953$$ −54.0000 −1.74923 −0.874616 0.484817i $$-0.838886\pi$$
−0.874616 + 0.484817i $$0.838886\pi$$
$$954$$ 0 0
$$955$$ 0 0
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ 18.0000 0.581250
$$960$$ 0 0
$$961$$ −15.0000 −0.483871
$$962$$ 0 0
$$963$$ −12.0000 −0.386695
$$964$$ 0 0
$$965$$ 0 0
$$966$$ 0 0
$$967$$ 32.0000 1.02905 0.514525 0.857475i $$-0.327968\pi$$
0.514525 + 0.857475i $$0.327968\pi$$
$$968$$ 0 0
$$969$$ −24.0000 −0.770991
$$970$$ 0 0
$$971$$ 6.00000 0.192549 0.0962746 0.995355i $$-0.469307\pi$$
0.0962746 + 0.995355i $$0.469307\pi$$
$$972$$ 0 0
$$973$$ −14.0000 −0.448819
$$974$$ 0 0
$$975$$ −40.0000 −1.28103
$$976$$ 0 0
$$977$$ −6.00000 −0.191957 −0.0959785 0.995383i $$-0.530598\pi$$
−0.0959785 + 0.995383i $$0.530598\pi$$
$$978$$ 0 0
$$979$$ 0 0
$$980$$ 0 0
$$981$$ −2.00000 −0.0638551
$$982$$ 0 0
$$983$$ −36.0000 −1.14822 −0.574111 0.818778i $$-0.694652\pi$$
−0.574111 + 0.818778i $$0.694652\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ 0 0
$$987$$ −24.0000 −0.763928
$$988$$ 0 0
$$989$$ 0 0
$$990$$ 0 0
$$991$$ −16.0000 −0.508257 −0.254128 0.967170i $$-0.581789\pi$$
−0.254128 + 0.967170i $$0.581789\pi$$
$$992$$ 0 0
$$993$$ −16.0000 −0.507745
$$994$$ 0 0
$$995$$ 0 0
$$996$$ 0 0
$$997$$ −8.00000 −0.253363 −0.126681 0.991943i $$-0.540433\pi$$
−0.126681 + 0.991943i $$0.540433\pi$$
$$998$$ 0 0
$$999$$ 8.00000 0.253109
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.2.a.g.1.1 1
3.2 odd 2 4032.2.a.w.1.1 1
4.3 odd 2 448.2.a.a.1.1 1
7.6 odd 2 3136.2.a.e.1.1 1
8.3 odd 2 112.2.a.c.1.1 1
8.5 even 2 14.2.a.a.1.1 1
12.11 even 2 4032.2.a.r.1.1 1
16.3 odd 4 1792.2.b.g.897.1 2
16.5 even 4 1792.2.b.c.897.1 2
16.11 odd 4 1792.2.b.g.897.2 2
16.13 even 4 1792.2.b.c.897.2 2
24.5 odd 2 126.2.a.b.1.1 1
24.11 even 2 1008.2.a.h.1.1 1
28.27 even 2 3136.2.a.z.1.1 1
40.3 even 4 2800.2.g.h.449.2 2
40.13 odd 4 350.2.c.d.99.2 2
40.19 odd 2 2800.2.a.g.1.1 1
40.27 even 4 2800.2.g.h.449.1 2
40.29 even 2 350.2.a.f.1.1 1
40.37 odd 4 350.2.c.d.99.1 2
56.3 even 6 784.2.i.i.177.1 2
56.5 odd 6 98.2.c.a.67.1 2
56.11 odd 6 784.2.i.c.177.1 2
56.13 odd 2 98.2.a.a.1.1 1
56.19 even 6 784.2.i.i.753.1 2
56.27 even 2 784.2.a.b.1.1 1
56.37 even 6 98.2.c.b.67.1 2
56.45 odd 6 98.2.c.a.79.1 2
56.51 odd 6 784.2.i.c.753.1 2
56.53 even 6 98.2.c.b.79.1 2
72.5 odd 6 1134.2.f.f.379.1 2
72.13 even 6 1134.2.f.l.379.1 2
72.29 odd 6 1134.2.f.f.757.1 2
72.61 even 6 1134.2.f.l.757.1 2
88.21 odd 2 1694.2.a.e.1.1 1
104.5 odd 4 2366.2.d.b.337.2 2
104.21 odd 4 2366.2.d.b.337.1 2
104.77 even 2 2366.2.a.j.1.1 1
120.29 odd 2 3150.2.a.i.1.1 1
120.53 even 4 3150.2.g.j.2899.1 2
120.77 even 4 3150.2.g.j.2899.2 2
136.101 even 2 4046.2.a.f.1.1 1
152.37 odd 2 5054.2.a.c.1.1 1
168.5 even 6 882.2.g.d.361.1 2
168.53 odd 6 882.2.g.c.667.1 2
168.83 odd 2 7056.2.a.bd.1.1 1
168.101 even 6 882.2.g.d.667.1 2
168.125 even 2 882.2.a.i.1.1 1
168.149 odd 6 882.2.g.c.361.1 2
184.45 odd 2 7406.2.a.a.1.1 1
280.13 even 4 2450.2.c.c.99.2 2
280.69 odd 2 2450.2.a.t.1.1 1
280.237 even 4 2450.2.c.c.99.1 2

By twisted newform
Twist Min Dim Char Parity Ord Type
14.2.a.a.1.1 1 8.5 even 2
98.2.a.a.1.1 1 56.13 odd 2
98.2.c.a.67.1 2 56.5 odd 6
98.2.c.a.79.1 2 56.45 odd 6
98.2.c.b.67.1 2 56.37 even 6
98.2.c.b.79.1 2 56.53 even 6
112.2.a.c.1.1 1 8.3 odd 2
126.2.a.b.1.1 1 24.5 odd 2
350.2.a.f.1.1 1 40.29 even 2
350.2.c.d.99.1 2 40.37 odd 4
350.2.c.d.99.2 2 40.13 odd 4
448.2.a.a.1.1 1 4.3 odd 2
448.2.a.g.1.1 1 1.1 even 1 trivial
784.2.a.b.1.1 1 56.27 even 2
784.2.i.c.177.1 2 56.11 odd 6
784.2.i.c.753.1 2 56.51 odd 6
784.2.i.i.177.1 2 56.3 even 6
784.2.i.i.753.1 2 56.19 even 6
882.2.a.i.1.1 1 168.125 even 2
882.2.g.c.361.1 2 168.149 odd 6
882.2.g.c.667.1 2 168.53 odd 6
882.2.g.d.361.1 2 168.5 even 6
882.2.g.d.667.1 2 168.101 even 6
1008.2.a.h.1.1 1 24.11 even 2
1134.2.f.f.379.1 2 72.5 odd 6
1134.2.f.f.757.1 2 72.29 odd 6
1134.2.f.l.379.1 2 72.13 even 6
1134.2.f.l.757.1 2 72.61 even 6
1694.2.a.e.1.1 1 88.21 odd 2
1792.2.b.c.897.1 2 16.5 even 4
1792.2.b.c.897.2 2 16.13 even 4
1792.2.b.g.897.1 2 16.3 odd 4
1792.2.b.g.897.2 2 16.11 odd 4
2366.2.a.j.1.1 1 104.77 even 2
2366.2.d.b.337.1 2 104.21 odd 4
2366.2.d.b.337.2 2 104.5 odd 4
2450.2.a.t.1.1 1 280.69 odd 2
2450.2.c.c.99.1 2 280.237 even 4
2450.2.c.c.99.2 2 280.13 even 4
2800.2.a.g.1.1 1 40.19 odd 2
2800.2.g.h.449.1 2 40.27 even 4
2800.2.g.h.449.2 2 40.3 even 4
3136.2.a.e.1.1 1 7.6 odd 2
3136.2.a.z.1.1 1 28.27 even 2
3150.2.a.i.1.1 1 120.29 odd 2
3150.2.g.j.2899.1 2 120.53 even 4
3150.2.g.j.2899.2 2 120.77 even 4
4032.2.a.r.1.1 1 12.11 even 2
4032.2.a.w.1.1 1 3.2 odd 2
4046.2.a.f.1.1 1 136.101 even 2
5054.2.a.c.1.1 1 152.37 odd 2
7056.2.a.bd.1.1 1 168.83 odd 2
7406.2.a.a.1.1 1 184.45 odd 2