Properties

Label 441.7.d.b
Level $441$
Weight $7$
Character orbit 441.d
Analytic conductor $101.454$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [441,7,Mod(244,441)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(441, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 7, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("441.244");
 
S:= CuspForms(chi, 7);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 441.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(101.453850876\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 3\cdot 7 \)
Twist minimal: no (minimal twist has level 7)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 4) q^{2} + ( - 8 \beta_1 - 30) q^{4} + 25 \beta_{2} q^{5} + ( - 62 \beta_1 + 232) q^{8} + ( - 75 \beta_{3} - 25 \beta_{2}) q^{10} + ( - 181 \beta_1 + 941) q^{11} + ( - 454 \beta_{3} + 108 \beta_{2}) q^{13}+ \cdots + (133378 \beta_{3} + 11172 \beta_{2}) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{2} - 120 q^{4} + 928 q^{8} + 3764 q^{11} - 496 q^{16} - 28088 q^{22} + 4940 q^{23} - 5000 q^{25} + 34544 q^{29} + 14016 q^{32} + 87740 q^{37} + 320216 q^{43} - 8664 q^{44} + 227272 q^{46} - 160000 q^{50}+ \cdots - 583500 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -3\nu^{3} ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} + \nu^{2} + 4\nu + 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - 6\nu^{2} + 4\nu - 6 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 3\beta_{3} + 9\beta_{2} + 7\beta_1 ) / 42 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -2\beta_{3} + \beta_{2} - 7 ) / 7 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -2\beta_1 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
244.1
−0.707107 1.22474i
−0.707107 + 1.22474i
0.707107 1.22474i
0.707107 + 1.22474i
−8.24264 0 3.94113 79.1732i 0 0 495.044 0 652.596i
244.2 −8.24264 0 3.94113 79.1732i 0 0 495.044 0 652.596i
244.3 0.242641 0 −63.9411 165.776i 0 0 −31.0437 0 40.2239i
244.4 0.242641 0 −63.9411 165.776i 0 0 −31.0437 0 40.2239i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 441.7.d.b 4
3.b odd 2 1 49.7.b.b 4
7.b odd 2 1 inner 441.7.d.b 4
7.c even 3 1 63.7.m.b 4
7.d odd 6 1 63.7.m.b 4
21.c even 2 1 49.7.b.b 4
21.g even 6 1 7.7.d.b 4
21.g even 6 1 49.7.d.c 4
21.h odd 6 1 7.7.d.b 4
21.h odd 6 1 49.7.d.c 4
84.j odd 6 1 112.7.s.b 4
84.n even 6 1 112.7.s.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7.7.d.b 4 21.g even 6 1
7.7.d.b 4 21.h odd 6 1
49.7.b.b 4 3.b odd 2 1
49.7.b.b 4 21.c even 2 1
49.7.d.c 4 21.g even 6 1
49.7.d.c 4 21.h odd 6 1
63.7.m.b 4 7.c even 3 1
63.7.m.b 4 7.d odd 6 1
112.7.s.b 4 84.j odd 6 1
112.7.s.b 4 84.n even 6 1
441.7.d.b 4 1.a even 1 1 trivial
441.7.d.b 4 7.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 8T_{2} - 2 \) acting on \(S_{7}^{\mathrm{new}}(441, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 8 T - 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 33750 T^{2} + 172265625 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} - 1882 T + 295783)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 37734434122896 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 226702498429449 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 718603078673529 \) Copy content Toggle raw display
$23$ \( (T^{2} - 2470 T - 210366473)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 17272 T - 154827704)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 611468988954201 \) Copy content Toggle raw display
$37$ \( (T^{2} - 43870 T - 225134303)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 26\!\cdots\!84 \) Copy content Toggle raw display
$43$ \( (T^{2} - 160108 T + 6274490716)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 81\!\cdots\!29 \) Copy content Toggle raw display
$53$ \( (T^{2} - 104530 T - 38017784975)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 35\!\cdots\!69 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 29\!\cdots\!29 \) Copy content Toggle raw display
$67$ \( (T^{2} + 432494 T + 37630003759)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 740764 T + 136232520316)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 56\!\cdots\!41 \) Copy content Toggle raw display
$79$ \( (T^{2} + 935990 T + 197161678663)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 10\!\cdots\!76 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 85\!\cdots\!21 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 95\!\cdots\!84 \) Copy content Toggle raw display
show more
show less