Properties

Label 4416.2.a.bg.1.2
Level $4416$
Weight $2$
Character 4416.1
Self dual yes
Analytic conductor $35.262$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4416,2,Mod(1,4416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4416, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4416.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4416 = 2^{6} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4416.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.2619375326\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 69)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 4416.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +3.23607 q^{5} +1.23607 q^{7} +1.00000 q^{9} +4.00000 q^{11} -4.47214 q^{13} -3.23607 q^{15} -7.23607 q^{17} +2.76393 q^{19} -1.23607 q^{21} -1.00000 q^{23} +5.47214 q^{25} -1.00000 q^{27} +4.47214 q^{29} -2.47214 q^{31} -4.00000 q^{33} +4.00000 q^{35} +4.47214 q^{37} +4.47214 q^{39} +6.94427 q^{41} +7.70820 q^{43} +3.23607 q^{45} +4.00000 q^{47} -5.47214 q^{49} +7.23607 q^{51} +0.763932 q^{53} +12.9443 q^{55} -2.76393 q^{57} +12.9443 q^{59} +4.47214 q^{61} +1.23607 q^{63} -14.4721 q^{65} +5.23607 q^{67} +1.00000 q^{69} +8.00000 q^{71} -10.9443 q^{73} -5.47214 q^{75} +4.94427 q^{77} +3.70820 q^{79} +1.00000 q^{81} +4.00000 q^{83} -23.4164 q^{85} -4.47214 q^{87} +3.23607 q^{89} -5.52786 q^{91} +2.47214 q^{93} +8.94427 q^{95} -0.472136 q^{97} +4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{5} - 2 q^{7} + 2 q^{9} + 8 q^{11} - 2 q^{15} - 10 q^{17} + 10 q^{19} + 2 q^{21} - 2 q^{23} + 2 q^{25} - 2 q^{27} + 4 q^{31} - 8 q^{33} + 8 q^{35} - 4 q^{41} + 2 q^{43} + 2 q^{45} + 8 q^{47}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 3.23607 1.44721 0.723607 0.690212i \(-0.242483\pi\)
0.723607 + 0.690212i \(0.242483\pi\)
\(6\) 0 0
\(7\) 1.23607 0.467190 0.233595 0.972334i \(-0.424951\pi\)
0.233595 + 0.972334i \(0.424951\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 0 0
\(13\) −4.47214 −1.24035 −0.620174 0.784465i \(-0.712938\pi\)
−0.620174 + 0.784465i \(0.712938\pi\)
\(14\) 0 0
\(15\) −3.23607 −0.835549
\(16\) 0 0
\(17\) −7.23607 −1.75500 −0.877502 0.479573i \(-0.840792\pi\)
−0.877502 + 0.479573i \(0.840792\pi\)
\(18\) 0 0
\(19\) 2.76393 0.634089 0.317045 0.948411i \(-0.397309\pi\)
0.317045 + 0.948411i \(0.397309\pi\)
\(20\) 0 0
\(21\) −1.23607 −0.269732
\(22\) 0 0
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) 5.47214 1.09443
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 4.47214 0.830455 0.415227 0.909718i \(-0.363702\pi\)
0.415227 + 0.909718i \(0.363702\pi\)
\(30\) 0 0
\(31\) −2.47214 −0.444009 −0.222004 0.975046i \(-0.571260\pi\)
−0.222004 + 0.975046i \(0.571260\pi\)
\(32\) 0 0
\(33\) −4.00000 −0.696311
\(34\) 0 0
\(35\) 4.00000 0.676123
\(36\) 0 0
\(37\) 4.47214 0.735215 0.367607 0.929981i \(-0.380177\pi\)
0.367607 + 0.929981i \(0.380177\pi\)
\(38\) 0 0
\(39\) 4.47214 0.716115
\(40\) 0 0
\(41\) 6.94427 1.08451 0.542257 0.840213i \(-0.317570\pi\)
0.542257 + 0.840213i \(0.317570\pi\)
\(42\) 0 0
\(43\) 7.70820 1.17549 0.587745 0.809046i \(-0.300016\pi\)
0.587745 + 0.809046i \(0.300016\pi\)
\(44\) 0 0
\(45\) 3.23607 0.482405
\(46\) 0 0
\(47\) 4.00000 0.583460 0.291730 0.956501i \(-0.405769\pi\)
0.291730 + 0.956501i \(0.405769\pi\)
\(48\) 0 0
\(49\) −5.47214 −0.781734
\(50\) 0 0
\(51\) 7.23607 1.01325
\(52\) 0 0
\(53\) 0.763932 0.104934 0.0524671 0.998623i \(-0.483292\pi\)
0.0524671 + 0.998623i \(0.483292\pi\)
\(54\) 0 0
\(55\) 12.9443 1.74541
\(56\) 0 0
\(57\) −2.76393 −0.366092
\(58\) 0 0
\(59\) 12.9443 1.68520 0.842600 0.538539i \(-0.181024\pi\)
0.842600 + 0.538539i \(0.181024\pi\)
\(60\) 0 0
\(61\) 4.47214 0.572598 0.286299 0.958140i \(-0.407575\pi\)
0.286299 + 0.958140i \(0.407575\pi\)
\(62\) 0 0
\(63\) 1.23607 0.155730
\(64\) 0 0
\(65\) −14.4721 −1.79505
\(66\) 0 0
\(67\) 5.23607 0.639688 0.319844 0.947470i \(-0.396370\pi\)
0.319844 + 0.947470i \(0.396370\pi\)
\(68\) 0 0
\(69\) 1.00000 0.120386
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) −10.9443 −1.28093 −0.640465 0.767987i \(-0.721258\pi\)
−0.640465 + 0.767987i \(0.721258\pi\)
\(74\) 0 0
\(75\) −5.47214 −0.631868
\(76\) 0 0
\(77\) 4.94427 0.563452
\(78\) 0 0
\(79\) 3.70820 0.417206 0.208603 0.978000i \(-0.433108\pi\)
0.208603 + 0.978000i \(0.433108\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) −23.4164 −2.53987
\(86\) 0 0
\(87\) −4.47214 −0.479463
\(88\) 0 0
\(89\) 3.23607 0.343023 0.171511 0.985182i \(-0.445135\pi\)
0.171511 + 0.985182i \(0.445135\pi\)
\(90\) 0 0
\(91\) −5.52786 −0.579478
\(92\) 0 0
\(93\) 2.47214 0.256349
\(94\) 0 0
\(95\) 8.94427 0.917663
\(96\) 0 0
\(97\) −0.472136 −0.0479381 −0.0239691 0.999713i \(-0.507630\pi\)
−0.0239691 + 0.999713i \(0.507630\pi\)
\(98\) 0 0
\(99\) 4.00000 0.402015
\(100\) 0 0
\(101\) −10.9443 −1.08900 −0.544498 0.838762i \(-0.683280\pi\)
−0.544498 + 0.838762i \(0.683280\pi\)
\(102\) 0 0
\(103\) 6.76393 0.666470 0.333235 0.942844i \(-0.391860\pi\)
0.333235 + 0.942844i \(0.391860\pi\)
\(104\) 0 0
\(105\) −4.00000 −0.390360
\(106\) 0 0
\(107\) −0.944272 −0.0912862 −0.0456431 0.998958i \(-0.514534\pi\)
−0.0456431 + 0.998958i \(0.514534\pi\)
\(108\) 0 0
\(109\) −2.94427 −0.282010 −0.141005 0.990009i \(-0.545033\pi\)
−0.141005 + 0.990009i \(0.545033\pi\)
\(110\) 0 0
\(111\) −4.47214 −0.424476
\(112\) 0 0
\(113\) 16.1803 1.52212 0.761059 0.648682i \(-0.224680\pi\)
0.761059 + 0.648682i \(0.224680\pi\)
\(114\) 0 0
\(115\) −3.23607 −0.301765
\(116\) 0 0
\(117\) −4.47214 −0.413449
\(118\) 0 0
\(119\) −8.94427 −0.819920
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) −6.94427 −0.626144
\(124\) 0 0
\(125\) 1.52786 0.136656
\(126\) 0 0
\(127\) −10.4721 −0.929252 −0.464626 0.885507i \(-0.653811\pi\)
−0.464626 + 0.885507i \(0.653811\pi\)
\(128\) 0 0
\(129\) −7.70820 −0.678670
\(130\) 0 0
\(131\) −0.944272 −0.0825014 −0.0412507 0.999149i \(-0.513134\pi\)
−0.0412507 + 0.999149i \(0.513134\pi\)
\(132\) 0 0
\(133\) 3.41641 0.296240
\(134\) 0 0
\(135\) −3.23607 −0.278516
\(136\) 0 0
\(137\) 3.23607 0.276476 0.138238 0.990399i \(-0.455856\pi\)
0.138238 + 0.990399i \(0.455856\pi\)
\(138\) 0 0
\(139\) 8.94427 0.758643 0.379322 0.925265i \(-0.376157\pi\)
0.379322 + 0.925265i \(0.376157\pi\)
\(140\) 0 0
\(141\) −4.00000 −0.336861
\(142\) 0 0
\(143\) −17.8885 −1.49592
\(144\) 0 0
\(145\) 14.4721 1.20185
\(146\) 0 0
\(147\) 5.47214 0.451334
\(148\) 0 0
\(149\) −1.70820 −0.139942 −0.0699708 0.997549i \(-0.522291\pi\)
−0.0699708 + 0.997549i \(0.522291\pi\)
\(150\) 0 0
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) 0 0
\(153\) −7.23607 −0.585001
\(154\) 0 0
\(155\) −8.00000 −0.642575
\(156\) 0 0
\(157\) 12.4721 0.995385 0.497692 0.867354i \(-0.334181\pi\)
0.497692 + 0.867354i \(0.334181\pi\)
\(158\) 0 0
\(159\) −0.763932 −0.0605838
\(160\) 0 0
\(161\) −1.23607 −0.0974158
\(162\) 0 0
\(163\) −19.4164 −1.52081 −0.760405 0.649449i \(-0.775000\pi\)
−0.760405 + 0.649449i \(0.775000\pi\)
\(164\) 0 0
\(165\) −12.9443 −1.00771
\(166\) 0 0
\(167\) 4.94427 0.382599 0.191300 0.981532i \(-0.438730\pi\)
0.191300 + 0.981532i \(0.438730\pi\)
\(168\) 0 0
\(169\) 7.00000 0.538462
\(170\) 0 0
\(171\) 2.76393 0.211363
\(172\) 0 0
\(173\) 4.47214 0.340010 0.170005 0.985443i \(-0.445622\pi\)
0.170005 + 0.985443i \(0.445622\pi\)
\(174\) 0 0
\(175\) 6.76393 0.511305
\(176\) 0 0
\(177\) −12.9443 −0.972951
\(178\) 0 0
\(179\) 3.05573 0.228396 0.114198 0.993458i \(-0.463570\pi\)
0.114198 + 0.993458i \(0.463570\pi\)
\(180\) 0 0
\(181\) −23.8885 −1.77562 −0.887811 0.460209i \(-0.847775\pi\)
−0.887811 + 0.460209i \(0.847775\pi\)
\(182\) 0 0
\(183\) −4.47214 −0.330590
\(184\) 0 0
\(185\) 14.4721 1.06401
\(186\) 0 0
\(187\) −28.9443 −2.11661
\(188\) 0 0
\(189\) −1.23607 −0.0899107
\(190\) 0 0
\(191\) −10.4721 −0.757737 −0.378869 0.925450i \(-0.623687\pi\)
−0.378869 + 0.925450i \(0.623687\pi\)
\(192\) 0 0
\(193\) −9.41641 −0.677808 −0.338904 0.940821i \(-0.610056\pi\)
−0.338904 + 0.940821i \(0.610056\pi\)
\(194\) 0 0
\(195\) 14.4721 1.03637
\(196\) 0 0
\(197\) 9.41641 0.670891 0.335446 0.942060i \(-0.391113\pi\)
0.335446 + 0.942060i \(0.391113\pi\)
\(198\) 0 0
\(199\) 3.70820 0.262868 0.131434 0.991325i \(-0.458042\pi\)
0.131434 + 0.991325i \(0.458042\pi\)
\(200\) 0 0
\(201\) −5.23607 −0.369324
\(202\) 0 0
\(203\) 5.52786 0.387980
\(204\) 0 0
\(205\) 22.4721 1.56952
\(206\) 0 0
\(207\) −1.00000 −0.0695048
\(208\) 0 0
\(209\) 11.0557 0.764741
\(210\) 0 0
\(211\) 22.4721 1.54705 0.773523 0.633768i \(-0.218493\pi\)
0.773523 + 0.633768i \(0.218493\pi\)
\(212\) 0 0
\(213\) −8.00000 −0.548151
\(214\) 0 0
\(215\) 24.9443 1.70119
\(216\) 0 0
\(217\) −3.05573 −0.207436
\(218\) 0 0
\(219\) 10.9443 0.739545
\(220\) 0 0
\(221\) 32.3607 2.17681
\(222\) 0 0
\(223\) −9.88854 −0.662186 −0.331093 0.943598i \(-0.607417\pi\)
−0.331093 + 0.943598i \(0.607417\pi\)
\(224\) 0 0
\(225\) 5.47214 0.364809
\(226\) 0 0
\(227\) −22.4721 −1.49153 −0.745764 0.666210i \(-0.767915\pi\)
−0.745764 + 0.666210i \(0.767915\pi\)
\(228\) 0 0
\(229\) 14.9443 0.987545 0.493773 0.869591i \(-0.335618\pi\)
0.493773 + 0.869591i \(0.335618\pi\)
\(230\) 0 0
\(231\) −4.94427 −0.325309
\(232\) 0 0
\(233\) −14.0000 −0.917170 −0.458585 0.888650i \(-0.651644\pi\)
−0.458585 + 0.888650i \(0.651644\pi\)
\(234\) 0 0
\(235\) 12.9443 0.844391
\(236\) 0 0
\(237\) −3.70820 −0.240874
\(238\) 0 0
\(239\) 12.9443 0.837295 0.418648 0.908149i \(-0.362504\pi\)
0.418648 + 0.908149i \(0.362504\pi\)
\(240\) 0 0
\(241\) 28.4721 1.83405 0.917026 0.398828i \(-0.130583\pi\)
0.917026 + 0.398828i \(0.130583\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −17.7082 −1.13134
\(246\) 0 0
\(247\) −12.3607 −0.786491
\(248\) 0 0
\(249\) −4.00000 −0.253490
\(250\) 0 0
\(251\) −1.52786 −0.0964379 −0.0482190 0.998837i \(-0.515355\pi\)
−0.0482190 + 0.998837i \(0.515355\pi\)
\(252\) 0 0
\(253\) −4.00000 −0.251478
\(254\) 0 0
\(255\) 23.4164 1.46639
\(256\) 0 0
\(257\) −22.0000 −1.37232 −0.686161 0.727450i \(-0.740706\pi\)
−0.686161 + 0.727450i \(0.740706\pi\)
\(258\) 0 0
\(259\) 5.52786 0.343485
\(260\) 0 0
\(261\) 4.47214 0.276818
\(262\) 0 0
\(263\) 2.47214 0.152438 0.0762192 0.997091i \(-0.475715\pi\)
0.0762192 + 0.997091i \(0.475715\pi\)
\(264\) 0 0
\(265\) 2.47214 0.151862
\(266\) 0 0
\(267\) −3.23607 −0.198044
\(268\) 0 0
\(269\) −8.47214 −0.516555 −0.258278 0.966071i \(-0.583155\pi\)
−0.258278 + 0.966071i \(0.583155\pi\)
\(270\) 0 0
\(271\) 26.4721 1.60807 0.804034 0.594583i \(-0.202683\pi\)
0.804034 + 0.594583i \(0.202683\pi\)
\(272\) 0 0
\(273\) 5.52786 0.334562
\(274\) 0 0
\(275\) 21.8885 1.31993
\(276\) 0 0
\(277\) 19.8885 1.19499 0.597493 0.801874i \(-0.296163\pi\)
0.597493 + 0.801874i \(0.296163\pi\)
\(278\) 0 0
\(279\) −2.47214 −0.148003
\(280\) 0 0
\(281\) −6.65248 −0.396853 −0.198427 0.980116i \(-0.563583\pi\)
−0.198427 + 0.980116i \(0.563583\pi\)
\(282\) 0 0
\(283\) −7.70820 −0.458205 −0.229103 0.973402i \(-0.573579\pi\)
−0.229103 + 0.973402i \(0.573579\pi\)
\(284\) 0 0
\(285\) −8.94427 −0.529813
\(286\) 0 0
\(287\) 8.58359 0.506673
\(288\) 0 0
\(289\) 35.3607 2.08004
\(290\) 0 0
\(291\) 0.472136 0.0276771
\(292\) 0 0
\(293\) 5.70820 0.333477 0.166738 0.986001i \(-0.446676\pi\)
0.166738 + 0.986001i \(0.446676\pi\)
\(294\) 0 0
\(295\) 41.8885 2.43885
\(296\) 0 0
\(297\) −4.00000 −0.232104
\(298\) 0 0
\(299\) 4.47214 0.258630
\(300\) 0 0
\(301\) 9.52786 0.549177
\(302\) 0 0
\(303\) 10.9443 0.628732
\(304\) 0 0
\(305\) 14.4721 0.828672
\(306\) 0 0
\(307\) −6.47214 −0.369384 −0.184692 0.982796i \(-0.559129\pi\)
−0.184692 + 0.982796i \(0.559129\pi\)
\(308\) 0 0
\(309\) −6.76393 −0.384787
\(310\) 0 0
\(311\) −24.9443 −1.41446 −0.707230 0.706984i \(-0.750055\pi\)
−0.707230 + 0.706984i \(0.750055\pi\)
\(312\) 0 0
\(313\) 22.9443 1.29689 0.648443 0.761263i \(-0.275420\pi\)
0.648443 + 0.761263i \(0.275420\pi\)
\(314\) 0 0
\(315\) 4.00000 0.225374
\(316\) 0 0
\(317\) −29.4164 −1.65219 −0.826095 0.563531i \(-0.809443\pi\)
−0.826095 + 0.563531i \(0.809443\pi\)
\(318\) 0 0
\(319\) 17.8885 1.00157
\(320\) 0 0
\(321\) 0.944272 0.0527041
\(322\) 0 0
\(323\) −20.0000 −1.11283
\(324\) 0 0
\(325\) −24.4721 −1.35747
\(326\) 0 0
\(327\) 2.94427 0.162819
\(328\) 0 0
\(329\) 4.94427 0.272587
\(330\) 0 0
\(331\) −3.41641 −0.187783 −0.0938914 0.995582i \(-0.529931\pi\)
−0.0938914 + 0.995582i \(0.529931\pi\)
\(332\) 0 0
\(333\) 4.47214 0.245072
\(334\) 0 0
\(335\) 16.9443 0.925764
\(336\) 0 0
\(337\) 30.3607 1.65385 0.826926 0.562311i \(-0.190088\pi\)
0.826926 + 0.562311i \(0.190088\pi\)
\(338\) 0 0
\(339\) −16.1803 −0.878795
\(340\) 0 0
\(341\) −9.88854 −0.535495
\(342\) 0 0
\(343\) −15.4164 −0.832408
\(344\) 0 0
\(345\) 3.23607 0.174224
\(346\) 0 0
\(347\) 25.8885 1.38977 0.694885 0.719121i \(-0.255455\pi\)
0.694885 + 0.719121i \(0.255455\pi\)
\(348\) 0 0
\(349\) 32.4721 1.73819 0.869097 0.494642i \(-0.164701\pi\)
0.869097 + 0.494642i \(0.164701\pi\)
\(350\) 0 0
\(351\) 4.47214 0.238705
\(352\) 0 0
\(353\) 9.41641 0.501185 0.250592 0.968093i \(-0.419375\pi\)
0.250592 + 0.968093i \(0.419375\pi\)
\(354\) 0 0
\(355\) 25.8885 1.37402
\(356\) 0 0
\(357\) 8.94427 0.473381
\(358\) 0 0
\(359\) 2.47214 0.130474 0.0652372 0.997870i \(-0.479220\pi\)
0.0652372 + 0.997870i \(0.479220\pi\)
\(360\) 0 0
\(361\) −11.3607 −0.597931
\(362\) 0 0
\(363\) −5.00000 −0.262432
\(364\) 0 0
\(365\) −35.4164 −1.85378
\(366\) 0 0
\(367\) −12.2918 −0.641627 −0.320813 0.947142i \(-0.603956\pi\)
−0.320813 + 0.947142i \(0.603956\pi\)
\(368\) 0 0
\(369\) 6.94427 0.361504
\(370\) 0 0
\(371\) 0.944272 0.0490242
\(372\) 0 0
\(373\) −11.5279 −0.596890 −0.298445 0.954427i \(-0.596468\pi\)
−0.298445 + 0.954427i \(0.596468\pi\)
\(374\) 0 0
\(375\) −1.52786 −0.0788986
\(376\) 0 0
\(377\) −20.0000 −1.03005
\(378\) 0 0
\(379\) −28.0689 −1.44180 −0.720901 0.693038i \(-0.756272\pi\)
−0.720901 + 0.693038i \(0.756272\pi\)
\(380\) 0 0
\(381\) 10.4721 0.536504
\(382\) 0 0
\(383\) −34.4721 −1.76144 −0.880722 0.473634i \(-0.842942\pi\)
−0.880722 + 0.473634i \(0.842942\pi\)
\(384\) 0 0
\(385\) 16.0000 0.815436
\(386\) 0 0
\(387\) 7.70820 0.391830
\(388\) 0 0
\(389\) 10.6525 0.540102 0.270051 0.962846i \(-0.412959\pi\)
0.270051 + 0.962846i \(0.412959\pi\)
\(390\) 0 0
\(391\) 7.23607 0.365944
\(392\) 0 0
\(393\) 0.944272 0.0476322
\(394\) 0 0
\(395\) 12.0000 0.603786
\(396\) 0 0
\(397\) 2.00000 0.100377 0.0501886 0.998740i \(-0.484018\pi\)
0.0501886 + 0.998740i \(0.484018\pi\)
\(398\) 0 0
\(399\) −3.41641 −0.171034
\(400\) 0 0
\(401\) −38.0689 −1.90107 −0.950535 0.310618i \(-0.899464\pi\)
−0.950535 + 0.310618i \(0.899464\pi\)
\(402\) 0 0
\(403\) 11.0557 0.550725
\(404\) 0 0
\(405\) 3.23607 0.160802
\(406\) 0 0
\(407\) 17.8885 0.886702
\(408\) 0 0
\(409\) −9.41641 −0.465611 −0.232806 0.972523i \(-0.574791\pi\)
−0.232806 + 0.972523i \(0.574791\pi\)
\(410\) 0 0
\(411\) −3.23607 −0.159623
\(412\) 0 0
\(413\) 16.0000 0.787309
\(414\) 0 0
\(415\) 12.9443 0.635409
\(416\) 0 0
\(417\) −8.94427 −0.438003
\(418\) 0 0
\(419\) −21.8885 −1.06933 −0.534663 0.845066i \(-0.679561\pi\)
−0.534663 + 0.845066i \(0.679561\pi\)
\(420\) 0 0
\(421\) 13.0557 0.636297 0.318149 0.948041i \(-0.396939\pi\)
0.318149 + 0.948041i \(0.396939\pi\)
\(422\) 0 0
\(423\) 4.00000 0.194487
\(424\) 0 0
\(425\) −39.5967 −1.92072
\(426\) 0 0
\(427\) 5.52786 0.267512
\(428\) 0 0
\(429\) 17.8885 0.863667
\(430\) 0 0
\(431\) −8.00000 −0.385346 −0.192673 0.981263i \(-0.561716\pi\)
−0.192673 + 0.981263i \(0.561716\pi\)
\(432\) 0 0
\(433\) −7.88854 −0.379099 −0.189550 0.981871i \(-0.560703\pi\)
−0.189550 + 0.981871i \(0.560703\pi\)
\(434\) 0 0
\(435\) −14.4721 −0.693886
\(436\) 0 0
\(437\) −2.76393 −0.132217
\(438\) 0 0
\(439\) −25.8885 −1.23559 −0.617796 0.786338i \(-0.711974\pi\)
−0.617796 + 0.786338i \(0.711974\pi\)
\(440\) 0 0
\(441\) −5.47214 −0.260578
\(442\) 0 0
\(443\) 18.8328 0.894774 0.447387 0.894340i \(-0.352355\pi\)
0.447387 + 0.894340i \(0.352355\pi\)
\(444\) 0 0
\(445\) 10.4721 0.496427
\(446\) 0 0
\(447\) 1.70820 0.0807953
\(448\) 0 0
\(449\) −2.94427 −0.138949 −0.0694744 0.997584i \(-0.522132\pi\)
−0.0694744 + 0.997584i \(0.522132\pi\)
\(450\) 0 0
\(451\) 27.7771 1.30797
\(452\) 0 0
\(453\) −16.0000 −0.751746
\(454\) 0 0
\(455\) −17.8885 −0.838628
\(456\) 0 0
\(457\) −0.472136 −0.0220856 −0.0110428 0.999939i \(-0.503515\pi\)
−0.0110428 + 0.999939i \(0.503515\pi\)
\(458\) 0 0
\(459\) 7.23607 0.337751
\(460\) 0 0
\(461\) −21.4164 −0.997462 −0.498731 0.866757i \(-0.666200\pi\)
−0.498731 + 0.866757i \(0.666200\pi\)
\(462\) 0 0
\(463\) −4.94427 −0.229780 −0.114890 0.993378i \(-0.536652\pi\)
−0.114890 + 0.993378i \(0.536652\pi\)
\(464\) 0 0
\(465\) 8.00000 0.370991
\(466\) 0 0
\(467\) −24.3607 −1.12728 −0.563639 0.826021i \(-0.690599\pi\)
−0.563639 + 0.826021i \(0.690599\pi\)
\(468\) 0 0
\(469\) 6.47214 0.298855
\(470\) 0 0
\(471\) −12.4721 −0.574686
\(472\) 0 0
\(473\) 30.8328 1.41769
\(474\) 0 0
\(475\) 15.1246 0.693965
\(476\) 0 0
\(477\) 0.763932 0.0349780
\(478\) 0 0
\(479\) −1.88854 −0.0862898 −0.0431449 0.999069i \(-0.513738\pi\)
−0.0431449 + 0.999069i \(0.513738\pi\)
\(480\) 0 0
\(481\) −20.0000 −0.911922
\(482\) 0 0
\(483\) 1.23607 0.0562430
\(484\) 0 0
\(485\) −1.52786 −0.0693767
\(486\) 0 0
\(487\) −24.0000 −1.08754 −0.543772 0.839233i \(-0.683004\pi\)
−0.543772 + 0.839233i \(0.683004\pi\)
\(488\) 0 0
\(489\) 19.4164 0.878040
\(490\) 0 0
\(491\) 40.0000 1.80517 0.902587 0.430507i \(-0.141665\pi\)
0.902587 + 0.430507i \(0.141665\pi\)
\(492\) 0 0
\(493\) −32.3607 −1.45745
\(494\) 0 0
\(495\) 12.9443 0.581802
\(496\) 0 0
\(497\) 9.88854 0.443562
\(498\) 0 0
\(499\) 32.3607 1.44866 0.724331 0.689452i \(-0.242149\pi\)
0.724331 + 0.689452i \(0.242149\pi\)
\(500\) 0 0
\(501\) −4.94427 −0.220894
\(502\) 0 0
\(503\) 36.9443 1.64726 0.823632 0.567125i \(-0.191944\pi\)
0.823632 + 0.567125i \(0.191944\pi\)
\(504\) 0 0
\(505\) −35.4164 −1.57601
\(506\) 0 0
\(507\) −7.00000 −0.310881
\(508\) 0 0
\(509\) 7.52786 0.333667 0.166833 0.985985i \(-0.446646\pi\)
0.166833 + 0.985985i \(0.446646\pi\)
\(510\) 0 0
\(511\) −13.5279 −0.598437
\(512\) 0 0
\(513\) −2.76393 −0.122031
\(514\) 0 0
\(515\) 21.8885 0.964524
\(516\) 0 0
\(517\) 16.0000 0.703679
\(518\) 0 0
\(519\) −4.47214 −0.196305
\(520\) 0 0
\(521\) −28.7639 −1.26017 −0.630085 0.776526i \(-0.716980\pi\)
−0.630085 + 0.776526i \(0.716980\pi\)
\(522\) 0 0
\(523\) −33.5967 −1.46908 −0.734542 0.678564i \(-0.762603\pi\)
−0.734542 + 0.678564i \(0.762603\pi\)
\(524\) 0 0
\(525\) −6.76393 −0.295202
\(526\) 0 0
\(527\) 17.8885 0.779237
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 12.9443 0.561734
\(532\) 0 0
\(533\) −31.0557 −1.34517
\(534\) 0 0
\(535\) −3.05573 −0.132111
\(536\) 0 0
\(537\) −3.05573 −0.131864
\(538\) 0 0
\(539\) −21.8885 −0.942806
\(540\) 0 0
\(541\) 24.4721 1.05214 0.526070 0.850441i \(-0.323665\pi\)
0.526070 + 0.850441i \(0.323665\pi\)
\(542\) 0 0
\(543\) 23.8885 1.02516
\(544\) 0 0
\(545\) −9.52786 −0.408129
\(546\) 0 0
\(547\) 22.4721 0.960839 0.480420 0.877039i \(-0.340484\pi\)
0.480420 + 0.877039i \(0.340484\pi\)
\(548\) 0 0
\(549\) 4.47214 0.190866
\(550\) 0 0
\(551\) 12.3607 0.526583
\(552\) 0 0
\(553\) 4.58359 0.194914
\(554\) 0 0
\(555\) −14.4721 −0.614308
\(556\) 0 0
\(557\) 19.8197 0.839786 0.419893 0.907574i \(-0.362068\pi\)
0.419893 + 0.907574i \(0.362068\pi\)
\(558\) 0 0
\(559\) −34.4721 −1.45802
\(560\) 0 0
\(561\) 28.9443 1.22203
\(562\) 0 0
\(563\) 19.4164 0.818304 0.409152 0.912466i \(-0.365825\pi\)
0.409152 + 0.912466i \(0.365825\pi\)
\(564\) 0 0
\(565\) 52.3607 2.20283
\(566\) 0 0
\(567\) 1.23607 0.0519100
\(568\) 0 0
\(569\) −15.2361 −0.638729 −0.319365 0.947632i \(-0.603469\pi\)
−0.319365 + 0.947632i \(0.603469\pi\)
\(570\) 0 0
\(571\) 16.2918 0.681790 0.340895 0.940101i \(-0.389270\pi\)
0.340895 + 0.940101i \(0.389270\pi\)
\(572\) 0 0
\(573\) 10.4721 0.437480
\(574\) 0 0
\(575\) −5.47214 −0.228204
\(576\) 0 0
\(577\) 16.4721 0.685744 0.342872 0.939382i \(-0.388600\pi\)
0.342872 + 0.939382i \(0.388600\pi\)
\(578\) 0 0
\(579\) 9.41641 0.391333
\(580\) 0 0
\(581\) 4.94427 0.205123
\(582\) 0 0
\(583\) 3.05573 0.126555
\(584\) 0 0
\(585\) −14.4721 −0.598349
\(586\) 0 0
\(587\) 16.9443 0.699365 0.349682 0.936868i \(-0.386289\pi\)
0.349682 + 0.936868i \(0.386289\pi\)
\(588\) 0 0
\(589\) −6.83282 −0.281541
\(590\) 0 0
\(591\) −9.41641 −0.387339
\(592\) 0 0
\(593\) 34.0000 1.39621 0.698106 0.715994i \(-0.254026\pi\)
0.698106 + 0.715994i \(0.254026\pi\)
\(594\) 0 0
\(595\) −28.9443 −1.18660
\(596\) 0 0
\(597\) −3.70820 −0.151767
\(598\) 0 0
\(599\) 20.9443 0.855760 0.427880 0.903836i \(-0.359261\pi\)
0.427880 + 0.903836i \(0.359261\pi\)
\(600\) 0 0
\(601\) 2.36068 0.0962941 0.0481471 0.998840i \(-0.484668\pi\)
0.0481471 + 0.998840i \(0.484668\pi\)
\(602\) 0 0
\(603\) 5.23607 0.213229
\(604\) 0 0
\(605\) 16.1803 0.657824
\(606\) 0 0
\(607\) −38.8328 −1.57618 −0.788088 0.615563i \(-0.788929\pi\)
−0.788088 + 0.615563i \(0.788929\pi\)
\(608\) 0 0
\(609\) −5.52786 −0.224000
\(610\) 0 0
\(611\) −17.8885 −0.723693
\(612\) 0 0
\(613\) 31.5279 1.27340 0.636699 0.771112i \(-0.280299\pi\)
0.636699 + 0.771112i \(0.280299\pi\)
\(614\) 0 0
\(615\) −22.4721 −0.906164
\(616\) 0 0
\(617\) −33.7082 −1.35704 −0.678521 0.734581i \(-0.737379\pi\)
−0.678521 + 0.734581i \(0.737379\pi\)
\(618\) 0 0
\(619\) 31.1246 1.25100 0.625502 0.780223i \(-0.284894\pi\)
0.625502 + 0.780223i \(0.284894\pi\)
\(620\) 0 0
\(621\) 1.00000 0.0401286
\(622\) 0 0
\(623\) 4.00000 0.160257
\(624\) 0 0
\(625\) −22.4164 −0.896656
\(626\) 0 0
\(627\) −11.0557 −0.441523
\(628\) 0 0
\(629\) −32.3607 −1.29030
\(630\) 0 0
\(631\) −6.18034 −0.246035 −0.123018 0.992404i \(-0.539257\pi\)
−0.123018 + 0.992404i \(0.539257\pi\)
\(632\) 0 0
\(633\) −22.4721 −0.893187
\(634\) 0 0
\(635\) −33.8885 −1.34483
\(636\) 0 0
\(637\) 24.4721 0.969621
\(638\) 0 0
\(639\) 8.00000 0.316475
\(640\) 0 0
\(641\) −27.0132 −1.06696 −0.533478 0.845814i \(-0.679115\pi\)
−0.533478 + 0.845814i \(0.679115\pi\)
\(642\) 0 0
\(643\) −20.0689 −0.791440 −0.395720 0.918371i \(-0.629505\pi\)
−0.395720 + 0.918371i \(0.629505\pi\)
\(644\) 0 0
\(645\) −24.9443 −0.982180
\(646\) 0 0
\(647\) −12.0000 −0.471769 −0.235884 0.971781i \(-0.575799\pi\)
−0.235884 + 0.971781i \(0.575799\pi\)
\(648\) 0 0
\(649\) 51.7771 2.03243
\(650\) 0 0
\(651\) 3.05573 0.119763
\(652\) 0 0
\(653\) 5.05573 0.197846 0.0989230 0.995095i \(-0.468460\pi\)
0.0989230 + 0.995095i \(0.468460\pi\)
\(654\) 0 0
\(655\) −3.05573 −0.119397
\(656\) 0 0
\(657\) −10.9443 −0.426977
\(658\) 0 0
\(659\) −8.36068 −0.325686 −0.162843 0.986652i \(-0.552066\pi\)
−0.162843 + 0.986652i \(0.552066\pi\)
\(660\) 0 0
\(661\) 20.4721 0.796274 0.398137 0.917326i \(-0.369657\pi\)
0.398137 + 0.917326i \(0.369657\pi\)
\(662\) 0 0
\(663\) −32.3607 −1.25678
\(664\) 0 0
\(665\) 11.0557 0.428723
\(666\) 0 0
\(667\) −4.47214 −0.173162
\(668\) 0 0
\(669\) 9.88854 0.382313
\(670\) 0 0
\(671\) 17.8885 0.690580
\(672\) 0 0
\(673\) 29.4164 1.13392 0.566960 0.823746i \(-0.308120\pi\)
0.566960 + 0.823746i \(0.308120\pi\)
\(674\) 0 0
\(675\) −5.47214 −0.210623
\(676\) 0 0
\(677\) −37.4853 −1.44068 −0.720338 0.693623i \(-0.756013\pi\)
−0.720338 + 0.693623i \(0.756013\pi\)
\(678\) 0 0
\(679\) −0.583592 −0.0223962
\(680\) 0 0
\(681\) 22.4721 0.861134
\(682\) 0 0
\(683\) −20.0000 −0.765279 −0.382639 0.923898i \(-0.624985\pi\)
−0.382639 + 0.923898i \(0.624985\pi\)
\(684\) 0 0
\(685\) 10.4721 0.400120
\(686\) 0 0
\(687\) −14.9443 −0.570160
\(688\) 0 0
\(689\) −3.41641 −0.130155
\(690\) 0 0
\(691\) −40.3607 −1.53539 −0.767696 0.640814i \(-0.778597\pi\)
−0.767696 + 0.640814i \(0.778597\pi\)
\(692\) 0 0
\(693\) 4.94427 0.187817
\(694\) 0 0
\(695\) 28.9443 1.09792
\(696\) 0 0
\(697\) −50.2492 −1.90333
\(698\) 0 0
\(699\) 14.0000 0.529529
\(700\) 0 0
\(701\) −20.7639 −0.784243 −0.392121 0.919913i \(-0.628259\pi\)
−0.392121 + 0.919913i \(0.628259\pi\)
\(702\) 0 0
\(703\) 12.3607 0.466192
\(704\) 0 0
\(705\) −12.9443 −0.487509
\(706\) 0 0
\(707\) −13.5279 −0.508768
\(708\) 0 0
\(709\) −20.8328 −0.782393 −0.391196 0.920307i \(-0.627939\pi\)
−0.391196 + 0.920307i \(0.627939\pi\)
\(710\) 0 0
\(711\) 3.70820 0.139069
\(712\) 0 0
\(713\) 2.47214 0.0925822
\(714\) 0 0
\(715\) −57.8885 −2.16491
\(716\) 0 0
\(717\) −12.9443 −0.483413
\(718\) 0 0
\(719\) −4.00000 −0.149175 −0.0745874 0.997214i \(-0.523764\pi\)
−0.0745874 + 0.997214i \(0.523764\pi\)
\(720\) 0 0
\(721\) 8.36068 0.311368
\(722\) 0 0
\(723\) −28.4721 −1.05889
\(724\) 0 0
\(725\) 24.4721 0.908872
\(726\) 0 0
\(727\) −32.6525 −1.21101 −0.605507 0.795840i \(-0.707029\pi\)
−0.605507 + 0.795840i \(0.707029\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −55.7771 −2.06299
\(732\) 0 0
\(733\) −22.0000 −0.812589 −0.406294 0.913742i \(-0.633179\pi\)
−0.406294 + 0.913742i \(0.633179\pi\)
\(734\) 0 0
\(735\) 17.7082 0.653177
\(736\) 0 0
\(737\) 20.9443 0.771492
\(738\) 0 0
\(739\) 26.8328 0.987061 0.493531 0.869728i \(-0.335706\pi\)
0.493531 + 0.869728i \(0.335706\pi\)
\(740\) 0 0
\(741\) 12.3607 0.454081
\(742\) 0 0
\(743\) −20.3607 −0.746961 −0.373480 0.927638i \(-0.621836\pi\)
−0.373480 + 0.927638i \(0.621836\pi\)
\(744\) 0 0
\(745\) −5.52786 −0.202525
\(746\) 0 0
\(747\) 4.00000 0.146352
\(748\) 0 0
\(749\) −1.16718 −0.0426480
\(750\) 0 0
\(751\) 8.06888 0.294438 0.147219 0.989104i \(-0.452968\pi\)
0.147219 + 0.989104i \(0.452968\pi\)
\(752\) 0 0
\(753\) 1.52786 0.0556785
\(754\) 0 0
\(755\) 51.7771 1.88436
\(756\) 0 0
\(757\) −4.11146 −0.149433 −0.0747167 0.997205i \(-0.523805\pi\)
−0.0747167 + 0.997205i \(0.523805\pi\)
\(758\) 0 0
\(759\) 4.00000 0.145191
\(760\) 0 0
\(761\) −2.36068 −0.0855746 −0.0427873 0.999084i \(-0.513624\pi\)
−0.0427873 + 0.999084i \(0.513624\pi\)
\(762\) 0 0
\(763\) −3.63932 −0.131752
\(764\) 0 0
\(765\) −23.4164 −0.846622
\(766\) 0 0
\(767\) −57.8885 −2.09023
\(768\) 0 0
\(769\) −36.8328 −1.32823 −0.664113 0.747633i \(-0.731190\pi\)
−0.664113 + 0.747633i \(0.731190\pi\)
\(770\) 0 0
\(771\) 22.0000 0.792311
\(772\) 0 0
\(773\) −49.7082 −1.78788 −0.893940 0.448187i \(-0.852070\pi\)
−0.893940 + 0.448187i \(0.852070\pi\)
\(774\) 0 0
\(775\) −13.5279 −0.485935
\(776\) 0 0
\(777\) −5.52786 −0.198311
\(778\) 0 0
\(779\) 19.1935 0.687678
\(780\) 0 0
\(781\) 32.0000 1.14505
\(782\) 0 0
\(783\) −4.47214 −0.159821
\(784\) 0 0
\(785\) 40.3607 1.44053
\(786\) 0 0
\(787\) −0.291796 −0.0104014 −0.00520070 0.999986i \(-0.501655\pi\)
−0.00520070 + 0.999986i \(0.501655\pi\)
\(788\) 0 0
\(789\) −2.47214 −0.0880104
\(790\) 0 0
\(791\) 20.0000 0.711118
\(792\) 0 0
\(793\) −20.0000 −0.710221
\(794\) 0 0
\(795\) −2.47214 −0.0876776
\(796\) 0 0
\(797\) 18.6525 0.660705 0.330352 0.943858i \(-0.392832\pi\)
0.330352 + 0.943858i \(0.392832\pi\)
\(798\) 0 0
\(799\) −28.9443 −1.02397
\(800\) 0 0
\(801\) 3.23607 0.114341
\(802\) 0 0
\(803\) −43.7771 −1.54486
\(804\) 0 0
\(805\) −4.00000 −0.140981
\(806\) 0 0
\(807\) 8.47214 0.298233
\(808\) 0 0
\(809\) 19.3050 0.678726 0.339363 0.940655i \(-0.389789\pi\)
0.339363 + 0.940655i \(0.389789\pi\)
\(810\) 0 0
\(811\) 3.41641 0.119966 0.0599832 0.998199i \(-0.480895\pi\)
0.0599832 + 0.998199i \(0.480895\pi\)
\(812\) 0 0
\(813\) −26.4721 −0.928418
\(814\) 0 0
\(815\) −62.8328 −2.20094
\(816\) 0 0
\(817\) 21.3050 0.745366
\(818\) 0 0
\(819\) −5.52786 −0.193159
\(820\) 0 0
\(821\) −47.8885 −1.67132 −0.835661 0.549246i \(-0.814915\pi\)
−0.835661 + 0.549246i \(0.814915\pi\)
\(822\) 0 0
\(823\) 34.4721 1.20162 0.600812 0.799391i \(-0.294844\pi\)
0.600812 + 0.799391i \(0.294844\pi\)
\(824\) 0 0
\(825\) −21.8885 −0.762061
\(826\) 0 0
\(827\) 35.4164 1.23155 0.615775 0.787922i \(-0.288843\pi\)
0.615775 + 0.787922i \(0.288843\pi\)
\(828\) 0 0
\(829\) 34.3607 1.19340 0.596698 0.802466i \(-0.296479\pi\)
0.596698 + 0.802466i \(0.296479\pi\)
\(830\) 0 0
\(831\) −19.8885 −0.689926
\(832\) 0 0
\(833\) 39.5967 1.37195
\(834\) 0 0
\(835\) 16.0000 0.553703
\(836\) 0 0
\(837\) 2.47214 0.0854495
\(838\) 0 0
\(839\) 39.4164 1.36081 0.680403 0.732838i \(-0.261805\pi\)
0.680403 + 0.732838i \(0.261805\pi\)
\(840\) 0 0
\(841\) −9.00000 −0.310345
\(842\) 0 0
\(843\) 6.65248 0.229123
\(844\) 0 0
\(845\) 22.6525 0.779269
\(846\) 0 0
\(847\) 6.18034 0.212359
\(848\) 0 0
\(849\) 7.70820 0.264545
\(850\) 0 0
\(851\) −4.47214 −0.153303
\(852\) 0 0
\(853\) −22.0000 −0.753266 −0.376633 0.926363i \(-0.622918\pi\)
−0.376633 + 0.926363i \(0.622918\pi\)
\(854\) 0 0
\(855\) 8.94427 0.305888
\(856\) 0 0
\(857\) −25.0557 −0.855887 −0.427944 0.903805i \(-0.640762\pi\)
−0.427944 + 0.903805i \(0.640762\pi\)
\(858\) 0 0
\(859\) −24.9443 −0.851088 −0.425544 0.904938i \(-0.639917\pi\)
−0.425544 + 0.904938i \(0.639917\pi\)
\(860\) 0 0
\(861\) −8.58359 −0.292528
\(862\) 0 0
\(863\) 4.00000 0.136162 0.0680808 0.997680i \(-0.478312\pi\)
0.0680808 + 0.997680i \(0.478312\pi\)
\(864\) 0 0
\(865\) 14.4721 0.492067
\(866\) 0 0
\(867\) −35.3607 −1.20091
\(868\) 0 0
\(869\) 14.8328 0.503169
\(870\) 0 0
\(871\) −23.4164 −0.793435
\(872\) 0 0
\(873\) −0.472136 −0.0159794
\(874\) 0 0
\(875\) 1.88854 0.0638444
\(876\) 0 0
\(877\) −50.9443 −1.72027 −0.860133 0.510070i \(-0.829619\pi\)
−0.860133 + 0.510070i \(0.829619\pi\)
\(878\) 0 0
\(879\) −5.70820 −0.192533
\(880\) 0 0
\(881\) −40.5410 −1.36586 −0.682931 0.730483i \(-0.739295\pi\)
−0.682931 + 0.730483i \(0.739295\pi\)
\(882\) 0 0
\(883\) 19.4164 0.653414 0.326707 0.945126i \(-0.394061\pi\)
0.326707 + 0.945126i \(0.394061\pi\)
\(884\) 0 0
\(885\) −41.8885 −1.40807
\(886\) 0 0
\(887\) −48.9443 −1.64339 −0.821694 0.569929i \(-0.806971\pi\)
−0.821694 + 0.569929i \(0.806971\pi\)
\(888\) 0 0
\(889\) −12.9443 −0.434137
\(890\) 0 0
\(891\) 4.00000 0.134005
\(892\) 0 0
\(893\) 11.0557 0.369966
\(894\) 0 0
\(895\) 9.88854 0.330538
\(896\) 0 0
\(897\) −4.47214 −0.149320
\(898\) 0 0
\(899\) −11.0557 −0.368729
\(900\) 0 0
\(901\) −5.52786 −0.184160
\(902\) 0 0
\(903\) −9.52786 −0.317067
\(904\) 0 0
\(905\) −77.3050 −2.56970
\(906\) 0 0
\(907\) 39.1246 1.29911 0.649556 0.760314i \(-0.274955\pi\)
0.649556 + 0.760314i \(0.274955\pi\)
\(908\) 0 0
\(909\) −10.9443 −0.362999
\(910\) 0 0
\(911\) −48.7214 −1.61421 −0.807105 0.590407i \(-0.798967\pi\)
−0.807105 + 0.590407i \(0.798967\pi\)
\(912\) 0 0
\(913\) 16.0000 0.529523
\(914\) 0 0
\(915\) −14.4721 −0.478434
\(916\) 0 0
\(917\) −1.16718 −0.0385438
\(918\) 0 0
\(919\) −53.0132 −1.74874 −0.874371 0.485257i \(-0.838726\pi\)
−0.874371 + 0.485257i \(0.838726\pi\)
\(920\) 0 0
\(921\) 6.47214 0.213264
\(922\) 0 0
\(923\) −35.7771 −1.17762
\(924\) 0 0
\(925\) 24.4721 0.804639
\(926\) 0 0
\(927\) 6.76393 0.222157
\(928\) 0 0
\(929\) 24.8328 0.814738 0.407369 0.913264i \(-0.366446\pi\)
0.407369 + 0.913264i \(0.366446\pi\)
\(930\) 0 0
\(931\) −15.1246 −0.495689
\(932\) 0 0
\(933\) 24.9443 0.816639
\(934\) 0 0
\(935\) −93.6656 −3.06319
\(936\) 0 0
\(937\) 40.8328 1.33395 0.666975 0.745080i \(-0.267589\pi\)
0.666975 + 0.745080i \(0.267589\pi\)
\(938\) 0 0
\(939\) −22.9443 −0.748758
\(940\) 0 0
\(941\) −24.5410 −0.800014 −0.400007 0.916512i \(-0.630992\pi\)
−0.400007 + 0.916512i \(0.630992\pi\)
\(942\) 0 0
\(943\) −6.94427 −0.226137
\(944\) 0 0
\(945\) −4.00000 −0.130120
\(946\) 0 0
\(947\) −54.8328 −1.78183 −0.890914 0.454173i \(-0.849935\pi\)
−0.890914 + 0.454173i \(0.849935\pi\)
\(948\) 0 0
\(949\) 48.9443 1.58880
\(950\) 0 0
\(951\) 29.4164 0.953892
\(952\) 0 0
\(953\) −46.0689 −1.49232 −0.746159 0.665768i \(-0.768104\pi\)
−0.746159 + 0.665768i \(0.768104\pi\)
\(954\) 0 0
\(955\) −33.8885 −1.09661
\(956\) 0 0
\(957\) −17.8885 −0.578254
\(958\) 0 0
\(959\) 4.00000 0.129167
\(960\) 0 0
\(961\) −24.8885 −0.802856
\(962\) 0 0
\(963\) −0.944272 −0.0304287
\(964\) 0 0
\(965\) −30.4721 −0.980933
\(966\) 0 0
\(967\) 52.3607 1.68381 0.841903 0.539629i \(-0.181435\pi\)
0.841903 + 0.539629i \(0.181435\pi\)
\(968\) 0 0
\(969\) 20.0000 0.642493
\(970\) 0 0
\(971\) −45.3050 −1.45391 −0.726953 0.686688i \(-0.759064\pi\)
−0.726953 + 0.686688i \(0.759064\pi\)
\(972\) 0 0
\(973\) 11.0557 0.354430
\(974\) 0 0
\(975\) 24.4721 0.783736
\(976\) 0 0
\(977\) 26.0689 0.834017 0.417009 0.908902i \(-0.363078\pi\)
0.417009 + 0.908902i \(0.363078\pi\)
\(978\) 0 0
\(979\) 12.9443 0.413701
\(980\) 0 0
\(981\) −2.94427 −0.0940034
\(982\) 0 0
\(983\) 30.8328 0.983414 0.491707 0.870761i \(-0.336373\pi\)
0.491707 + 0.870761i \(0.336373\pi\)
\(984\) 0 0
\(985\) 30.4721 0.970923
\(986\) 0 0
\(987\) −4.94427 −0.157378
\(988\) 0 0
\(989\) −7.70820 −0.245107
\(990\) 0 0
\(991\) 10.4721 0.332658 0.166329 0.986070i \(-0.446809\pi\)
0.166329 + 0.986070i \(0.446809\pi\)
\(992\) 0 0
\(993\) 3.41641 0.108416
\(994\) 0 0
\(995\) 12.0000 0.380426
\(996\) 0 0
\(997\) 2.36068 0.0747635 0.0373817 0.999301i \(-0.488098\pi\)
0.0373817 + 0.999301i \(0.488098\pi\)
\(998\) 0 0
\(999\) −4.47214 −0.141492
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4416.2.a.bg.1.2 2
4.3 odd 2 4416.2.a.bm.1.2 2
8.3 odd 2 69.2.a.b.1.2 2
8.5 even 2 1104.2.a.m.1.1 2
24.5 odd 2 3312.2.a.bb.1.2 2
24.11 even 2 207.2.a.c.1.1 2
40.3 even 4 1725.2.b.o.1174.1 4
40.19 odd 2 1725.2.a.ba.1.1 2
40.27 even 4 1725.2.b.o.1174.4 4
56.27 even 2 3381.2.a.t.1.2 2
88.43 even 2 8349.2.a.i.1.1 2
120.59 even 2 5175.2.a.bk.1.2 2
184.91 even 2 1587.2.a.i.1.2 2
552.275 odd 2 4761.2.a.v.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
69.2.a.b.1.2 2 8.3 odd 2
207.2.a.c.1.1 2 24.11 even 2
1104.2.a.m.1.1 2 8.5 even 2
1587.2.a.i.1.2 2 184.91 even 2
1725.2.a.ba.1.1 2 40.19 odd 2
1725.2.b.o.1174.1 4 40.3 even 4
1725.2.b.o.1174.4 4 40.27 even 4
3312.2.a.bb.1.2 2 24.5 odd 2
3381.2.a.t.1.2 2 56.27 even 2
4416.2.a.bg.1.2 2 1.1 even 1 trivial
4416.2.a.bm.1.2 2 4.3 odd 2
4761.2.a.v.1.1 2 552.275 odd 2
5175.2.a.bk.1.2 2 120.59 even 2
8349.2.a.i.1.1 2 88.43 even 2