Properties

Label 441.6.a.z
Level $441$
Weight $6$
Character orbit 441.a
Self dual yes
Analytic conductor $70.729$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [441,6,Mod(1,441)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(441, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("441.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 441.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(70.7292645375\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{113})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 59x^{2} + 60x + 674 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 7 \)
Twist minimal: no (minimal twist has level 49)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 2) q^{2} - 5 \beta_1 q^{4} + ( - 2 \beta_{3} + 8 \beta_{2}) q^{5} + (17 \beta_1 + 76) q^{8} + ( - 38 \beta_{3} + 30 \beta_{2}) q^{10} + (12 \beta_1 + 494) q^{11} + (64 \beta_{3} + 56 \beta_{2}) q^{13}+ \cdots + ( - 5873 \beta_{3} + 7448 \beta_{2}) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 10 q^{2} + 10 q^{4} + 270 q^{8} + 1952 q^{11} - 1566 q^{16} + 3524 q^{22} + 7136 q^{23} + 2764 q^{25} + 3352 q^{29} - 27810 q^{32} - 9208 q^{37} + 20448 q^{43} - 1900 q^{44} + 56712 q^{46} + 43070 q^{50}+ \cdots - 108224 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 59x^{2} + 60x + 674 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -2\nu^{3} + 3\nu^{2} + 172\nu - 139 ) / 105 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 51\nu^{2} - 86\nu - 1558 ) / 105 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 2\nu^{3} - 3\nu^{2} - 67\nu + 34 ) / 15 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + 7\beta _1 + 7 ) / 7 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} + \beta _1 + 31 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 86\beta_{3} + 21\beta_{2} + 245\beta _1 + 441 ) / 7 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.40086
7.22929
−3.40086
−6.22929
−2.81507 0 −24.0754 −45.9910 0 0 157.856 0 129.468
1.2 −2.81507 0 −24.0754 45.9910 0 0 157.856 0 −129.468
1.3 7.81507 0 29.0754 −74.2753 0 0 −22.8562 0 −580.467
1.4 7.81507 0 29.0754 74.2753 0 0 −22.8562 0 580.467
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 441.6.a.z 4
3.b odd 2 1 49.6.a.g 4
7.b odd 2 1 inner 441.6.a.z 4
12.b even 2 1 784.6.a.bf 4
21.c even 2 1 49.6.a.g 4
21.g even 6 2 49.6.c.h 8
21.h odd 6 2 49.6.c.h 8
84.h odd 2 1 784.6.a.bf 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
49.6.a.g 4 3.b odd 2 1
49.6.a.g 4 21.c even 2 1
49.6.c.h 8 21.g even 6 2
49.6.c.h 8 21.h odd 6 2
441.6.a.z 4 1.a even 1 1 trivial
441.6.a.z 4 7.b odd 2 1 inner
784.6.a.bf 4 12.b even 2 1
784.6.a.bf 4 84.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(441))\):

\( T_{2}^{2} - 5T_{2} - 22 \) Copy content Toggle raw display
\( T_{5}^{4} - 7632T_{5}^{2} + 11669056 \) Copy content Toggle raw display
\( T_{13}^{4} - 1260672T_{13}^{2} + 76158337024 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 5 T - 22)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 7632 T^{2} + 11669056 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} - 976 T + 234076)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 76158337024 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 1700202150724 \) Copy content Toggle raw display
$19$ \( T^{4} - 1359892 T^{2} + 56942116 \) Copy content Toggle raw display
$23$ \( (T^{2} - 3568 T - 160336)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 1676 T - 16661788)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 614334295349824 \) Copy content Toggle raw display
$37$ \( (T^{2} + 4604 T + 5234116)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 14\!\cdots\!56 \) Copy content Toggle raw display
$43$ \( (T^{2} - 10224 T - 998756)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 17\!\cdots\!36 \) Copy content Toggle raw display
$53$ \( (T^{2} - 51460 T + 472236292)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 11\!\cdots\!76 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 11\!\cdots\!24 \) Copy content Toggle raw display
$67$ \( (T^{2} + 11448 T - 3789557552)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 76912 T + 953601968)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 20\!\cdots\!44 \) Copy content Toggle raw display
$79$ \( (T^{2} + 45344 T + 386672)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 17\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 13\!\cdots\!96 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 11\!\cdots\!44 \) Copy content Toggle raw display
show more
show less