Properties

Label 4410.2.a.be
Level $4410$
Weight $2$
Character orbit 4410.a
Self dual yes
Analytic conductor $35.214$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 4410 = 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4410.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(35.2140272914\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1470)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} + q^{4} + q^{5} + q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} + q^{4} + q^{5} + q^{8} + q^{10} - 6 q^{11} - 6 q^{13} + q^{16} + 4 q^{19} + q^{20} - 6 q^{22} + q^{25} - 6 q^{26} + 8 q^{29} - 2 q^{31} + q^{32} + 4 q^{37} + 4 q^{38} + q^{40} - 10 q^{41} - 6 q^{43} - 6 q^{44} - 2 q^{47} + q^{50} - 6 q^{52} - 10 q^{53} - 6 q^{55} + 8 q^{58} - 4 q^{59} - 14 q^{61} - 2 q^{62} + q^{64} - 6 q^{65} + 14 q^{67} - 8 q^{71} - 6 q^{73} + 4 q^{74} + 4 q^{76} - 8 q^{79} + q^{80} - 10 q^{82} - 8 q^{83} - 6 q^{86} - 6 q^{88} - 18 q^{89} - 2 q^{94} + 4 q^{95} - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 0 1.00000 1.00000 0 0 1.00000 0 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(-1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4410.2.a.be 1
3.b odd 2 1 1470.2.a.c 1
7.b odd 2 1 4410.2.a.v 1
15.d odd 2 1 7350.2.a.da 1
21.c even 2 1 1470.2.a.i yes 1
21.g even 6 2 1470.2.i.k 2
21.h odd 6 2 1470.2.i.r 2
105.g even 2 1 7350.2.a.cf 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1470.2.a.c 1 3.b odd 2 1
1470.2.a.i yes 1 21.c even 2 1
1470.2.i.k 2 21.g even 6 2
1470.2.i.r 2 21.h odd 6 2
4410.2.a.v 1 7.b odd 2 1
4410.2.a.be 1 1.a even 1 1 trivial
7350.2.a.cf 1 105.g even 2 1
7350.2.a.da 1 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4410))\):

\( T_{11} + 6 \) Copy content Toggle raw display
\( T_{13} + 6 \) Copy content Toggle raw display
\( T_{17} \) Copy content Toggle raw display
\( T_{19} - 4 \) Copy content Toggle raw display
\( T_{29} - 8 \) Copy content Toggle raw display
\( T_{31} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 6 \) Copy content Toggle raw display
$13$ \( T + 6 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T - 4 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T - 8 \) Copy content Toggle raw display
$31$ \( T + 2 \) Copy content Toggle raw display
$37$ \( T - 4 \) Copy content Toggle raw display
$41$ \( T + 10 \) Copy content Toggle raw display
$43$ \( T + 6 \) Copy content Toggle raw display
$47$ \( T + 2 \) Copy content Toggle raw display
$53$ \( T + 10 \) Copy content Toggle raw display
$59$ \( T + 4 \) Copy content Toggle raw display
$61$ \( T + 14 \) Copy content Toggle raw display
$67$ \( T - 14 \) Copy content Toggle raw display
$71$ \( T + 8 \) Copy content Toggle raw display
$73$ \( T + 6 \) Copy content Toggle raw display
$79$ \( T + 8 \) Copy content Toggle raw display
$83$ \( T + 8 \) Copy content Toggle raw display
$89$ \( T + 18 \) Copy content Toggle raw display
$97$ \( T + 2 \) Copy content Toggle raw display
show more
show less