Newspace parameters
Level: | \( N \) | \(=\) | \( 441 = 3^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 441.c (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(70.7292645375\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | \(\Q(\sqrt{-2}, \sqrt{-3})\) |
Defining polynomial: |
\( x^{4} - 2x^{2} + 4 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{13}]\) |
Coefficient ring index: | \( 2^{2}\cdot 7^{2} \) |
Twist minimal: | no (minimal twist has level 63) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} - 2x^{2} + 4 \)
:
\(\beta_{1}\) | \(=\) |
\( ( \nu^{3} ) / 2 \)
|
\(\beta_{2}\) | \(=\) |
\( 7\nu^{2} - 7 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -7\nu^{3} + 28\nu ) / 2 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{3} + 7\beta_1 ) / 14 \)
|
\(\nu^{2}\) | \(=\) |
\( ( \beta_{2} + 7 ) / 7 \)
|
\(\nu^{3}\) | \(=\) |
\( 2\beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).
\(n\) | \(199\) | \(344\) |
\(\chi(n)\) | \(-1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
440.1 |
|
− | 2.82843i | 0 | 24.0000 | −51.4393 | 0 | 0 | − | 158.392i | 0 | 145.492i | ||||||||||||||||||||||||||||
440.2 | − | 2.82843i | 0 | 24.0000 | 51.4393 | 0 | 0 | − | 158.392i | 0 | − | 145.492i | ||||||||||||||||||||||||||||
440.3 | 2.82843i | 0 | 24.0000 | −51.4393 | 0 | 0 | 158.392i | 0 | − | 145.492i | ||||||||||||||||||||||||||||||
440.4 | 2.82843i | 0 | 24.0000 | 51.4393 | 0 | 0 | 158.392i | 0 | 145.492i | |||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
7.b | odd | 2 | 1 | inner |
21.c | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 441.6.c.a | 4 | |
3.b | odd | 2 | 1 | inner | 441.6.c.a | 4 | |
7.b | odd | 2 | 1 | inner | 441.6.c.a | 4 | |
7.c | even | 3 | 1 | 63.6.p.a | ✓ | 4 | |
7.d | odd | 6 | 1 | 63.6.p.a | ✓ | 4 | |
21.c | even | 2 | 1 | inner | 441.6.c.a | 4 | |
21.g | even | 6 | 1 | 63.6.p.a | ✓ | 4 | |
21.h | odd | 6 | 1 | 63.6.p.a | ✓ | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
63.6.p.a | ✓ | 4 | 7.c | even | 3 | 1 | |
63.6.p.a | ✓ | 4 | 7.d | odd | 6 | 1 | |
63.6.p.a | ✓ | 4 | 21.g | even | 6 | 1 | |
63.6.p.a | ✓ | 4 | 21.h | odd | 6 | 1 | |
441.6.c.a | 4 | 1.a | even | 1 | 1 | trivial | |
441.6.c.a | 4 | 3.b | odd | 2 | 1 | inner | |
441.6.c.a | 4 | 7.b | odd | 2 | 1 | inner | |
441.6.c.a | 4 | 21.c | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{2} + 8 \)
acting on \(S_{6}^{\mathrm{new}}(441, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} + 8)^{2} \)
$3$
\( T^{4} \)
$5$
\( (T^{2} - 2646)^{2} \)
$7$
\( T^{4} \)
$11$
\( (T^{2} + 334562)^{2} \)
$13$
\( (T^{2} + 1326675)^{2} \)
$17$
\( (T^{2} - 142296)^{2} \)
$19$
\( (T^{2} + 3006003)^{2} \)
$23$
\( (T^{2} + 21255200)^{2} \)
$29$
\( (T^{2} + 21177032)^{2} \)
$31$
\( (T^{2} + 5140443)^{2} \)
$37$
\( (T - 203)^{4} \)
$41$
\( (T^{2} - 7350)^{2} \)
$43$
\( (T - 4697)^{4} \)
$47$
\( (T^{2} - 575417094)^{2} \)
$53$
\( (T^{2} + 55041032)^{2} \)
$59$
\( (T^{2} - 24725400)^{2} \)
$61$
\( (T^{2} + 303973068)^{2} \)
$67$
\( (T - 30197)^{4} \)
$71$
\( (T^{2} + 15691202)^{2} \)
$73$
\( (T^{2} + 2844626547)^{2} \)
$79$
\( (T + 39385)^{4} \)
$83$
\( (T^{2} - 4040103606)^{2} \)
$89$
\( (T^{2} - 11105354904)^{2} \)
$97$
\( (T^{2} + 4248300)^{2} \)
show more
show less