Properties

Label 4410.2.a.j
Level $4410$
Weight $2$
Character orbit 4410.a
Self dual yes
Analytic conductor $35.214$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 4410 = 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4410.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(35.2140272914\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{4} - q^{5} - q^{8} + O(q^{10}) \) \( q - q^{2} + q^{4} - q^{5} - q^{8} + q^{10} + 5q^{11} - 5q^{13} + q^{16} + 4q^{17} - 7q^{19} - q^{20} - 5q^{22} - q^{23} + q^{25} + 5q^{26} - 2q^{31} - q^{32} - 4q^{34} + q^{37} + 7q^{38} + q^{40} - 5q^{41} + 12q^{43} + 5q^{44} + q^{46} + 11q^{47} - q^{50} - 5q^{52} + 9q^{53} - 5q^{55} - 4q^{59} + 4q^{61} + 2q^{62} + q^{64} + 5q^{65} - 12q^{67} + 4q^{68} - 2q^{71} + 10q^{73} - q^{74} - 7q^{76} - 12q^{79} - q^{80} + 5q^{82} + 12q^{83} - 4q^{85} - 12q^{86} - 5q^{88} - 14q^{89} - q^{92} - 11q^{94} + 7q^{95} - 8q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 0 1.00000 −1.00000 0 0 −1.00000 0 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(5\) \(1\)
\(7\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4410.2.a.j 1
3.b odd 2 1 1470.2.a.l 1
7.b odd 2 1 4410.2.a.u 1
7.c even 3 2 630.2.k.g 2
15.d odd 2 1 7350.2.a.u 1
21.c even 2 1 1470.2.a.o 1
21.g even 6 2 1470.2.i.e 2
21.h odd 6 2 210.2.i.b 2
84.n even 6 2 1680.2.bg.d 2
105.g even 2 1 7350.2.a.a 1
105.o odd 6 2 1050.2.i.p 2
105.x even 12 4 1050.2.o.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.2.i.b 2 21.h odd 6 2
630.2.k.g 2 7.c even 3 2
1050.2.i.p 2 105.o odd 6 2
1050.2.o.g 4 105.x even 12 4
1470.2.a.l 1 3.b odd 2 1
1470.2.a.o 1 21.c even 2 1
1470.2.i.e 2 21.g even 6 2
1680.2.bg.d 2 84.n even 6 2
4410.2.a.j 1 1.a even 1 1 trivial
4410.2.a.u 1 7.b odd 2 1
7350.2.a.a 1 105.g even 2 1
7350.2.a.u 1 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4410))\):

\( T_{11} - 5 \)
\( T_{13} + 5 \)
\( T_{17} - 4 \)
\( T_{19} + 7 \)
\( T_{29} \)
\( T_{31} + 2 \)