Properties

Label 4410.2.j
Level 4410
Weight 2
Character orbit j
Rep. character \(\chi_{4410}(1471,\cdot)\)
Character field \(\Q(\zeta_{3})\)
Dimension 328
Sturm bound 2016

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 4410 = 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4410.j (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(2016\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(4410, [\chi])\).

Total New Old
Modular forms 2080 328 1752
Cusp forms 1952 328 1624
Eisenstein series 128 0 128

Decomposition of \(S_{2}^{\mathrm{new}}(4410, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(4410, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(4410, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(315, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(441, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(630, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(882, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2205, [\chi])\)\(^{\oplus 2}\)

Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database